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Université de Marne la Vallée

77454 Marne la Vallée Cedex 2, France

2Laboratoire Jacques-Louis Lions – UMR CNRS 7598
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Abstract

A convex variational framework is proposed for solving inverse problems in Hilbert spaces
with a priori information on the representation of the target solution in a frame. The objective
function to be minimized consists of a separable term penalizing each frame coefficient individ-
ually and of a smooth term modeling the data formation model as well as other constraints.
Sparsity-constrained and Bayesian formulations are examined as special cases. A splitting algo-
rithm is presented to solve this problem and its convergence is established in infinite-dimensional
spaces under mild conditions on the penalization functions, which need not be differentiable.
Numerical simulations demonstrate applications to frame-based image restoration.

1 Introduction

In inverse problems, certain physical properties of the target solution x are most suitably expressed
in terms of the coefficients (ξk)k∈K⊂N of its representation x =

∑

k∈K
ξkek with respect to a

family of vectors (ek)k∈K in a Hilbert space (H, ‖ · ‖). Traditionally, such linear representations
have been mostly centered on orthonormal bases as, for instance, in Fourier, wavelet, or bandlet
decompositions [8, 25, 26]. Recently, attention has shifted towards more general, overcomplete
representations known as frames; see [6, 7, 16, 20, 33] for specific examples. Recall that a family
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of vectors (ek)k∈K in H constitutes a frame if there exist two constants µ and ν in ]0,+∞[ such
that

(∀x ∈ H) µ‖x‖2 ≤
∑

k∈K

|〈x | ek〉|2 ≤ ν‖x‖2. (1.1)

The associated frame operator is the injective bounded linear operator

F : H → ℓ2(K) : x 7→ (〈x | ek〉)k∈K, (1.2)

the adjoint of which is the surjective bounded linear operator

F ∗ : ℓ2(K) → H : (ξk)k∈K 7→
∑

k∈K

ξkek. (1.3)

When µ = ν in (1.1), (ek)k∈K is said to be a tight frame. A simple example of a tight frame is
the union of m orthonormal bases, in which case µ = ν = m. For instance, in H = L2(R2), a real
dual-tree wavelet decomposition is the union of two orthonormal wavelet bases [7, 30]. Curvelets
[6] constitute another example of a tight frame of L2(R2). Historically, Gabor frames [16, 33] have
played an important role in many inverse problems. Another common example of a frame is a
Riesz basis, which corresponds to the case when (ek)k∈K is linearly independent or, equivalently,
when F is bijective. In such instances, there exists a unique Riesz basis (ĕk)k∈K such that (ek)k∈K

and (ĕk)k∈K are biorthogonal. Furthermore, for every x ∈ H and (ξk)k∈K ∈ ℓ2(K),

x = F ∗(ξk)k∈K ⇔ (∀k ∈ K) ξk = 〈x | ĕk〉. (1.4)

When F−1 = F ∗, (ek)k∈K is an orthonormal basis and (ĕk)k∈K = (ek)k∈K. Examples of Riesz
bases of L2(R2) include biorthogonal bases of compactly supported dyadic wavelets having certain
symmetry properties [9]. Further constructions as well as a detailed account of frame theory in
Hilbert spaces can be found in [23].

The goal of the present paper is to propose a flexible convex variational framework for solving
inverse problems in which a priori information (e.g., sparsity, distribution, statistical properties) is
available about the representation of the target solution in a frame. Our analysis and our numer-
ical algorithm will rely heavily on proximity operators. Section 2 is devoted to these operators.
Our main variational formulation is presented and analyzed in Section 3. It consists (see Prob-
lem 3.1) of minimizing the sum of a separable, possibly nondifferentiable function penalizing each
coefficient of the frame decomposition individually, and of a smooth function which combines other
information on the problem and the data formation model. Connections with sparsity-constrained
and Bayesian formulations are also established. In connection with the latter, we derive in Sec-
tion 4 closed-form expressions for the proximity operators associated with a variety of univariate
log-concave distributions. A proximal algorithm for solving Problem 3.1 is presented in Section 5
and its convergence is established in infinite-dimensional spaces under mild assumptions on the
penalization functions. An attractive feature of this algorithm is that it is fully split in that,
at each iteration, all the functions appearing in the problem are activated individually. Finally,
applications to image recovery are demonstrated in Section 6.
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2 Basic tool: proximity operator

2.1 Notation

Throughout, X is a separable real Hilbert space with scalar product 〈· | ·〉, norm ‖ ·‖, and distance
d. Γ0(X ) is the class of lower semicontinuous convex functions from X to ]−∞,+∞] which are not
identically equal to +∞. The indicator function of a subset S of X is

ιS : x 7→
{

0, if x ∈ S;

+∞, if x /∈ S,
(2.1)

its support function is σS : X → [−∞,+∞] : u 7→ supx∈S 〈x | u〉, and its distance function is
dS : X → [0,+∞] : x 7→ inf ‖S − x‖. If S is nonempty, closed, and convex then, for every x ∈ X ,
there exists a unique point PSx in S, called the projection of x onto S, such that ‖x−PSx‖ = dS(x)
(further background on convex analysis will be found in [36]).

2.2 Background

Let ϕ ∈ Γ0(X ). The subdifferential of ϕ at x ∈ X is the set

∂ϕ(x) =
{

u ∈ X
∣

∣ (∀y ∈ X ) 〈y − x | u〉 + ϕ(x) ≤ ϕ(y)
}

. (2.2)

If ϕ is Gâteaux differentiable at x with gradient ∇ϕ(x), then ∂ϕ(x) = {∇ϕ(x)}. The conjugate of
ϕ is the function ϕ∗ ∈ Γ0(X ) defined by

(∀u ∈ X ) ϕ∗(u) = sup
x∈X

〈x | u〉 − ϕ(x). (2.3)

The continuous convex function

γϕ : X → R : x 7→ inf
y∈X

ϕ(y) +
1

2γ
‖x − y‖2 (2.4)

is the Moreau envelope of index γ ∈ ]0,+∞[ of ϕ.

Definition 2.1 [28] Let ϕ ∈ Γ0(X ). Then, for every x ∈ X , the function y 7→ ϕ(y) + ‖x − y‖2/2
achieves its infimum at a unique point denoted by proxϕ x. The operator proxϕ : X → X thus
defined is the proximity operator of ϕ. Moreover,

(∀x ∈ X )(∀p ∈ X ) p = proxϕ x ⇔ x − p ∈ ∂ϕ(p) (2.5)

⇔ (∀y ∈ X ) 〈y − p | x − p〉 + ϕ(p) ≤ ϕ(y). (2.6)

Example 2.2 Let γ ∈ ]0,+∞[, let S be a nonempty convex subset of X , and set ϕ = ιS . Then it
follows at once from (2.1), (2.4), and Definition 2.1 that γϕ = d2

S/(2γ) and proxγϕ = PS .

Here are basic properties of the proximity operator.
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Lemma 2.3 [15, Section 2] Let ϕ ∈ Γ0(X ). Then the following hold.

(i) (∀x ∈ X ) x ∈ Argminϕ ⇔ 0 ∈ ∂ϕ(x) ⇔ proxϕ x = x.

(ii) (∀x ∈ X )(∀y ∈ X ) ‖proxϕ x − proxϕ y‖ ≤ ‖x − y‖.

(iii) (∀x ∈ X )(∀γ ∈ ]0,+∞[) x = proxγϕ x + γ proxϕ∗/γ(x/γ).

In Lemma 2.3, (i) states that the minimizers of ϕ are characterized as the zeros of the subdif-
ferential of ϕ (Fermat’s rule) or, equivalently, as the fixed points of proxϕ; (ii) states that proxϕ is
nonexpansive, which turns out to be an essential property in the convergence of iterative methods
[13]; finally, (iii) is Moreau’s decomposition principle [27], which provides a powerful nonlinear
decomposition rule parametrized by ϕ and extends in particular the standard orthogonal decom-
position rule [15, Remark 2.11].

Lemma 2.4 Let ϕ ∈ Γ0(X ), let γ ∈ ]0,+∞[, and set ψ = γϕ. Then the following hold.

(i) ψ is Fréchet-differentiable on X .

(ii) ∇ψ = (Id − proxγϕ)/γ = proxϕ∗/γ(·/γ).

(iii) ∇ψ is (1/γ)-Lipschitz continuous.

Proof. (i) and (ii): A routine extension of [28, Proposition 7.d], where γ = 1. (iii): Since ϕ∗/γ ∈
Γ0(X ) and (ii) asserts that ∇ψ = proxϕ∗/γ(·/γ), this is a direct consequence of Lemma 2.3(ii).

Next, we record some proximal calculus rules that will allow us to derive new proximity operators
from existing ones.

Lemma 2.5 [15, Lemma 2.6] Let ϕ ∈ Γ0(X ) and let x ∈ X . Then the following hold.

(i) Let ψ = ϕ+ α‖ · ‖2/2 + 〈· | u〉 + β, where u ∈ X , α ∈ [0,+∞[, and β ∈ R. Then proxψ x =
proxϕ/(α+1)

(

(x − u)/(α + 1)
)

.

(ii) Let ψ = ϕ(· − z), where z ∈ X . Then proxψ x = z + proxϕ(x − z).

(iii) Let ψ = ϕ(·/ρ), where ρ ∈ R r {0}. Then proxψ x = ρproxϕ/ρ2(x/ρ).

(iv) Let ψ : y 7→ ϕ(−y). Then proxψ x = − proxϕ(−x).

We conclude this section with some properties of proximity operators on the real line.

Lemma 2.6 Let φ ∈ Γ0(R). Then the following hold.

(i) [14, Proposition 2.4] proxφ : R → R is increasing.

4



(ii) [14, Corollary 2.5] Suppose that φ admits 0 as a minimizer. Then

(∀ξ ∈ R)











0 ≤ proxφ ξ ≤ ξ, if ξ > 0;

proxφ ξ = 0, if ξ = 0;

ξ ≤ proxφ ξ ≤ 0, if ξ < 0.

(2.7)

This is true in particular when φ is even.

(iii) [14, Proposition 3.6] Suppose that φ = ψ + σΩ, where ψ ∈ Γ0(R) is differentiable at 0 with

ψ′(0) = 0, and where Ω ⊂ R is a nonempty closed interval. Then proxφ = proxψ ◦ softΩ ,

where

softΩ = proxσΩ
: R → R : ξ 7→











ξ − ω, if ξ < ω;

0, if ξ ∈ Ω;

ξ − ω, if ξ > ω,

with

{

ω = inf Ω,

ω = supΩ,
(2.8)

is the soft thresholder on Ω. In particular, if Ω = [−ω, ω] for some ω ∈ ]0,+∞[, we obtain

soft[−ω,ω] = proxω|·| : R → R : ξ 7→ sign(ξ)max{|ξ| − ω, 0}. (2.9)

The soft-thresholding operation described in Lemma 2.6(iii) is illustrated in Fig. 1.

2.3 Forward-backward splitting

In this section, we consider the following abstract variational framework, that will cover our main
problem (Problem 3.1).

Problem 2.7 Let f1 and f2 be functions in Γ0(X ) such that f2 is differentiable on X with a
β-Lipschitz continuous gradient for some β ∈ ]0,+∞[. The objective is to

minimize
x∈X

f1(x) + f2(x). (2.10)

A key consequence of Fermat’s rule (Lemma 2.3(i)) and (2.5) is the following characterization of
the solutions to Problem 2.7 which, in itself, attests the central role played by proximity operators.

Proposition 2.8 [15, Proposition 3.1(iii)] Let x ∈ X and let γ ∈ ]0,+∞[. Then x is a solution to

Problem 2.7 if and only if x = proxγf1
(

x − γ∇f2(x)
)

.

Let γ ∈ ]0,+∞[ and set T = proxγf1 ◦(Id −γ∇f2). Proposition 2.8 asserts that a point x ∈ X
solves Problem 2.7 if and only if x = T x. This fixed point characterization suggests solving
Problem 2.7 via the successive approximation method xn+1 = T xn, for suitable values of the
“step size” parameter γ. The next result describes an algorithm in this vein, which is based
on the forward-backward splitting method for monotone operators [13]. It allows for inexact
evaluations of the operators proxf1 and ∇f2 via the incorporation of the error sequences (an)n∈N

and (bn)n∈N, respectively, as well as for iteration-dependent relaxation parameters (λn)n∈N and
step sizes (γn)n∈N.
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Theorem 2.9 [15, Theorem 3.4(i)] Suppose that Argmin(f1 +f2) 6= ∅. Let (γn)n∈N be a sequence

in ]0,+∞[ such that 0 < infn∈N γn ≤ supn∈N γn < 2/β, let (λn)n∈N be a sequence in ]0, 1] such that

infn∈N λn > 0, and let (an)n∈N and (bn)n∈N be sequences in X such that
∑

n∈N
‖an‖ < +∞ and

∑

n∈N
‖bn‖ < +∞. Fix x0 ∈ X and, for every n ∈ N, set

xn+1 = xn + λn

(

proxγnf1

(

xn − γn(∇f2(xn) + bn)
)

+ an − xn

)

. (2.11)

Then (xn)n∈N converges weakly to a solution to Problem 2.7.

2.4 Decomposition formula

The following decomposition property, which extends [15, Example 2.19], will be instrumental in
our analysis.

Proposition 2.10 Set Υ: X → ]−∞,+∞] : x 7→∑

i∈I
ψi(〈x | oi〉), where:

(i) ∅ 6= I ⊂ N;

(ii) (oi)i∈I is an orthonormal basis of X ;

(iii) (ψi)i∈I are functions in Γ0(R);

(iv) Either I is finite, or there exists a subset J of I such that:

(a) I r J is finite;

(b) (∀i ∈ J) ψi ≥ 0;

(c) there exists a sequence (ζi)i∈J in R such that
∑

i∈J
|ζi|2 < +∞,

∑

i∈J
|proxψi

ζi|2 < +∞,

and
∑

i∈J
ψi(ζi) < +∞.

Then Υ ∈ Γ0(X ) and (∀x ∈ X ) proxΥ x =
∑

i∈I

(

proxψi
〈x | oi〉

)

oi.

Proof. We treat only the case when I is infinite as the case when I is finite will follow trivially
the arguments presented below. Fix, for every i ∈ I r J, ζi ∈ R such that ψi(ζi) < +∞ and set
z =

∑

i∈I
ζioi. Then (iv) implies that

∑

i∈I
ζ2
i < +∞ and, in view of (ii), that z ∈ X . Moreover,

Υ(z) =
∑

i∈J
ψi(ζi) +

∑

i∈IrJ
ψi(ζi) < +∞.

Let us show that Υ ∈ Γ0(X ). As just seen, Υ(z) < +∞ and, therefore, Υ 6≡ +∞. Next,
we observe that, by virtue of (iii), the functions (ψi(〈· | oi〉))i∈I are lower semicontinuous and
convex. As a result,

∑

i∈IrJ
ψi(〈· | oi〉) is lower semicontinuous and convex, as a finite sum of such

functions. Thus, to show that Υ ∈ Γ0(X ), it remains to show that ΥJ =
∑

i∈J
ψi(〈· | oi〉) is lower

semicontinuous and convex. It follows from (iv)(b) that

ΥJ = sup
J′⊂J

J′ finite

∑

i∈J′

ψi(〈· | oi〉). (2.12)

6



However, as above, each finite sum
∑

i∈J′
ψi(〈· | oi〉) is lower semicontinuous and convex. Therefore,

ΥJ is likewise as the supremum of a family of lower semicontinuous convex functions.

Now fix x ∈ X and set

(∀i ∈ I) ξi = 〈x | oi〉 and πi = proxψi
ξi. (2.13)

It follows from (iv)(a) and (iv)(c) that
∑

i∈I

|proxψi
ζi|2 =

∑

i∈J

|proxψi
ζi|2 +

∑

i∈IrJ

|proxψi
ζi|2 < +∞. (2.14)

Hence, we derive from Lemma 2.3(ii) and (ii) that

1

2

∑

i∈I

|πi|2 ≤
∑

i∈I

|πi − proxψi
ζi|2 +

∑

i∈I

|proxψi
ζi|2

=
∑

i∈I

|proxψi
ξi − proxψi

ζi|2 +
∑

i∈I

|proxψi
ζi|2

≤
∑

i∈I

|ξi − ζi|2 +
∑

i∈I

|proxψi
ζi|2

= ‖x − z‖2 +
∑

i∈I

|proxψi
ζi|2

< +∞. (2.15)

Let us set p =
∑

i∈I
πioi. Then it follows from (2.15) and (ii) that p ∈ X . On the other hand, we

derive from (2.13) and (2.6) that

(∀i ∈ I)(∀η ∈ R) (η − πi)(ξi − πi) + ψi(πi) ≤ ψi(η). (2.16)

Hence, by Parseval and (ii),

(∀y ∈ X ) 〈y − p | x − p〉 + Υ(p) =
∑

i∈I

〈y − p | oi〉〈x − p | oi〉 +
∑

i∈I

ψi(πi)

=
∑

i∈I

(〈y | oi〉 − πi)(ξi − πi) + ψi(πi)

≤
∑

i∈I

ψi(〈y | oi〉)

= Υ(y). (2.17)

Invoking (2.6) once again, we conclude that p = proxΥ x.

3 Problem formulation

3.1 Assumptions and problem statement

Throughout, H is a separable real Hilbert space with scalar product 〈· | ·〉, norm ‖·‖, and distance d.
The index set K is either {1, . . . ,K} (K ∈ N) or N, according as H is finite or infinite dimensional.
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Moreover, (ek)k∈K is a frame in H with constants µ and ν (see (1.1)) and frame operator F (see
(1.2)). Finally, the sequence of frame coefficients of a generic point x ∈ H will be denoted by x,
i.e., x = (ξk)k∈K, where x =

∑

k∈K
ξkek.

Let x ∈ H be the target solution of the underlying inverse problem. Our basic premise is that
a priori information is available about the coefficients (ξk)k∈K of the decomposition

x =
∑

k∈K

ξkek (3.1)

of x in (ek)k∈K. To recover x, it is therefore natural to formulate a variational problem in the
space ℓ2(K) of frame coefficients, where a priori information on (ξk)k∈K can be easily incorporated.
More precisely, a solution will assume the form x̃ =

∑

k∈K
ξ̃kek, where (ξ̃k)k∈K is a solution to the

following problem.

Problem 3.1 Let (φk)k∈K be functions in Γ0(R) such that either K = {1, . . . ,K} with K ∈ N, or
K = N and there exists a subset L of K such that

(i) K r L is finite;

(ii) (∀k ∈ L) φk ≥ 0;

(iii) there exists a sequence (ζk)k∈L in R such that
∑

k∈L
|ζk|2 < +∞,

∑

k∈L
|proxφk

ζk|2 < +∞,
and

∑

k∈L
φk(ζk) < +∞.

In addition, let Ψ ∈ Γ0(H) be differentiable on H with a τ -Lipschitz continuous gradient for some
τ ∈ ]0,+∞[. The objective is to

minimize
(ξk)k∈K∈ℓ2(K)

∑

k∈K

φk(ξk) + Ψ

(

∑

k∈K

ξkek

)

. (3.2)

Remark 3.2

(i) The functions (φk)k∈K in Problem 3.1 need not be differentiable. As will be seen in Sec-
tion 3.3.1, this feature is essential in sparsity-constrained problems.

(ii) Suppose that K = N. Then Conditions (ii) and (iii) in Problem 3.1 hold when, for every
k ∈ L, φk admits a minimizer ζk such that φk(ζk) = 0 and

∑

k∈L
|ζk|2 < +∞. Indeed,

Lemma 2.3(i) yields
∑

k∈L
|proxφk

ζk|2 =
∑

k∈L
|ζk|2 < +∞ and

∑

k∈L
φk(ζk) = 0. In par-

ticular, Conditions (ii) and (iii) in Problem 3.1 hold when (∀k ∈ L) φk ≥ φk(0) = 0, which
amounts to setting ζk ≡ 0.

3.2 Existence and characterization of solutions

We first address the issue of the existence of solutions to Problem 3.1. Recall that a function
ϕ : H → ]−∞,+∞] is said to be coercive if lim‖x‖→+∞ ϕ(x) = +∞.
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Proposition 3.3 Suppose that one of the following holds.

(i) The function (ξk)k∈K 7→∑

k∈K
φk(ξk) + Ψ(F ∗(ξk)k∈K) is coercive.

(ii) infk∈K inf φk(R) > −∞, Ψ is coercive, and (ek)k∈K is a Riesz basis.

(iii) inf Ψ(H) > −∞ and one of the following properties is satisfied.

(a) The function (ξk)k∈K 7→∑

k∈K
φk(ξk) is coercive.

(b) There exists ω ∈ ]0,+∞[ and p ∈ [1, 2] such that (∀k ∈ K) φk ≥ ω| · |p.
(c) K is finite and the functions (φk)k∈K are coercive.

Then Problem 3.1 admits a solution.

Proof. We denote by x = (ξk)k∈K a generic element in ℓ2(K) and by ‖x‖ =
√
∑

k∈K
|ξk|2 its norm.

Set
f1 : x 7→

∑

k∈K

φk(ξk) and f2 = Ψ ◦ F ∗. (3.3)

First, suppose that (i) holds. Then it follows from the assumptions on (φk)k∈K in Problem 3.1
and Proposition 2.10 that f1 ∈ Γ0(ℓ

2(K)). On the other hand, since Ψ is a finite function in
Γ0(H) and F ∗ : ℓ2(K) → H is linear and bounded, f2 is a finite function in Γ0(ℓ

2(K)). Altogether,
f1 + f2 ∈ Γ0(ℓ

2(K)) and the claim follows from [36, Theorem 2.5.1(ii)].

Next, suppose that (ii) holds. In view of (i), since f1 is bounded below, it is enough to show
that f2 is coercive. Since (ek)k∈K is a Riesz basis, we have [26]

(∀x ∈ ℓ2(K)) ‖F ∗x‖ ≥ √
µ‖x‖. (3.4)

In turn, the coercivity of Ψ implies that lim‖x‖→+∞ ‖Ψ(F ∗x)‖ = +∞.

Now, suppose that (iii) holds. In case (iii)(a), since Ψ is bounded below, f2 is likewise. In turn,
the coercivity of f1 implies that of f1 + f2, hence the result by (i). Now suppose that (iii)(b) is
satisfied and let x ∈ ℓ2(K). Then

f1(x) =
∑

k∈K

φk(ξk) ≥ ω
∑

k∈K

|ξk|p ≥ ω‖x‖p. (3.5)

Therefore f1 is coercive and the claim follows from (iii)(a). Finally, suppose that (iii)(c) is satisfied.
In view of (iii)(a), it is enough to show that f1 is coercive. To this end, fix ρ ∈ ]0,+∞[ and recall
that K = {1, . . . ,K}. Let us set λ = mink∈K inf φk(R). Since the functions (φk)k∈K are coercive
and in Γ0(R), it follows from [36, Theorem 2.5.1(ii)] that λ ∈ R. Coercivity also implies that we
can find δ ∈ ]0,+∞[ such that

(∀ξ ∈ R) |ξ| ≥ δ/
√
K ⇒ min

k∈K
φk(ξ) ≥ ρ+ (1 −K)λ. (3.6)
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Now take x ∈ ℓ2(K) such that ‖x‖ ≥ δ and fix ℓ ∈ K such that |ξℓ| = maxk∈K |ξk|. Then |ξℓ| ≥ δ/
√
K

and therefore (3.6) yields

f1(x) =
∑

k∈K

φk(ξk) ≥ ρ+ (1 −K)λ+
∑

k∈Kr{ℓ}

φk(ξk) ≥ ρ+ (1 −K)λ+ (K − 1)λ = ρ, (3.7)

which shows that f1 is coercive.

Next, we turn our attention to the characterization of the solutions to Problem 3.1.

Proposition 3.4 Let (ξk)k∈K ∈ ℓ2(K), let (ηk)k∈K = (F ◦ ∇Ψ ◦ F ∗)(ξk)k∈K, and let γ ∈ ]0,+∞[.
Then (ξk)k∈K solves Problem 3.1 if and only if (∀k ∈ K) ξk = proxγφk

(ξk − γηk).

Proof. Set X = ℓ2(K) and let (ok)k∈K denote the canonical orthonormal basis of ℓ2(K). Then (3.2)
can be written as

minimize
x∈X

∑

k∈K

φk(〈x | ok〉) + Ψ(F ∗x). (3.8)

Now set
f1 =

∑

k∈K

φk(〈· | ok〉) and f2 = Ψ ◦ F ∗. (3.9)

Then, in the light of the assumptions on (φk)k∈K in Problem 3.1, Proposition 2.10 yields f1 ∈
Γ0(X ). On the other hand, since Ψ is a finite function in Γ0(H) and F ∗ : X → H is linear
and bounded, we have f2 ∈ Γ0(X ). In addition, since ∇Ψ is Lipschitz continuous, so is ∇f2 =
F ◦∇Ψ◦F ∗. Altogether, (3.8) conforms to the format of Problem 2.7. Now set x = (ξk)k∈K. Then
it follows from Proposition 2.8, (3.9), and Proposition 2.10 that

(ξk)k∈K solves Problem 3.1 ⇔ x = proxγf1
(

x − γ∇f2(x)
)

⇔ x = proxγf1
(

x − γ(F ◦ ∇Ψ ◦ F ∗)(x)
)

⇔ (ξk)k∈K = proxγf1(ξk − γηk)k∈K

⇔ (ξk)k∈K =
(

proxγφk
(ξk − γηk)

)

k∈K
, (3.10)

which provides the desired characterization.

3.3 Specific frameworks

In Problem 3.1, the functions (φk)k∈K penalize the frame coefficients (ξk)k∈K, while the function
Ψ penalizes x = F ∗(ξk)k∈K =

∑

k∈K
ξkek, thereby modeling direct constraints on x. This flexible

framework makes it possible to model a wide range of inverse problems. Two important instances
are presented below.

3.3.1 Inverse problems with sparsity constraints

A common objective in selecting the frame (ek)k∈K is to obtain a sparse representation of the
target solution x in the sense that most of the coefficients (ξk)k∈K in (3.1) are zero. By choosing
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φk = ωk| · | with ωk > 0 in Problem 3.1, one aims at setting to zero the kth coefficient if it falls
into the interval [−ωk, ωk], hence promoting sparsity (see [17, 22, 34] for special cases). Note that
in this case, it follows from Proposition 3.4 and (2.9) that a solution (ξk)k∈K to Problem 3.1 is
characterized by the soft thresholding identities (see also Fig. 1)

(∀k ∈ K) ξk = proxωk|·|
(ξk − ηk) = soft[−ωk,ωk] (ξk − ηk), (3.11)

where (ηk)k∈K = (F ◦ ∇Ψ ◦ F ∗)(ξk)k∈K. More generally, to aim at zeroing a coefficient falling into
a closed interval Ωk ⊂ R, one can use the function φk = ψk + σΩk

, where ψk satisfies 0 = ψk(0) ≤
ψk ∈ Γ0(R) and is differentiable at 0 [14, Proposition 3.2]. This construct actually characterizes all
thresholders on Ωk that have properties suitable to their use in iterative methods [14, Theorem 3.3].
A decomposition rule for computing the resulting thresholders is supplied in Lemma 2.6(iii).

Let us now discuss possible choices for the smooth function Ψ. Suppose that the problem under
consideration is to recover x ∈ H from q observations

zi = Tix+ vi, 1 ≤ i ≤ q, (3.12)

where Ti is a bounded linear operator from H to a real Hilbert space Gi, zi ∈ Gi, and vi ∈ Gi is the
realization of a noise process. A standard data fidelity criterion in such instances is the function
x 7→∑q

i=1 αi‖Tix− zi‖2, where (αi)1≤i≤q are strictly positive reals, see e.g., [12, 21]. In addition,
assume that a priori information is available that constrains x to lie in some closed convex subsets
(Si)1≤i≤m of H (see [10, 31] and the references therein for examples). These constraints can be
aggregated via the cost function x 7→ ∑m

i=1 ϑid
2
Si

(x), where (ϑi)1≤i≤m are strictly positive reals
[5, 11]. These two objectives can be combined by using the function

Ψ: x 7→ 1

2

q
∑

i=1

αi‖Tix− zi‖2 +
1

2

m
∑

i=1

ϑid
2
Si

(x) (3.13)

in Problem 3.1. This function is indeed differentiable and its gradient

∇Ψ: x 7→
q
∑

i=1

αiT
∗
i (Tix− zi) +

m
∑

i=1

ϑi(x− PSix) (3.14)

has Lipschitz constant [14, Section 5.1]

τ =
∥

∥

∥

q
∑

i=1

αiT
∗
i Ti

∥

∥

∥
+

m
∑

i=1

ϑi. (3.15)

In instances when ‖∑q
i=1 αiT

∗
i Ti‖ cannot be evaluated directly, it can be majorized by

∑q
i=1 αi‖Ti‖2. It should be noted that, more generally, Lemma 2.4(iii) implies that Ψ remains

Lipschitz continuous if the term
∑m

i=1 ϑid
2
Si

(x) in (3.13) is replaced by a sum of Moreau envelopes
(see [13, Section 6.3] and [15, Section 4.1] for related frameworks).

3.3.2 Bayesian statistical framework

A standard linear inverse problem is to recover x ∈ H from an observation

z = Tx+ v, (3.16)
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in a real Hilbert space G, where T : H → G is a bounded linear operator and where v ∈ G is the
realization of an additive noise perturbation. If x = (ξk)k∈K denotes the coefficients of x in (ek)k∈K,
(3.16) can be written as

z = TF ∗x + v. (3.17)

For the sake of simplicity, the following assumptions regarding (3.17) are made in this section (with
the usual convention ln 0 = −∞).

Assumption 3.5

(i) H = RN , G = RM , and K = {1, . . . ,K}, where K ≥ N .

(ii) The vectors x, z, and v are, respectively, realizations of real-valued random vectors X, Z,
and V defined on the same probability space.

(iii) The random vectors X and V are mutually independent and have probability density functions
f
X

and fV , respectively.

(iv) The components of X are independent with upper-semicontinuous log-concave densities.

(v) The function ln fV is concave and differentiable with a Lipschitz continuous gradient.

Under Assumption 3.5, a common Bayesian approach for estimating x from z consists in ap-
plying a maximum a posteriori (MAP) rule [3, 4, 32], which amounts to maximizing the posterior
probability density f

X|Z=z. Thus, x̃ is a MAP estimate of x if

(∀x ∈ R
K) f

X|Z=z(x̃) ≥ f
X|Z=z(x). (3.18)

Using Bayes’ formula, this amounts to solving

minimize
x∈RK

− ln f
X
(x) − ln fZ|X=x

(z). (3.19)

In view of (3.17), this is also equivalent to solving

minimize
x∈RK

− ln f
X
(x) − ln fV (z − TF ∗x). (3.20)

Under Assumption 3.5, this convex optimization problem is a special case of Problem 3.1. Indeed,
Assumption 3.5(iv) allows us to write, without loss of generality, the prior density as

(∀(ξk)k∈K ∈ R
K) f

X
((ξk)k∈K) ∝

K
∏

k=1

exp(−φk(ξk)), (3.21)

where (φk)k∈K are the so-called potential functions of the marginal probability density functions
of X. It also follows from Assumption 3.5(iv) that the functions (φk)k∈K are in Γ0(R). Now set

(∀x ∈ H) Ψ(x) = − ln fV (z − Tx). (3.22)

Then Assumption 3.5(v) asserts that Ψ ∈ Γ0(H) is differentiable with a Lipschitz continuous
gradient. Altogether, (3.20) reduces to Problem 3.1.
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Remark 3.6 In the simple case when V is a zero-mean Gaussian vector with an invertible co-
variance matrix Λ, the function Ψ reduces (up to an additive constant) to the residual energy
function x 7→

〈

Λ−1(z − Tx) | z − Tx
〉

/2. When X is further assumed to be Gaussian, the solution
to Problem 3.1 is a linear function of z. Recall that the MAP estimate coincides with the minimum
mean-square error estimate under such Gaussian models for both V and X [35, Section 2.4].

Remark 3.7 An alternative Bayesian strategy would be to determine a MAP estimate of x. This
would lead to

minimize
x∈H

− ln fX(x) − ln fV (z − Tx), (3.23)

where fX can be deduced from (3.21) through the change of variable X = F ∗X. In the case of an
orthonormal basis decomposition, it is easy to check that (3.23) is equivalent to problem (3.20).
By contrast, when F corresponds to an overcomplete frame, the expression of fX becomes involved
and (3.23) is usually much less tractable than Problem 3.1. As will be seen in Section 5, the latter
can be solved via a simple splitting algorithm.

Remark 3.8 Let us decompose the observation vector as z = [z⊤1 , . . . , z
⊤
q ]⊤ and the matrix rep-

resenting T as [T⊤
1 , . . . , T

⊤
q ]⊤ where, for every i ∈ {1, . . . , q}, zi ∈ RMi and Ti ∈ RMi×N with

∑q
i=1Mi = M . Furthermore, assume that V is a zero-mean Gaussian vector with diagonal covari-

ance matrix

Λ =













α−1
1 IM1

0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 α−1

q IMq













, (3.24)

where (αi)1≤i≤q are strictly positive reals and IMi , 1 ≤ i ≤ q, is the identity matrix of size Mi×Mi.
Then Ψ reduces to the first term in (3.13) where Gi = RMi and the MAP estimation problem under
Assumption 3.5 becomes a special case of the problem addressed in Section 3.3.1 with m = 0.

4 Proximity operators associated with log-concave densities

As discussed in Section 3.3.2, the functions (φk)k∈K in (3.2) act as the potential functions of log-
concave univariate probability densities modeling the frame coefficients individually in Bayesian
formulations. On the other hand, the proximity operators of such functions will, via Proposi-
tion 2.10, play a central role in Section 5. Hereafter, we derive closed-form expressions for these
proximity operators in the case of some classical log-concave univariate probability densities [19,
Chapters VII&IX].

Let us start with a few observations.

Remark 4.1 Let φ ∈ Γ0(R).

(i) It follows from Definition 2.1 that (∀ξ ∈ R) φ(proxφ ξ) < +∞.
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(ii) If φ is even, then it follows from Lemma 2.5(iv) that proxφ is odd. Therefore, in such
instances, it will be enough to determine proxφ ξ for ξ ≥ 0 and to extend the result to ξ < 0
by antisymmetry.

(iii) Let ξ ∈ R. If φ is differentiable at proxφ ξ, then (2.5) yields

(∀π ∈ R) π = proxφ ξ ⇔ π + φ′(π) = ξ. (4.1)

We now examine some concrete examples.

Example 4.2 (Laplace distribution) Let ω ∈ ]0,+∞[ and set

φ : R → ]−∞,+∞] : ξ 7→ ω|ξ|. (4.2)

Then, for every ξ ∈ R, proxφ ξ = soft[−ω,ω] ξ = sign(ξ)max{|ξ| − ω, 0}.

Proof. Apply Lemma 2.6(iii) with ψ = 0 and Ω = [−ω, ω].

Example 4.3 (Gaussian distribution) Let τ ∈ ]0,+∞[ and set

φ : R → ]−∞,+∞] : ξ 7→ τ |ξ|2. (4.3)

Then, for every ξ ∈ R, proxφ ξ = ξ/(2τ + 1).

Proof. Apply Lemma 2.5(i) with X = R, ϕ = 0, α = 2τ , and u = 0.

Example 4.4 (generalized Gaussian distribution) Let p ∈ ]1,+∞[, κ ∈ ]0,+∞[, and set

φ : R → ]−∞,+∞] : ξ 7→ κ|ξ|p. (4.4)

Then, for every ξ ∈ R, proxφ ξ = sign(ξ)̺ where ̺ is the unique solution in [0,+∞[ to

̺+ pκ̺p−1 = |ξ|. (4.5)

In particular, the following hold:

(i) proxφ ξ = ξ +
4κ

3 · 21/3

(

(χ− ξ)1/3 − (χ+ ξ)1/3
)

, where χ =
√

ξ2 + 256κ3/729, if p = 4/3;

(ii) proxφ ξ = ξ + 9κ2 sign(ξ)
(

1 −
√

1 + 16|ξ|/(9κ2)
)

/8, if p = 3/2;

(iii) proxφ ξ = sign(ξ)
(
√

1 + 12κ|ξ| − 1
)

/(6κ), if p = 3;

(iv) proxφ ξ =

(

χ+ ξ

8κ

)1/3

−
(

χ− ξ

8κ

)1/3

, where χ =
√

ξ2 + 1/(27κ), if p = 4.
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Proof. Let ξ ∈ R and set π = proxφ ξ. As seen in Remark 4.1(ii), because φ is even, it is enough
to assume that ξ ≥ 0. Since φ is differentiable, it follows from (2.7) and (4.1) that π is the unique
solution in [0,+∞[ to

π + pκπp−1 = ξ, (4.6)

which provides (4.5). For p = 3, π is the solution in [0,+∞[ to the equation π + 3κπ2 − ξ = 0,
i.e., π = (

√
1 + 12κξ − 1)/(6κ) and we obtain (iii) by antisymmetry. In turn, since

(

2| · |3/2/3
)∗

=
| · |3/3, Lemma 2.3(iii) with γ = 3κ/2 yields π = proxγ(2|·|3/2/3) ξ = ξ − γ prox(3γ)−1|·|3(ξ/γ) =

ξ + 9κ2 sign(ξ)
(

1 −
√

1 + 16|ξ|/(9κ2)
)

/8, which proves (ii). Now, let p = 4. Then (4.6) asserts
that π is the unique solution in [0,+∞[ to the third degree equation 4κπ3 + π − ξ = 0, namely

π =
(
√

α2 + β3 − α
)1/3 −

(
√

α2 + β3 + α
)1/3

, where α = −ξ/(8κ) and β = 1/(12κ). Since this
expression is an odd function of ξ, we obtain (iv). Finally, we deduce (i) from (iv) by observing
that, since

(

3| · |4/3/4
)∗

= | · |4/4, Lemma 2.3(iii) with γ = 4κ/3 yields π = proxγ(3|·|4/3/4) ξ =
ξ − γ prox(4γ)−1|·|4(ξ/γ), hence the result after simple algebra.

Example 4.5 (Huber distribution) Let ω ∈ ]0,+∞[, τ ∈ ]0,+∞[, and set

φ : R → ]−∞,+∞] : ξ 7→







τξ2, if |ξ| ≤ ω/
√

2τ ;

ω
√

2τ |ξ| − ω2/2, otherwise.
(4.7)

Then, for every ξ ∈ R,

proxφ ξ =











ξ

2τ + 1
, if |ξ| ≤ ω(2τ + 1)/

√
2τ ;

ξ − ω
√

2τ sign(ξ), if |ξ| > ω(2τ + 1)/
√

2τ .

(4.8)

Proof. Let ξ ∈ R and set π = proxφ ξ. Since φ is even, we assume that ξ ≥ 0 (see Remark 4.1(ii)).
In addition, since φ is differentiable, it follows from (2.7) and (4.1) that π is the unique solution
in [0, ξ] to π + φ′(π) = ξ. First, suppose that π = ω/

√
2τ . Then φ′(π) = ω

√
2τ and, therefore,

ξ = π + φ′(π) = ω(2τ + 1)/
√

2τ . Now, suppose that ξ ≤ ω(2τ + 1)/
√

2τ . Then it follows from
Lemma 2.6(i) that π ≤ proxφ(ω(2τ +1)/

√
2τ) = ω/

√
2τ . In turn, (4.7) yields φ′(π) = 2τπ and the

identity ξ = π + φ′(π) yields π = ξ/(2τ + 1). Finally, if ξ > ω(2τ + 1)/
√

2τ , then Lemma 2.6(i)
yields π ≥ proxφ(ω(2τ + 1)/

√
2τ) = ω/

√
2τ and, in turn, φ′(π) = ω

√
2τ , which allows us to

conclude that π = ξ − ω
√

2τ .

Example 4.6 (maximum entropy distribution) This density is obtained by maximizing the
entropy subject to the knowledge of the first, second, and p-th order absolute moments, where
2 6= p ∈ ]1,+∞[ [24]. Let ω ∈ ]0,+∞[, τ ∈ [0,+∞[, κ ∈ ]0,+∞[, and set

φ : R → ]−∞,+∞] : ξ 7→ ω|ξ| + τ |ξ|2 + κ|ξ|p. (4.9)

Then, for every ξ ∈ R,

proxφ ξ = sign(ξ) proxκ|·|p/(2τ+1)

( 1

2τ + 1
max{|ξ| − ω, 0}

)

(4.10)

where the expression of proxκ|·|p/(2τ+1) is supplied by Example 4.4.

15



Proof. The function φ is a quadratic perturbation of the function ϕ = ω| · | + κ| · |p. Applying
Lemma 2.6(iii) with ψ = κ| · |p and Ω = [−ω, ω], we get (∀ξ ∈ R) proxϕ ξ = proxκ|·|p(soft[−ω,ω] ξ) =
sign(ξ) proxκ|·|p(max{|ξ| − ω, 0}). Hence, the result follows from Lemma 2.5(i) where X = R,
α = 2τ , and u = 0.

Example 4.7 (smoothed Laplace distribution) Let ω ∈ ]0,+∞[ and set

φ : R → ]−∞,+∞] : ξ 7→ ω|ξ| − ln(1 + ω|ξ|). (4.11)

This potential function is sometimes used as a differentiable approximation to (4.2), e.g., [29]. We
have, for every ξ ∈ R,

proxφ ξ = sign(ξ)
ω|ξ| − ω2 − 1 +

√

∣

∣ω|ξ| − ω2 − 1
∣

∣

2
+ 4ω|ξ|

2ω
. (4.12)

Proof. According to Remark 4.1(ii), since φ is even, we can focus on the case when ξ ≥ 0. As φ
achieves its infimum at 0, Lemma 2.6(ii) yields π = proxφ ξ ≥ 0. We deduce from (4.1) that π is
the unique solution in [0,+∞[ to the equation

ωπ2 + (ω2 + 1 − ωξ)π − ξ = 0, (4.13)

which leads to (4.12).

Example 4.8 (exponential distribution) Let ω ∈ ]0,+∞[ and set

φ : R → ]−∞,+∞] : ξ 7→
{

ωξ, if ξ ≥ 0;

+∞, if ξ < 0.
(4.14)

Then, for every ξ ∈ R,

proxφ ξ =

{

ξ − ω if ξ ≥ ω;

0 if ξ < ω.
(4.15)

Proof. Set ϕ = ι[0,+∞[. Then Example 2.2 yields proxϕ = P[0,+∞[. In turn, since φ is a linear
perturbation of ϕ, the claim results from Lemma 2.5(i), where X = R, α = 0, and u = ω.

Example 4.9 (gamma distribution) Let ω ∈ ]0,+∞[, κ ∈ ]0,+∞[, and set

φ : R → ]−∞,+∞] : ξ 7→
{

−κ ln(ξ) + ωξ, if ξ > 0;

+∞, if ξ ≤ 0.
(4.16)

Then, for every ξ ∈ R,

proxφ ξ =
ξ − ω +

√

|ξ − ω|2 + 4κ

2
. (4.17)
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Proof. Set

ϕ : R → ]−∞,+∞] : ξ 7→
{

−κ ln(ξ), if ξ > 0;

+∞, if ξ ≤ 0.
(4.18)

We easily get from Remark 4.1(i)&(iii) that

(∀ξ ∈ R) proxϕ ξ =
ξ +

√

ξ2 + 4κ

2
. (4.19)

In turn, since φ is a linear perturbation of ϕ, the claim results from Lemma 2.5(i), where X = R,
α = 0, and u = ω.

Example 4.10 (chi distribution) Let κ ∈ ]0,+∞[ and let

φ : R → ]−∞,+∞] : ξ 7→
{

−κ ln(ξ) + ξ2/2, if ξ > 0;

+∞, if ξ ≤ 0.
(4.20)

Then, for every ξ ∈ R,

proxφ ξ =
ξ +

√

ξ2 + 8κ

4
. (4.21)

Proof. Since φ is a quadratic perturbation of the function ϕ defined in (4.18), the claim results
from Lemma 2.5(i), where X = R, α = 1, and u = 0.

Example 4.11 (uniform distribution) Let ω ∈ ]0,+∞[ and set φ = ι[−ω,ω]. Then it follows at
once from Example 2.2 that, for every ξ ∈ R,

proxφ ξ = P[−ω,ω]ξ =











−ω, if ξ < −ω;

ξ, if |ξ| ≤ ω;

ω, if ξ > ω.

(4.22)

Example 4.12 (triangular distribution) Let ω ∈ ]−∞, 0[, let ω ∈ ]0,+∞[, and set

φ : R → ]−∞,+∞] : ξ 7→











− ln(ξ − ω) + ln(−ω), if ξ ∈ ]ω, 0] ;

− ln(ω − ξ) + ln(ω), if ξ ∈ ]0, ω[ ;

+∞, otherwise.

(4.23)

Then, for every ξ ∈ R,

proxφ ξ =























ξ + ω +
√

|ξ − ω|2 + 4

2
, if ξ < 1/ω;

ξ + ω −
√

|ξ − ω|2 + 4

2
, if ξ > 1/ω;

0 otherwise.

(4.24)
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Proof. Let ξ ∈ R and set π = proxφ ξ. Let us first note that ∂φ(0) = [1/ω, 1/ω]. Therefore, (2.5)
yields

π = 0 ⇔ ξ ∈ [1/ω, 1/ω] . (4.25)

Now consider the case when ξ > 1/ω. Since φ admits 0 as a minimizer, it follows from Lemma 2.6(ii)
and (4.25) that π ∈ ]0, ξ]. Hence, we derive from (4.1) that π is the only solution in ]0, ξ] to
π + 1/(ω − π) = ξ, i.e., π = (ξ + ω −

√

|ξ − ω|2 + 4)/2. Likewise, if ξ < 1/ω, it follows from
Lemma 2.6(ii), (4.25), and (4.1) that π is the only solution in [ξ, 0[ to π − 1/(π − ω) = ξ, which
yields π = (ξ + ω +

√

|ξ − ω|2 + 4)/2.

The next example is an extension of Example 4.10.

Example 4.13 (Weibull distribution) Let ω ∈ ]0,+∞[, κ ∈ ]0,+∞[, and p ∈ ]1,+∞[, and set

φ : R → ]−∞,+∞] : ξ 7→
{

−κ ln(ξ) + ωξp, if ξ > 0;

+∞, if ξ ≤ 0.
(4.26)

Then, for every ξ ∈ R, π = proxφ ξ is the unique strictly positive solution to

pωπp + π2 − ξπ = κ. (4.27)

Proof. Since φ is differentiable on ]0,+∞[, it follows from Remark 4.1(i)&(iii) that π is the unique
solution in ]0,+∞[ to π + φ′(π) = ξ or, equivalently, to (4.27).

A similar proof can be used in the following two examples.

Example 4.14 (generalized inverse Gaussian distribution) Let ω ∈ ]0,+∞[, κ ∈ [0,+∞[,
and ρ ∈ ]0,+∞[, and set

φ : R → ]−∞,+∞] : ξ 7→
{

−κ ln(ξ) + ωξ + ρ/ξ, if ξ > 0;

+∞, if ξ ≤ 0.
(4.28)

Then, for every ξ ∈ R, π = proxφ ξ is the unique strictly positive solution to

π3 + (ω − ξ)π2 − κπ = ρ. (4.29)

Example 4.15 (Pearson type I) Let κ and κ be in ]0,+∞[, let ω and ω be reals such that
ω < ω, and set

φ : R → ]−∞,+∞] : ξ 7→
{

−κ ln(ξ − ω) − κ ln(ω − ξ), if ξ ∈ ]ω, ω[ ;

+∞, otherwise.
(4.30)

Then, for every ξ ∈ R, π = proxφ ξ is the unique solution in ]ω, ω[ to

π3 − (ω + ω + ξ)π2 +
(

ωω − κ− κ+ (ω + ω)ξ
)

π = ωωξ − ωκ− ωκ. (4.31)

Remark 4.16
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(i) The chi-square distribution with n > 2 degrees of freedom is a special case of the gamma
distribution (Example 4.9) with (ω, κ) = (1/2, n/2 − 1).

(ii) The normalized Rayleigh distribution is a special case of the chi distribution (Example 4.10)
with κ = 1.

(iii) The beta distribution and the Wigner distribution are special cases of the Pearson type I
distribution (Example 4.15) with (ω, ω) = (0, 1), and −ω = ω and κ = κ = 1/2, respectively.

(iv) The proximity operator associated with translated and/or scaled versions of the above den-
sities can be obtained via Lemma 2.5(ii)&(iii).

(v) For log-concave densities for which the proximity operator of the potential function is difficult
to express in closed form (e.g., Kumaraswamy or logarithmic distributions), one can turn to
simple procedures to solve (2.5) or (4.1) numerically.

5 Algorithm

We propose the following algorithm to solve Problem 3.1.

Algorithm 5.1 Fix x0 ∈ ℓ2(K) and construct a sequence (xn)n∈N = ((ξn,k)k∈K)n∈N by setting, for
every n ∈ N,

(∀k ∈ K) ξn+1,k = ξn,k + λn

(

proxγnφk

(

ξn,k − γn(ηn,k + βn,k)
)

+ αn,k − ξn,k

)

, (5.1)

where λn ∈ ]0, 1], γn ∈ ]0,+∞[, {αn,k}k∈K ⊂ R, (ηn,k)k∈K = F (∇Ψ(F ∗xn)), and (βn,k)k∈K = Fbn,
where bn ∈ H.

The chief advantage of this algorithm is to be fully split in the sense that the functions (φk)k∈K

and Ψ appearing in (3.2) are used separately. First, the current iterate xn is transformed into a point
in F ∗xn in H, and the gradient of Ψ is evaluated at this point to within some tolerance bn. Next, we
obtain the sequence (ηn,k)k∈K = F (∇Ψ(F ∗xn)) to within some tolerance (βn,k)k∈K = Fbn. Then
one chooses γn > 0, and, for every k ∈ K, applies the operator proxγnφk

to ξn,k−γn(ηn,k+βn,k). An
error αn,k is tolerated in this computation. Finally, the kth component ξn+1,k of xn+1 is obtained
by applying a relaxation of parameter λn to this inexact proximal step. Let us note that the
computation of the proximal steps can be performed in parallel.

To study the asymptotic behavior of the sequences generated by Algorithm 5.1, we require the
following set of assumptions.

Assumption 5.2 In addition to the standing assumptions of Problem 3.1, the following hold.

(i) Problem 3.1 admits a solution.

(ii) infn∈N λn > 0.
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(iii) infn∈N γn > 0 and supn∈N γn < 2/β, where β is a Lipschitz constant of F ◦ ∇Ψ ◦ F ∗.

(iv)
∑

n∈N

√
∑

k∈K
|αn,k|2 < +∞ and

∑

n∈N
‖bn‖ < +∞.

Remark 5.3 As regards Assumption 5.2(i), sufficient conditions can be found in Proposition 3.3.
Let us now turn to the parameter β in Assumption 5.2(iii), which determines the range of the step
sizes (γn)n∈N. It follows from the assumptions of Problem 3.1 and (1.1) that, for every x and y in
ℓ2(K),

‖F (∇Ψ(F ∗x)) − F (∇Ψ(F ∗y))‖ ≤ ‖F‖ ‖∇Ψ(F ∗x) −∇Ψ(F ∗y)‖
≤ τ‖F‖ ‖F ∗x − F ∗y‖
≤ τ‖F‖2 ‖x − y‖
≤ τν‖x − y‖. (5.2)

Thus, the value β = τν can be used in general. In some cases, however, a sharper bound can be
obtained, which results in a wider range for the step sizes (γn)n∈N. For example, in the problem
considered in Section 3.3.1, if the norm of R =

∑q
i=1 αiFT

∗
i TiF

∗ can be evaluated, it follows from
(3.13) and the nonexpansivity of the operators (Id −PSi)1≤i≤m that one can take

β = ‖R‖ + ν

m
∑

i=1

ϑi. (5.3)

Theorem 5.4 Let (xn)n∈N be an arbitrary sequence generated by Algorithm 5.1 under Assump-

tion 5.2. Then (xn)n∈N converges weakly to a solution to Problem 3.1.

Proof. Set X = ℓ2(K), f1 =
∑

k∈K
φk(〈· | ok〉), and f2 = Ψ ◦ F ∗, where (ok)k∈K denotes the

canonical orthonormal basis of ℓ2(K). Then ∇f2 = F ◦ ∇Ψ ◦ F ∗ is β-Lipschitz continuous (see
Assumption 5.2(iii)) and, as seen in the proof of Proposition 3.4, (3.2) conforms to the format of
Problem 2.7. Furthermore, it follows from Proposition 2.10 that we can rewrite (5.1) as

xn+1 = xn + λn

(

∑

k∈K

(

proxγnφk
〈xn − γnF (∇Ψ(F ∗xn) + bn) | ok〉 + αn,k

)

ok − xn

)

= xn + λn

(

proxγnf1

(

xn − γn(∇f2(xn) + bn)
)

+ an − xn

)

, (5.4)

where an = (αn,k)k∈K and bn = Fbn. Since Assumption 5.2(iv) and (1.1) imply that
∑

n∈N
‖an‖ <

+∞ and
∑

n∈N
‖bn‖ ≤ √

ν
∑

n∈N
‖bn‖ < +∞, the claim therefore follows from Theorem 2.9.

Let (xn)n∈N be a sequence generated by Algorithm 5.1 under Assumption 5.2 and set (∀n ∈ N)
xn = F ∗xn. On the one hand, Theorem 5.4 asserts that (xn)n∈N converges weakly to a solution
x to Problem 3.1. On the other hand, since F ∗ is linear and bounded, it is weakly continuous
and, therefore, (xn)n∈N converges weakly to F ∗x. However, it is not possible to express (5.1) as an
iteration in terms of the sequence (xn)n∈N in H in general. The following corollary addresses the
case when F is surjective, which does lead to an algorithm in H.
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Corollary 5.5 Suppose that (ek)k∈K is a Riesz basis with companion biorthogonal basis (ĕk)k∈K.

Fix x0 ∈ H and, for every n ∈ N, set

xn+1 = xn + λn

(

∑

k∈K

(

proxγnφk

(

〈xn | ĕk〉 − γn〈∇Ψ(xn) + bn | ek〉
)

+ αn,k
)

ek − xn

)

, (5.5)

where λn ∈ ]0, 1], γn ∈ ]0,+∞[, {αn,k}k∈K ⊂ R, and bn ∈ H. Suppose that Assumption 5.2

is in force. Then (xn)n∈N converges weakly to a point x ∈ H and (〈x | ĕk〉)k∈K is a solution to

Problem 3.1.

Proof. Set (∀n ∈ N)(∀k ∈ K) ξn,k = 〈xn | ĕk〉, ηn,k = 〈∇Ψ(xn) | ek〉, and βn,k = 〈bn | ek〉. Then,
for every n ∈ N, it follows from (1.4) that xn = F ∗(ξn,k)k∈K and, in turn, that

(ηn,k)k∈K = F (∇Ψ(F ∗xn)), where xn = (ξn,k)k∈K. (5.6)

Furthermore, for every n ∈ N, it follows from (5.5) and the biorthogonality of (ek)k∈K and (ĕk)k∈K

that

(∀k ∈ K) ξn+1,k = 〈xn+1 | ĕk〉

= 〈xn | ĕk〉 + λn

(

proxγnφk

(

〈xn | ĕk〉 − γn〈∇Ψ(xn) + bn | ek〉
)

+ αn,k

− 〈xn | ĕk〉
)

= ξn,k + λn

(

proxγnφk

(

ξn,k − γn(ηn,k + βn,k)
)

+ αn,k − ξn,k

)

. (5.7)

Since Theorem 5.4 states that (xn)n∈N converges weakly to a solution x to Problem 3.1, (xn)n∈N =
(F ∗xn)n∈N converges weakly to x = F ∗x. Consequently, (1.4) asserts that we can write x =
(〈x | ĕk〉)k∈K.

Remark 5.6 Suppose that K = N and that (ek)k∈K is an orthonormal basis of H. Then (5.5)
reduces to

xn+1 = xn + λn

(

∑

k∈K

(

proxγnφk

(

〈xn − γn(∇Ψ(xn) + bn) | ek〉
)

+ αn,k
)

ek − xn

)

. (5.8)

In this particular setting, some results related to Corollary 5.5 are the following.

(i) Suppose that Ψ: x 7→ ‖Tx − z‖2/2, where T is a nonzero bounded linear operator from H
to a real Hilbert space G and z ∈ G. Suppose that, in addition, (∀k ∈ K) φk ≥ φk(0) = 0.
Then the convergence of (5.8) is discussed in [15, Corollary 5.16].

(ii) Suppose that (Ωk)k∈K are closed intervals of R such that 0 ∈ int
⋂

k∈K
Ωk and that

(∀k ∈ K) φk = ψk + σΩk
, (5.9)

where ψk ∈ Γ0(R) is differentiable at 0 and ψk ≥ ψk(0) = 0. Then (5.8) is the thresholding
algorithm proposed and analyzed in [14], namely

xn+1 = xn + λn

(

∑

k∈K

(

proxγnψk

(

softγnΩk
〈xn − γn(∇Ψ(xn) + bn) | ek〉

)

+ αn,k

)

ek − xn

)

,

(5.10)
where softγnΩk

is defined in (2.8).
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(iii) Suppose that the assumptions of both (i) and (ii) hold and that, in addition, we set λn ≡ 1,
‖T‖ < 1, γn ≡ 1, αn,k ≡ 0, bn ≡ 0, and (∀k ∈ K) ψk = 0 and Ωk = [−ωk, ωk]. Then (5.10)
becomes

xn+1 =
∑

k∈K

(

soft[−ωk,ωk] 〈xn + T ∗(z − Txn) | ek〉
)

ek. (5.11)

Algorithm 5.1 can be regarded as a descendant of this original method, which is investigated
in [17] and [18].

6 Numerical results

The proposed framework is applicable to a wide array of variational formulations for inverse prob-
lems over frames. We provide a couple of examples to illustrate its applicability in wavelet-based
image restoration in the Euclidean space H = R512×512. The choice of the potential functions
(φk)k∈K in Problem 3.1 is guided by the observation that regular images typically possess sparse
wavelet representations and that the resulting wavelet coefficients often have even probability den-
sity functions [26]. Among the candidate potential functions investigated in Section 4, those of
Example 4.6 appear to be the most appropriate for modeling wavelet coefficients on two counts.
First, they provide flexible models of even potentials. Second, as shown in Lemma 2.6(iii), their
proximity operators are thresholders and they therefore promote sparsity. More precisely, we em-
ploy potential functions of the form φk = ωk| · | + τk| · |2 + κk| · |pk , where pk ∈ {4/3, 3/2, 3, 4}
and {ωk, τk, κk} ⊂ ]0,+∞[. Note that proxφk

can be obtained explicitly via (4.10) and Exam-
ples 4.4(i)-(iv). In addition, it follows from Proposition 3.3(iii)(b) that, with such potential func-
tions, Problem 3.1 does admit a solution. The values of the parameters ωk, τk, κk, and pk are
chosen for each wavelet subband via a maximum likelihood approach. The first example uses a
biorthogonal wavelet basis and the second one uses an M -band dual-tree wavelet frame. Let us
emphasize that such decompositions cannot be dealt with using the methods developed in [14],
which are limited to orthonormal basis representations. Algorithm 5.1 is implemented with λn ≡ 1
and large step sizes (i.e., γn close to 2/β) since such values have been observed to provide a good
speed of convergence in our experiments.

6.1 Example 1

We provide a multiview restoration example in a biorthogonal wavelet basis. The original image x
is the standard test image displayed in Fig. 2 (top left). Two observations (see Fig. 2 top right and
bottom left) conforming to the model (3.12) are available. In our experiment, G1 = G2 = H and v1
and v2 are realizations of two independent zero-mean Gaussian white noise processes. Moreover,
the operator T1 models a motion blur in the diagonal direction and satisfies ‖T1‖ = 1, whereas
T2 = Id /2. The blurred image-to-noise ratio is higher for the first observation (22.79 dB versus
15.18 dB) and so is the relative error (18.53 dB versus 5.891 dB) (the decibel value of the relative
error between an image z and x is 20 log10 (‖x‖/‖z − x‖)). The function Ψ in Problem 3.1 is given
by (3.13), where α1 = 4.00×10−2 and α2 = 6.94×10−3 are the inverses of the variances of the noise
corrupting each observation. In addition, we set m = 1, ϑ1 = 10−2, and S1 = [0, 255]512×512 to
enforce the known range of the pixel values. A discrete biorthogonal spline 9-7 decomposition [2] is
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used over 3 resolution levels. Algorithm 5.1 is used to solve Problem 3.1. By numerically evaluating
‖R‖ in (5.3), we obtain β = 0.230 and the step sizes are chosen to be γn ≡ 1.99/β = 8.66. The
resulting restored image, shown in Fig. 2 (bottom right), yields a relative error of 23.84 dB.

6.2 Example 2

The original SPOT5 satellite image x is shown in Fig. 3 (top) and the degraded image z in G = H
is shown in Fig. 3 (center). The degradation model is given by (3.16), where T is a 7 × 7 uniform
blur with ‖T‖ = 1, and where v is a realization of a zero-mean Gaussian white noise process. The
blurred image-to-noise ratio is 28.08 dB and the relative error is 12.49 dB.

In this example, we perform a restoration in a discrete two-dimensional version of an M -band
dual-tree wavelet frame [7]. This decomposition has a redundancy factor of 2 (i.e., with the
notation of Section 3.3.2, K/N = 2). In our experiments, decompositions over 2 resolution levels
are performed with M = 4 using the filter bank proposed in [1]. The function Ψ in Problem 3.1 is
given by (3.22), where fV is the probability density function of the Gaussian noise. A solution is
obtained via Algorithm 5.1. For the representation under consideration, we derive from (5.3) that
β = 2 and we set γn ≡ 0.995. The restored image, shown in Fig. 3 (bottom), yields a relative error
of 15.68 dB, i.e., a significant improvement of over 3 dB in terms of signal-to-noise ratio. A more
precise inspection of the magnified areas displayed in Fig. 4 shows that the proposed method makes
it possible to recover sharp edges while removing noise in uniform areas. This behavior in terms
of edge recovery may be attributed to the choice of the M -band dual-tree wavelet decomposition,
which is known to provide a good representation of directional features such as edges [7].
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Figure 2: Example 1 – Original image (top left), first observation (top right), second observation
(bottom left), and image restored with 200 iterations of Algorithm 5.1 (bottom right).
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Figure 3: Example 2 – Original image (top); degraded image (center); image restored in a dual-tree
wavelet frame with 100 iterations of Algorithm 5.1 (bottom).
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Figure 4: Example 2 – Zoom on a 100× 100 portion of the SPOT5 satellite image. Original image
(top); degraded image (center); image restored in a dual-tree wavelet frame with 100 iterations of
Algorithm 5.1 (bottom).
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