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ABSTRACT

In this paper, we investigate the data-aided estimation of frequency
offsets and channel coefficients in the uplink transmission of MIMO-
OFDMA systems. A compact and informative expression of the
Cramér-Rao Bound (CRB) is derived for large training sequence
sizes. It is shown that the asymptotic performance bounds do not
depend on the number of users. Next, we bring to the fore the train-
ing strategies which minimize the asymptotic performance bounds
and which are therefore likely to lead to accurate estimates of the
parameters. In particular, for a given user, it is shown that accurate
frequency offset estimates are likely to be obtained by introducing
relevant correlation between training sequences send at different an-
tennas. On the otherhand, accurate channel estimation is achieved
when training sequences send at different antennas are uncorrelated.

1. INTRODUCTION

Orthogonal Frequency Division Multiple Access (OFDMA) has re-
cently become very popular in wireless communications and appears
as a potential candidate for 4G mobile cellular systems. In this pa-
per, we consider an uplink MIMO-OFDMA transmission involving
Nt transmit (Tx) antennas per user and Nr receive (Rx) antennas at
the base station. Each user modulates a certain group of subcarri-
ers, following a given Carrier Assignment Scheme (CAS). The sig-
nal transmitted by a given user is impaired by a frequency selective
channel and by a frequency offset due to Doppler effect and oscillator
drifts.

The crucial impact of channels and frequency offsets estimation
on further detection step in OFDMA has motivated a number of re-
cent works (see,e.g., [6] and references therein). In this paper, we
study the Cramér-Rao Bound (CRB) for the joint data-aided estima-
tion of the K frequency offsets and the K MIMO channels, where
K denotes the number of users. Unfortunately, the expression of the
exact CRB turns out to be complicated. Thus, we investigate the case
where the number N of subcarriers increases. In this case, a compact
and informative expression of the (asymptotic) CRB can be obtained.
Such an asymptotic analysis of the CRB has been proposed in [3] and
[4] in case of a single-user single-carrier single-antenna system. The
case of frequency offset estimation performance for MIMO systems
has been investigated by [10] in case of a flat fading channel. Re-
cently, the asymptotic CRB for clock offset and channel estimation
has been studied by [5] in case of a single-user single antenna OFDM
system.

Of course, the resulting CRB crucially depends on the training
strategy employed by each user. Thus, following the general idea of
[4], we bring to the fore the training design strategies which minimize
the latter asymptotic performance bounds, with the goal of providing
accurate estimates of parameters. Such a study has been recently pro-
vided by [7] in the single antenna case. However, it is worth noting

that the MIMO case is far from being a straightforward generaliza-
tion of [7]. In particular, in the MIMO case, the design of relevant
training sequences implies the selection of relevant beamformers at
the transmitter side. In other words, the correlation between training
sequences send at different Tx antennas of a given user should be
selected so as to minimize the (bounds on the) estimation errors.

The paper is organized as follows. Section 2 describes the signal
model. In Section 3, we derive the exact and the asymptotic CRB for
the joint estimation of all parameters. In Section 4, we address the
problem of training sequence design. Simulation results of Section 5
sustain our claims.

2. SIGNAL MODEL

Consider an uplink MIMO-OFDMA transmission, with Nt Tx an-
tennas per user and Nr Rx antennas at the base station. Assume that
K users share N subcarriers. We denote by 1

NT
the spacing between

two consecutive subcarriers. Hence, the complex envelope of the re-
ceived signal is assumed to be sampled at rate T . After cyclic prefix
removal, received samples at Rx antenna r can be written for each
n = 0, . . . , N − 1 as

y
(r)
N,r(n)=

KX

k=1

eıωkn
NtX
t=1

L−1X
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h
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N,k(n− l)+v(r)(n). (1)

For each k = 1, . . . , K, parameter ωk is defined as ωk = 2πδfkT ,
where δfk denotes the frequency offset corresponding to user k.
Since the difference between frequency offsets observed at different
Tx-Rx pairs is usually negligible for a given user k, we assume with-
out restriction that δfk is a constant w.r.t. antenna pairs (t, r). Pa-
rameter h

(t,r)
k (l) represents lth tap of the channel impulse response

between tthTx antenna of user k and rthRx antenna. Each channel is
assumed to have no more than L non zero taps, where integer L does
not depend on k and does not exceed the length of the cyclic pre-
fix. Sequence {v(r)(n)}n denotes a white Gaussian noise. Finally,
sequence {a(t)

N,k(n)}n is the Inverse FFT of the training sequence

{s(t)
N,k(j)}j transmitted in the frequency domain by user k at Tx an-

tenna t. Thus, for each n and each antenna t,

a
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s
(t)
N,k(j)e2ıπ nj

N , (2)

where j denotes the subcarrier index. Remark that, we simply put
s
(t)
N,k(j) = 0 in the case where subcarrier j is not modulated by user

k for the tth antenna. However, we do not specify any subcarrier
assignment strategy at this point. Note also that training sequences
s
(t)
N,k(j) and s

(t′)
N,k(j) send at different antennas t and t′ are possibly

different.



In order to obtain a compact matricial representa-
tion of (1), we introduce the following notations. De-
fine h

(t,r)
k = [h

(t,r)
k (0), . . . , h

(t,r)
k (L − 1)]T , where

(.)T represents the transpose operator. Stacking all
above channel parameters in a single vector, we define
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user k, we define the N ×NtL matrix AN,k = [A
(1)
N,k, . . . ,A

(Nt)
N,k ],

where the tthN × L block is equal to [A
(t)
N,k]i,j = a

(t)
N,k(i − j) for

0 ≤ i ≤ N − 1 and 0 ≤ j ≤ L − 1. Then, stacking all NrN
received samples (1) into a single received vector yN , we finally
obtain:

yN =

KX

k=1

[INr ⊗ (ΓN (ωk)AN,k)]hk + vN , (3)

where INr denotes the Nr ×Nr identity matrix, ⊗ denotes the Kro-
necker product and where ΓN (ωk) = diag(1, eıωk . . . eıωk(N−1)).
Here vN is a Gaussian noise vector with independent and identi-
cally distributed entries of variance σ2. In the sequel, we inves-
tigate the data aided estimation of the unknown parameter vector
θ = [ω1,h

T
1 , . . . , ωK ,hT

K ]T .

3. ASYMPTOTIC CRAMÉR-RAO BOUND

We now study the CRB associated to parameter vector θ. Such an
analysis provides performance bounds for estimates of θ. Moreover,
it emphasizes the influence of the choice of the training sequence on
the performance.

Real parameter vector can be written as θ̃ = [θ̃
T

1 . . . θ̃
T

K ]T where
for each k, θ̃k = [ωk,hT

R,k,hT
I,k]T denotes the parameter vec-

tor corresponding to a given user k. In the above definition, hR,k

and hI,k respectively represent the real and the imaginary parts of
vector hk. Using an approach similar to [4], the Fisher Informa-
tion Matrix (FIM) for parameter θ̃ can be obtained as the following
K(1 + 2LNrNt)×K(1 + 2LNrNt) matrix:

JN =
2

σ2
R

»
∂ηH

N
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∂ηN
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T

–
, (4)

where ηN =
PK

k=1 [INr ⊗ (ΓN (ωk)AN,k)]hk. Here, superscript
(·)H denotes the transpose-conjugate, R [x] (resp. I [x]) denotes the
real (resp. imaginary) part of x. After some algebra, JN can be
written as the block matrix JN = (JN,k,l)1≤k,l≤K , where for each
k, l = 1 . . . K, JN,k,l coincides with the following (1+2LNrNt)×
(1 + 2LNrNt) matrix:
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where

RN,k,l = INr⊗
“
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”
, (6)
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and where DN = diag (0, 1, 2, . . . , N − 1). Exact CRB is defined
as the inverse of JN . However, for finite values of N , it seems dif-
ficult to obtain an informative expression of J−1

N directly from (5).

Thus, we investigate the case where the number N of subcarrier in-
creases. In this case, compact and informative expressions of the
CRB can be obtained.

We assume that N tends to infinity while i) the number K of users
remains constant and while ii) the number of antennas remains con-
stant. In practice, our results will be valid as long as the number N
of subcarriers is significantly greater than both the number K of user
and the total number of antennas. We also assume that when N tends
to infinity, the overall bandwidth is constant. In other words, sam-
pling rate 1

T
remains constant and as a result, the subcarrier spacing

1
NT

decreases to zero.
In order to simplify the following analysis, we assume that for a

given antenna t of a given user k, {s(t)
N,k(j)}j=0...N−1 is a sequence

of independent random variables. Note that this assumption encom-
passes usual OFDMA training strategies [5]. However, we do not
assume that training symbols are identically distributed. In partic-
ular, the variance E[|s(t)

N,k(j)|2] of the jth training symbol depends
on j. This is motivated by the observation that in practical OFDM
systems, different powers may be allocated to different subcarriers.
Moreover, for a given CAS, a certain number of subcarriers may not
be modulated by user k. If j is one of these subcarriers, we simply
consider that E[|s(t)

N,k(j)|2] = 0. Finally, we assume that training

sequences {s(t)
N,k(j)}j and {s(t′)

N,k(j)}j transmitted by two different
antennas t and t′ of a given user k are possibly correlated (due to
the possible use of a beamformer). Therefore, the cross-correlation
E[s

(t)
N,k(j)s

(t′)
N,k(j)∗] may be non zero.

For a given training strategy (i.e. for a given CAS, a given power
allocation and a given correlation between antennas), we introduce
the following matricial measure defined for any Borel set A of [0, 1]

µN,k(A) =
1

N

N−1X
j=0

E
h
sN,k(j)sN,k(j)H

i
IA(

j

N
), (9)

where IA stands for the indicator function of set A and where
sN,k(j) = [s

(1)
N,k(j) . . . s

(Nt)
N,k (j)]T is the vector of containing all

training symbols modulating subcarrier j. We denote by µ
(t,t′)
N,k (A)

the coefficient of the tthrow and the t′ thcolumn of (9). In or-
der to have some insights on the meaning of (9), it is interesting
to remark that the first coefficient µ

(1,1)
N,k (A) verifies µ

(1,1)
N,k (A) =

1
N

PN−1
j=0 E

h
|s(1)

N,k(j)|2
i
IA( j

N
). Therefore, measure µ

(1,1)
N,k can be

interpreted as the power profile of the training sequence send at the
first antenna. In particular, µ

(1,1)
N,k ([0, 1]) represents the total power

transmitted by the first antenna during a whole OFDM block. Gen-
eralizing this idea, for any Tx antenna pair (t, t′), µ

(t,t′)
N,k can be in-

terpreted as the cross-correlation profile of the training sequences re-
spectively send at antennas t and t′. Finally, matricial measure µN,k

is in some sense equivalent to the covariance profile of the vectorial
training sequence sN,k(j). We now make the following assumption.

Assumption 1 For each k, we assume that there is a matricial mea-
sure µk such that µN,k converges weakly to µk as N →∞.

We will refer to µk as the asymptotic covariance profile of the train-
ing sequence of user k. It is worth noting that the introduction of the
above covariance profiles allows to thoroughly simplify the asymp-
totic analysis of the CRB. Moreover, (9) does not imply any restric-
tion on the particular CAS, so that our results are valid for a large
number of OFDMA training strategies. Note also that µk jointly en-
compasses the CAS, the power allocation policy and the correlation
between Tx antennas (due to possible beamforming).



Using (6), (7) and (8), JN can be written as a continuous function
of random matrices AH

N,kD
u
NΓN (ωl−ωk)AN,l for u = 0, 1, 2 and

for k, l = 1 . . . K. Thus, the asymptotic behavior of the CRB matrix
is solely characterized by the asymptotic behaviors of the latter ran-
dom matrices. After some algebra and the use of classical asymptotic
analysis tools [1], one can show the following lemma.

Lemma 1 For each u = 0, 1, 2, for each k, l = 1 . . . K,

u + 1

Nu+1
AH

N,kD
u
NΓN (ωl − ωk)AN,l

P−→ δ(k − l) Rk, (10)

where δ(k − l) is equal to 1 if k = l and equal to zero otherwise.

Notation P−→ stands for the (componentwise) convergence in proba-
bility as N →∞. We define the LNt × LNt matrix Rk

Rk =

Z 1

0

µk(df)⊗
h
e(f)e(f)H

i
, (11)

where e(f) = [1, e2ıπf , . . . , e2ıπf(L−1)]T .

The proof is omitted due to the lack of space.
In accordance with (10), we rather focus on the normalized

CRB, CRBN = WNCRBNWN where WN is the K(1 +
2LNrNt) × K(1 + 2LNrNt) diagonal matrix defined by WN =
diag(wT

N , . . . ,wT
N ) where wT

N denotes the (1+2LNrNt) row vec-
tor wT

N = [N3/2, N1/2, . . . , N1/2]. Using (10), we obtain the fol-
lowing result.

Proposition 1 As N tends to infinity, CRBN converges in proba-
bility to the block-diagonal matrix CRB given by

CRB = diag (C1, . . . ,CK) . (12)

For each k = 1, . . . , K, Ck is the (1 + 2LNrNt)× (1 + 2LNrNt)
matrix equal to
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where

γk =

NrX
r=1

Z 1

0

H
(r)
k (f)Hµk(df)H

(r)
k (f).

Here, H(r)
k (f) =

PL−1
l=0 [h

(r,1)
k (l), . . . , h

(r,Nt)
k (l)]T e−2ıπlf may be

interpreted as the overall frequency response of the channel “seen”
at Rx antenna r.

The asymptotic normalized CRB is a block-diagonal matrix. In
particular, this implies that for any asymptotically efficient estima-
tor, the (normalized) estimation errors corresponding to parameters
of distinct users are non correlated as N →∞. Looking more care-
fully at diagonal block Ck, it can be easily seen that the estimation
errors associated to the parameters of a user k depend neither on the
parameters of other users l 6= k nor on the number K of users. The
asymptotic CRB is also independent from the values of the frequency
offsets.

We now further study the bounds on the Mean Square Errors
(MSE) for the parameters of a given user k. We define

CRBω,k =
6σ2

γk
(13)

CRBh,k = Nrσ
2tr
`
R−1

k

´
+

3σ2

2

hH
k hk

γk
(14)

where tr(X) stands for the trace of X. For any unbiased estimate θ̂N

of θ, Proposition 1 implies that

lim inf
N→∞

N3E
ˆ
(ω̂N,k − ωk)2

˜ ≥ CRBω,k (15)

lim inf
N→∞

NE

»‚‚‚ĥN,k − hk

‚‚‚
2
–

≥ CRBh,k (16)

where ω̂N,k and ĥN,k respectively denote the estimates of the (angu-
lar) frequency offset ωk and channel coefficients hk.

4. TRAINING SEQUENCE SELECTION

In this Section, we characterize the training sequences which are
likely to provide accurate estimates of parameters. It was shown in
[3], [4] and [11] that no training sequence is likely to jointly min-
imize the bounds on the MSE of all parameters. In order to over-
come this problem, [4] proposes to select training sequences so that
a given cost function depending on the CRB is minimum. However,
the problem of choosing a relevant cost function is delicate, and is
out of the scope of the present paper. Here, we separately study the
minimization of CRBω,k and CRBh,k.

Proposition 1 indicates that the design of all K training sequences
can be achieved separately, without restriction. In words, each user
k is likely to select its own training sequence without taking other
users into account. As a consequence, we simply drop index k in
the sequel. Proposition 2 characterizes the training strategies that
minimize (13).

Proposition 2 For each f ∈ [0, 1], denote by λmax(f) the max-
imum eigenvalue of

PNr
r=1 H(r)(f)H(r)(f)H . Define fopt =

arg maxf λmax(f). Assuming power constraint tr(µ([0, 1])) ≤ P,
CRBω is minimum if and only if µ = Pνoptνopt

Hδfopt where νopt

is the eigenvector associated to λmax(fopt) and δfopt represents the
Dirac measure at fopt.

The proof of the above result make use of classical results on integra-
tion [1] and is omitted due to the lack of space. The optimum train-
ing strategy for accurate frequency offset estimation is determined
by the covariance profile µ defined by Proposition 2. In particu-
lar, this suggests that an accurate estimate of ω can be obtained by
transmitting all available power at the frequency for which the largest
eigenvalue of

PNr
r=1 H(r)(f)H(r)(f)H is maximum. Moreover, the

cross-correlation between training sequences send at different anten-
nas is dictated by eigenvector νopt. In other words, νopt can be
interpreted as the optimal beamformer to be used at transmitter side.

Of course, the above training strategy requires the channel knowl-
edge at the transmitter side (or at least some limited channel knowl-
edge consisting in fopt and νopt). Thus, such a strategy is only appli-
cable under certain channel feedback conditions. However, in certain
applications, channel information at the transmitter side may be lim-
ited to some channel statistics. Although this particular case is some-
what out of the scope of the paper, it is of practical interest to provide
general ideas that can be used for designing training sequences in the
case where the channel information is limited to the covariance ma-
trix Σ = E

ˆ
hhH

˜
of the channel. In the sequel, we assume that

the channel is Rayleigh distributed. We propose to minimize the ex-
pectation w.r.t. h of CRBω , i.e. Eh

ˆ
CRBω

˜
. According to (15),

this is equivalent to the minimization of the lower bound on the av-
erage MSE of the frequency offset estimate. The direct calculation
of Eh

ˆ
CRBω

˜
is unfortunately a difficult task. Following an idea

recently used by [8], we propose to approximate the distribution of γ



in (13) with a Gamma distribution. After some algebra, we obtain

Eh

ˆ
CRBω

˜ ' 6σ2tr((INr⊗R)Σ)

[tr((INr⊗R)Σ)]2 − tr
`
[(INr⊗R)Σ]2

´ . (17)

The issue of minimizing (17) w.r.t. the training strategy is however
out of the scope of the paper and will be investigated in future works.

We now study the training sequences which minimize CRBh

given in (14). In order to simplify what follows, we assume that
µ has a density and we denote this density by P(f), i.e. µ(df) =
P(f)df . We also assume for the sake of simplicity that for each f ,
density P(f) is positive definite. Since the minimization of (14) in
the general case seems to be difficult, we rather focus on the case
where the length L of the channel increases (note that we still as-
sume N À L). Using recent results on large block Toeplitz matrices
[9], it can be shown that

CRBh = L Nrσ
2

NtX
t=1

Z 1

0

1

λt(P(f))
df + OL(1) (18)

where λt(X) denotes the ttheigenvalue of matrix X. After some
algebra, one can show the following Proposition, which holds for
sufficiently large values of L.

Proposition 3 Under power constraint tr(
R 1

0
P(f)df) ≤ P, CRBh

is minimum iff for each f ∈ [0, 1], P(f) = P
Nt

INt .

As a consequence, accurate estimates of channel coefficients are
likely to be obtained when the following training strategy is used.
Firstly, P(f) is a diagonal matrix for each f . This suggests to
send uncorrelated training sequences at different antennas. Secondly,
P(f) does not depend on frequency f . This suggests to select train-
ing sequences having a flat power profile.

5. SIMULATION RESULTS

We consider MIMO-OFDMA system with K = 2 users and N = 64
subcarriers. The number of Rx antennas is Nr = 2 and the number
of Tx antennas Nt is either 1 or 2. Results are averaged over 500
realizations of the training sequence. We used QPSK symbols. The
following results have been obtained using one fixed realization of a
Rayleigh channel with length L = 3. For each realization, the values
of frequency offsets ω1 and ω2 are randomly chosen in the interval
[−0.4, 0.4]. Transmitted powers P1 and P2 are supposed to be equal.
Due to the lack of space, we focus on frequency offset estimation.
Figure 1 represents the MSE associated to the frequency offset of
the first user (i.e. E[(ω̂N,1 − ω1)

2]) as a function of the transmitted
signal-to-noise ratio (SNR) P1

σ2 . Results are given for both “white”
(T1) and optimum (T2) training strategies. Both training strategies
T1 and T2 are realized using interleaved CAS, i.e. each user k = 1, 2
modulates N

2
subcarriers. In case of training strategy T1, training

sequences corresponding to different antennas are uncorrelated and
equal power 2P1

Nt
is allocated to each of the N

2
modulated subcarriers.

On the otherhand, T2 is chosen so as to approximate the optimal
training strategy suggested by Proposition 2. Maximum power is
allocated to the subcarrier whose index coincides with the integer
part of Nfopt. A cross-correlation dictated by eigenvector νopt is
introduced between sequences send at different antennas. Solid lines
represent the exact CRB on ω1 (i.e. the coefficient at the first row and
the first column of J−1

N ). Dotted lines represent the asymptotic bound
1

N3 CRBω,1. For both training strategies, the performance of the ML
estimate of ω1 is close to the asymptotic CRB and almost fit the exact
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Fig. 1. ML estimate and CRBs for ω - Comparison between white
sequence (T1) and optimum sequence (T2).

−− Exact CRB −· ML estimation ··· Asymptotic CRB

bounds. Also for both training strategies, we note a performance
improvement of about 1.5dB when introducing a second Tx antenna.
Comparing both training strategies, T2 provides about 3.4 dB gain
w.r.t. T1 in the case Nt = 1, Nr = 2. This gap increases when the
number of Tx antennas increases. As a conclusion, relevant training
sequence selection results in considerable performance gain.
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