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Abstract— Dual-tree wavelet decompositions have recently
gained much popularity, mainly due to their ability to provide an
accurate directional analysis of images combined with a reduced
redundancy. When the decomposition of a random process is
performed – which occurs in particular when an additive noise
is corrupting the signal to be analyzed – it is useful to characterize
the statistical properties of the dual-tree wavelet coefficients of
this process. As dual-tree decompositions constitute overcomplete
frame expansions, correlation structures are introduced among
the coefficients, even when a white noise is analyzed. In this paper,
we show that it is possible to provide an accurate description
of the covariance properties of the dual-tree coefficients of a
wide-sense stationary process. The expressions of the (cross-)
covariance sequences of the coefficients are derived in the one
and two-dimensional cases. Asymptotic results are also provided,
allowing to predict the behaviour of the second-order moments
for large lag values or at coarse resolution. In addition, the cross-
correlations between the primal and dual wavelets, which play
a primary role in our theoretical analysis, are calculated for a
number of classical wavelet families. Simulation results are finally
provided to validate these results.

Index Terms— Covariance, cross-correlation, dependence,
dual-tree, filter banks, frames, Hilbert transform, noise, random
processes, stationarity, statistics, wavelets.

I. INTRODUCTION

The discrete wavelet transform (DWT) [1] is a powerful
tool in signal processing, since it provides “efficient” basis
representations of regular signals [2]. It nevertheless suffers
from a few limitations such as aliasing effects in the transform
domain, coefficient oscillations around singularities and a lack
of shift invariance. Frames (see [3], [4] or [5] for a tutorial),
reckoned as more general signal representations, represent an
outlet for these inherent constraints laid on basis functions.

Redundant DWTs (RDWTs) are shift-invariant non-
subsampled frame extensions to the DWT. They have proved
more error or quantization resilient [6]–[8], at the price of an
increased computational cost, especially in higher dimensions.
They do not however take on the lack of rotation invariance
or poor directionality of classical separable schemes. These
features are particularly sensitive in image and video pro-
cessing. Recently, several other types of frames have been
proposed to incorporate more geometric features, aiming at
sparser representations and improved robustness. Early ex-
amples of such frames are shiftable multiscale transforms or
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steerable pyramids [9]. To name a few others, there also exist
contourlets [10], bandelets [11], curvelets [12], phaselets [13],
directionlets [14] or other representations involving multiple
dictionaries [15].

Two important facets need to be addressed, when resorting
to the inherent frame redundancy:

1) multiplicity: frame reconstructions are not unique in
general,

2) correlation: transformed coefficients (and especially
those related to noise) are usually correlated, in contrast
with the classical uncorrelatedness property of the com-
ponents of a white noise after an orthogonal transform.

If the multiplicity aspect is usually recognized (and often
addressed via averaging techniques [6]), the correlation of the
transformed coefficients have not received much consideration
until recently. Most of the efforts have been devoted to
the analysis of random processes by the DWT [16]–[19]. It
should be noted that early works by C. Houdré et al. [20],
[21] consider the continuous wavelet transform of random
processes, but only in a recent work by J. Fowler exact
energetic relationships for an additive noise in the case of the
non-tight RDWT have been provided [22]. It must be pointed
out that the difficulty to characterize noise properties after a
frame decomposition may limit the design of sophisticated
estimation methods in denoising applications.

Fortunately, there exist redundant signal representations
allowing finer noise behaviour assessment: in particular the
dual-tree wavelet transform, based on the Hilbert transform,
whose advantages in wavelet analysis have been recognized
by several authors [23], [24]. It consists of two classical
wavelet trees developed in parallel. The second decomposition
is refered to as the “dual” of the first one, which is sometimes
called the “primal” decomposition. The corresponding analyz-
ing wavelets form Hilbert pairs [25, p.198 sq]. The dual-tree
wavelet transform was initially proposed by N. Kingsbury [26]
and further investigated by I. Selesnick [27] in the dyadic case.
An excellent overview of the topic by I. Selesnick, R. Baraniuk
and N. Kingsbury is provided in [28] and an example of
application is provided in [29]. We recently have generalized
this frame decomposition to the M -band case (M ≥ 2) (see
[30]–[32]). In the later works, we revamped the construction
of the dual basis and the pre-processing stage, necessary in
the case of digital signal analysis [33], [34] and mandatory
to accurate directional analysis of images, and we proposed
an optimized reconstruction, thus addressing the first important
facet of the resulting frame multiplicity. The M -band (M > 2)
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dual-tree wavelets prove more selective in the frequency do-
main than their dyadic counterparts, with improved directional
selectivity as well. Furthermore, a larger choice of filters
satisfying symmetry and orthogonality properties is available.

In this paper, we focus on the second facet, correlation,
by studying the second-order statistical properties, in the
transform domain, of a stationary random process undergoing
a dual-tree M -band wavelet decomposition. In practice, such
a random process typically models an additive noise. Prelim-
inary comments on dual-tree coefficient correlation may be
found in [35]. Dependencies between the coefficients already
have been exploited for dual-tree wavelet denoising in [36],
[37]. A parametric nonlinear estimator based on Stein’s prin-
ciple, making explicit use of the correlation properties derived
here, is proposed in [38]. At first, we briefly recall some
properties of the dual-tree wavelet decomposition in Section
II, refering to [32] for more detail. In Section III, we express
in a general form the second-order moments of the noise
coefficients in each tree, both in the one and two-dimensional
cases. We also discuss the role of the post-transform — often
performed on the dual-tree wavelet coefficients — with respect
to (w.r.t.) decorrelation. In Section IV, we provide upper
bounds for the decay of the correlations existing between
pairs of primal/dual coefficients as well as an asymptotic
result concerning coefficient whitening. The cross-correlations
between primal and dual wavelets playing a key role in our
analysis, their expressions are derived for several wavelet
families in Section V. Simulation results are provided in
Section VI in order to validate our theoretical results and
better evaluate the importance of the correlations introduced
by the dual-tree decomposition. Some final remarks are drawn
in Section VII.

Throughout the paper, the following notations will be used:
Z, Z∗, N, N∗, R, R∗, R+ and R∗+ are the set of integers,
nonzero integers, nonnegative integers, positive integers, reals,
nonzero reals, nonnegative reals and positive reals, respec-
tively. Let M be an integer greater than or equal to 2, NM =
{0, . . . ,M − 1} and N?M = {1, . . . ,M − 1}.

II. M -BAND DUAL-TREE WAVELET ANALYSIS

In this section, we recall the basic principles of an M -
band [39] dual-tree decomposition. Here, we will focus on 1D
real signals belonging to the space L2(R) of square integrable
functions. Let M be an integer greater than or equal to 2. An
M -band multiresolution analysis of L2(R) is defined using one
scaling function (or father wavelet) ψ0 ∈ L2(R) and (M − 1)
mother wavelets ψm ∈ L2(R), m ∈ N?M . In the frequency
domain, the so-called scaling equations are expressed as:

∀m ∈ NM ,
√
Mψ̂m(Mω) = Hm(ω)ψ̂0(ω), (1)

where â denotes the Fourier transform of a function a.
In order to generate an orthonormal M -band wavelet basis⋃
m∈N?M ,j∈Z{M

−j/2ψm(M−jt − k), k ∈ Z} of L2(R), the

following para-unitarity conditions must hold:

∀(m,m′) ∈ N2
M ,

M−1∑
p=0

Hm(ω + p
2π
M

)H∗
m′(ω + p

2π
M

) = Mδm−m′ , (2)

where δm = 1 if m = 0 and 0 otherwise. The filter with
frequency response H0 is low-pass whereas the filters with
frequency response Hm, m ∈ {1, . . . ,M − 2} (resp. m =
M−1) are band-pass (resp. high-pass). In this case, cascading
the M -band para-unitary analysis and synthesis filter banks,
represented by the upper structures in Fig. 1, allows us to
decompose and to perfectly reconstruct a given signal.

A “dual” M -band multiresolution analysis is built by defin-
ing another M -band wavelet orthonormal basis associated with
a scaling function ψH

0 and mother wavelets ψH
m, m ∈ N?M .

More precisely, the mother wavelets are the Hilbert transforms
of the “original” ones ψm, m ∈ N?M . In the Fourier domain,
the desired property reads:

∀m ∈ N?M , ψ̂H
m(ω) = −ı sign(ω)ψ̂m(ω), (3)

where sign(·) is the signum function. Then, it can be proved
[31] that the dual scaling function can be chosen such that

∀k ∈ Z, ∀ω ∈ [2kπ, 2(k + 1)π),

ψ̂H
0 (ω) =

{
(−1)ke−ı(d+

1
2 )ω ψ̂0(ω) if k ≥ 0

(−1)k+1e−ı(d+
1
2 )ω ψ̂0(ω) otherwise,

(4)

where d is an arbitrary integer delay. The corresponding anal-
ysis/synthesis para-unitary Hilbert filter banks are illustrated
by the lower structures in Fig. 1. Conditions for designing
the involved frequency responses Gm, m ∈ NM , have been
recently provided in [32]. As the union of two orthonormal
basis decompositions, the global dual-tree representation cor-
responds to a tight frame analysis of L2(R).

III. SECOND-ORDER MOMENTS OF THE NOISE WAVELET
COEFFICIENTS

In this part, we first consider the analysis of a one-
dimensional, real-valued, wide-sense stationary and zero-mean
noise n, with autocovariance function

∀(τ, x) ∈ R2, Γn(τ) = E{n(x+ τ)n(x)}. (5)

We then extend our results to the two-dimensional case.

A. Expression of the covariances in the 1D case

We denote by (nj,m[k])k∈Z the coefficients resulting from
a 1D M -band wavelet decomposition of the noise, in a
given subband (j,m) where j ∈ Z and m ∈ NM . In the
(j,m) subband, the wavelet coefficients generated by the dual
decomposition are denoted by (nH

j,m[k])k∈Z. At resolution
level j, the statistical second-order properties of the dual-
tree wavelet decomposition of the noise are characterized as
follows.
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Proposition 1: For all m ∈ NM , ([nj,m[k] nH
j,m[k]])k∈Z

is a wide-sense stationary vector sequence. More precisely,
for all (m,m′) ∈ N2

M and (`, k) ∈ Z2, we have

E{nj,m[k + `]nj,m′ [k]} = Γnj,m,nj,m′ [`] (6)

=
∫ ∞

−∞
Γn(x) γψm,ψm′

( x

M j
− `

)
dx

E{nH
j,m[k + `]nH

j,m′ [k]} = ΓnH
j,m,n

H
j,m′

[`] (7)

=
∫ ∞

−∞
Γn(x)γψH

m,ψ
H
m′

(
x

M j
− `) dx

E{nj,m[k + `]nH
j,m′ [k]} = Γnj,m,nH

j,m′
[`] (8)

=
∫ ∞

−∞
Γn(x)γψm,ψH

m′

( x

M j
− `

)
dx,

where the deterministic cross-correlation function of two real-
valued functions f and g in L2(R) is expressed as

∀τ ∈ R, γf,g(τ) =
∫ ∞

−∞
f(x)g(x− τ) dx. (9)

Proof: See Appendix I.
The classical properties of covariance/correlation functions are
satisfied. In particular, since for all m ∈ NM , ψm and ψH

m are
unit norm functions, for all (m,m′) ∈ N2

M , the absolute values
of γψm,ψm′ , γψH

m,ψ
H
m′

and γψm,ψH
m′

are upper bounded by 1.
In addition, the following symmetry properties are satisfied.

Proposition 2: For all (m,m′) ∈ NM with m = m′ = 0 or
mm′ 6= 0, we have γψH

m,ψ
H
m′

= γψm,ψm′ . As a consequence,

Γnj,m,nj,m′ = ΓnH
j,m,n

H
j,m′

. (10)

When mm′ 6= 0, we have

∀τ ∈ R, γψm,ψH
m′

(τ) = −γψm′ ,ψH
m

(−τ) (11)

and, consequently,

∀` ∈ Z, Γnj,m,nH
j,m′

[`] = −Γnj,m′ ,nH
j,m

[−`]. (12)

Besides, the function γψ0,ψH
0

is symmetric w.r.t. −d − 1/2,
which entails that Γnj,0,nH

j,0
is symmetric w.r.t. d+ 1/2.

Proof: See Appendix II.
As a particular case of (10) when m = m′, it appears that

the sequences (nj,m[k])k∈Z and (nH
j,m[k])k∈Z have the same

autocovariance sequence. We also deduce from Prop. 2 that,
for all m 6= 0, γψm,ψH

m
is an odd function, and the cross-

covariance Γnj,m,nH
j,m

is an odd sequence. This implies, in
particular, that for all m 6= 0,

Γnj,m,nH
j,m

[0] = 0. (13)

The latter equality means that, for all m 6= 0 and k ∈
Z, the random vector [nj,m[k] nH

j,m[k]] has uncorrelated
components with equal variance.

The previous results are applicable to an arbitrary sta-
tionary noise but the resulting expressions may be intricate
depending on the specific form of the autocovariance Γn.
Subsequently, we will be mainly interested in the study of the
dual-tree decomposition of a white noise, for which tractable
expressions of the second-order statistics of the coefficients
can be obtained. The autocovariance of n is then given by
Γn(x) = σ2 δ(x), where δ denotes the Dirac distribution.

As the primal (resp. dual) wavelet basis is orthonormal, it
can be deduced from (6)-(8) (see Appendix III) that, for all
(m,m′) ∈ N2

M and ` ∈ Z,

Γnj,m,nj,m′ [`] = ΓnH
j,m,n

H
j,m′

[`] = σ2δm−m′δ` (14)

Γnj,m,nH
j,m′

[`], = σ2γψm,ψH
m′

(−`) , (15)

where (δk)k∈Z is the Kronecker sequence (δk = 1 if k = 0
and 0 otherwise). Therefore, (nj,m[k])k∈Z and (nH

j,m[k])k∈Z
are cross-correlated zero-mean, white random sequences with
variance σ2.

The determination of the cross-covariance requires the
computation of γψm,ψH

m′
. We distinguish between the mother

(m′ 6= 0) and father (m′ = 0) wavelet case.
• By using (3), for m′ 6= 0, Parseval-Plancherel formula

yields

γψm,ψH
m′

(τ) =
1
2π

∫ ∞

−∞
ψ̂m(ω)

(
ψ̂m′(ω)H)∗ exp(ıωτ) dω

= − 1
π

Im
{ ∫ ∞

0

ψ̂m(ω)
(
ψ̂m′(ω))∗ exp(ıωτ) dω

}
,

(16)

where Im{z} denotes the imaginary part of a complex z.
• According to (4), for m′ = 0 we find, after some simple

calculations:

γψm,ψH
0
(τ) =

1
π

Re
{ ∞∑

k=0

(−1)k
∫ 2(k+1)π

2kπ

ψ̂m(ω)

× (
ψ̂0(ω)

)∗ exp
(
ıω (

1
2

+ τ + d)
)
dω

}
, (17)

where Re{z} denotes the real part of a complex z.
In both cases, we have

|γψm,ψH
m′

(τ)| ≤ 1
π

∫ ∞

0

|ψ̂m(ω)ψ̂m′(ω)| dω. (18)

For M -band wavelet decompositions, selective filter banks
are commonly used. Provided that this selectivity property is
satisfied, the cross term |ψ̂m(ω)ψ̂m′(ω)| can be expected to be
close to zero and the upper bound in (18) to take small values
when m 6= m′. This fact will be discussed in Section VI-C
based on numerical results. On the contrary, when m = m′,
the cross-correlation functions always need to be evaluated
more carefully. In Section V, we will therefore focus on the
functions:

γψm,ψH
m

(τ) =− 1
π

∫ ∞

0

|ψ̂m(ω)|2 sin(ωτ) dω, m 6= 0, (19)

γψ0,ψH
0
(τ) =

1
π

∞∑

k=0

(−1)k

×
∫ 2(k+1)π

2kπ

|ψ̂0(ω)|2 cos
(
ω (

1
2

+ τ + d)
)
dω. (20)

Note that, in this paper, we do not consider interscale cor-
relations. Although expressions of the second-order statistics
similar to the intrascale ones can be derived, sequences of
wavelet coefficients defined at different resolution levels are
generally not cross-stationary [18].
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B. Extension to the 2D case

We now consider the analysis of a two-dimensional noise n,
which is also assumed to be real, wide-sense stationary with
zero-mean and autocovariance function

∀(τ ,x) ∈ R2 × R2, Γn(τ ) = E{n(x + τ )n(x)}.
We can proceed similarly to the previous section. We denote by
(nj,m[k])k∈Z2 the coefficients resulting from a 2D separable
M -band wavelet decomposition [39] of the noise, in a given
subband (j,m) ∈ Z × N2

M . The wavelet coefficients of the
dual decomposition are denoted by (nH

j,m[k])k∈Z2 . We obtain
expressions of the covariance fields similar to (6)-(8): for all
j ∈ Z, m = (m1,m2) ∈ N2

M , m′ = (m′
1,m

′
2) ∈ N2

M , ` =
(`1, `2) ∈ Z2 and k ∈ Z2,

Γnj,m,nj,m′ [`] = E{nj,m[k + `]nj,m′ [k]}

=
∫ ∞

−∞

∫ ∞

−∞
Γn(x1, x2)γψm1 ,ψm′1

( x1

M j
− `1

)

× γψm2 ,ψm′2

( x2

M j
− `2

)
dx1dx2 (21)

ΓnH
j,m,n

H
j,m′

[`] = E{nH
j,m[k + `]nH

j,m′ [k]}

=
∫ ∞

−∞

∫ ∞

−∞
Γn(x1, x2)γψH

m1
,ψH
m′1

( x1

M j
− `1

)

× γψH
m2
,ψH
m′2

( x2

M j
− `2

)
dx1dx2 (22)

Γnj,m,nH
j,m′

[`] = E{nj,m[k + `]nH
j,m′ [k]}

=
∫ ∞

−∞

∫ ∞

−∞
Γn(x1, x2)γψm1 ,ψ

H
m′1

( x1

M j
− `1

)

× γψm2 ,ψ
H
m′2

( x2

M j
− `2

)
dx1dx2.

(23)

From the properties of the correlation functions of the wavelets
and the scaling function as given by Prop. 2, it can be deduced
that, when (m1 = m′

1 = 0 or m1m
′
1 6= 0) and (m2 = m′

2 = 0
or m2m

′
2 6= 0),

Γnj,m,nj,m′ = ΓnH
j,m,n

H
j,m′

. (24)

Some additional symmetry properties are straightforwardly
obtained from Prop. 2. In particular, for all m ∈ N?2M , the
cross-covariance Γnj,m,nH

j,m
is an even sequence. An impor-

tant consequence of the latter properties concerns the 2 × 2
linear combination of the primal and dual wavelet coeffi-
cients which is often implemented in dual-tree decompositions.
As explained in [31], the main advantage of such a post-
processing is to better capture the directional features in the
analyzed image. More precisely, this amounts to performing
the following unitary transform of the detail coefficients, for
m ∈ N?2M :

∀k ∈ Z2, wj,m[k] =
1√
2
(nj,m[k] + nH

j,m[k]) (25)

wH
j,m[k] =

1√
2
(nj,m[k]− nH

j,m[k]). (26)

(The transform is usually not applied when m1 = 0 or
m2 = 0.) The covariances of the transformed fields of noise

coefficients (wj,m[k])k∈Z2 and (wH
j,m[k])k∈Z2 then take the

following expressions:
Proposition 3: For all (m,m′) ∈ N?2M × N?2M and ` ∈ Z2,

Γwj,m,wj,m′ [`] = Γnj,m,nj,m′ [`] + Γnj,m,nH
j,m′

[`] (27)

ΓwH
j,m,w

H
j,m′

[`] = Γnj,m,nj,m′ [`]− Γnj,m,nH
j,m′

[`] (28)

Γwj,m,wH
j,m′

[`] = 0. (29)

Proof: See Appendix IV.
This shows that the post-transform not only provides a better
directional analysis of the image of interest but also plays
an important role w.r.t. the noise analysis. Indeed, it allows to
completely cancel the correlations between the primal and dual
noise coefficient fields obtained for a given value of (j,m) and
(j,m′). In turn, this operation introduces some spatial noise
correlation in each subband.

For a two-dimensional white noise, Γn(x) = σ2 δ(x) and
the coefficients (nj,m[k])k∈Z2 and (nH

j,m′ [k])k∈Z2 are such
that, for all ` = (`1, `2) ∈ Z2,

Γnj,m,nj,m′ [`] = ΓnH
j,m,n

H
j,m′

[`] = σ2δm1−m′1δm2−m′2δ`1δ`2
(30)

Γnj,m,nH
j,m′

[`] = σ2γψm1 ,ψ
H
m′1

(−`1)γψm2 ,ψ
H
m′2

(−`2) . (31)

As a consequence of Prop. 2, in the case when ` = 0, we
conclude that, for (m1 6= 0 or m2 6= 0) and k ∈ Z2, the
vector [nj,m[k] nH

j,m[k]] has uncorrelated components with
equal variance. This property holds more generally for 2D
noises with separable covariance functions.

IV. SOME ASYMPTOTIC PROPERTIES

In the previous section, we have shown that the corre-
lations of the basis functions play a prominent role in the
determination of the second-order statistical properties of the
noise coefficients. To estimate the strength of the dependencies
between the coefficients, it is useful to determine the decay
of the correlation functions. The following result allows to
evaluate their decay.

Proposition 4: Let (N1, . . . , NM−1) ∈ (N∗)M−1 and de-
fine N0 = minm∈N?M Nm. Assume that, for all m ∈ NM , the
function |ψ̂m|2 is 2Nm+1 times continuously differentiable on
R and, for all q ∈ {0, . . . , 2Nm+1}, its q-th order derivatives
(|ψ̂m|2)(q) belong to L1(R).1 Further assume that, for all
m 6= 0, ψ̂m(ω) = O(ωNm) as ω → 0. Then, there exists
C ∈ R+ such that, for all m ∈ NM ,

∀τ ∈ R∗, |γψm,ψm(τ)| ≤ C

|τ |2Nm+1
(32)

and
∀τ ∈ R∗, |γψm,ψH

m
(τ)| ≤ C

|τ |2Nm+1
. (33)

Proof: See Appendix V.
Note that, for all m ∈ NM , the assumptions concerning
|ψ̂m|2 are satisfied if ψ̂m is 2Nm + 1 times continuously
differentiable on R and, for all q ∈ {0, . . . , 2Nm + 1}, its

1By convention, the derivative of order 0 of a function is the function itself.
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q-th order derivatives ψ̂(q)
m belong to L2(R). Indeed, if ψ̂m is

2Nm + 1 times continuously differentiable on R, so is |ψ̂m|2.
Leibniz formula allows us to express its derivative of order
q ∈ {0, . . . , 2Nm + 1} as

(|ψ̂m|2)(q) =
q∑

`=0

(
q

`

)
(ψ̂m)(`)(ψ̂∗m)(q−`).

Consequently, if for all ` ∈ {0, . . . , q}, ψ̂(`)
m ∈ L2(R), then

(|ψ̂m|2)(q) ∈ L1(R).
Note also that, for integrable wavelets, the assumption

ψ̂m(ω) = O(ωNm) as ω → 0 means that the wavelet ψm,
m 6= 0, has Nm vanishing moments.

Therefore, the decay rate of the wavelet correlation func-
tions is all the more important as the Fourier transforms of the
basis functions ψm, m ∈ NM , are regular (i.e. the wavelets
have fast decay themselves) and the number of vanishing
moments is large. The latter condition is useful to ensure
that Hilbert transformed functions ψH

m have regular spectra
too. It must be emphasized that Prop. 4 guarantees that the
asymptotic decay of the wavelet correlation functions is at
most |τ |−2Nm−1. A faster decay can be obtained in practice for
some wavelet families. For example, when ψm is compactly
supported, γψm,ψm also has a compact support. In this case
however, ψH

m cannot be compactly supported [32], so that the
bound in (33) remains of interest. Examples will be discussed
in more detail in Section V.

It is also worth noticing that the obtained upper bounds on
the correlation functions allow us to evaluate the decay rate of
the covariance sequences of the dual-tree wavelet coefficients
of a stationary noise as expressed below.

Proposition 5: Let n be a 1D zero-mean wide-sense sta-
tionary random process. Assume that either n is a white noise
or its autocovariance function is with exponential decay, that
is there exist A ∈ R+ and α ∈ R∗+, such that

∀τ ∈ R, |Γn(τ)| ≤ Ae−α|τ |. (34)

Consider also functions ψm, m ∈ NM , satisfying the assump-
tions of Prop. 4. Then, there exists C̃ ∈ R+ such that for all
j ∈ Z, m ∈ NM and ` ∈ Z∗,

|Γnj,m,nj,m [`]| ≤ C̃

1 + |`|2Nm+1
(35)

|Γnj,m,nH
j,m

[`]| ≤ C̃

1 + |`|2Nm+1
. (36)

Proof: See Appendix VI.
The decay property of the covariance sequences readily ex-
tends to the 2D case:

Proposition 6: Let n be a 2D zero-mean wide-sense sta-
tionary random field. Assume that either n is a white noise or
its autocovariance function is with exponential decay, that is
there exist A ∈ R+ and (α1, α2) ∈ (R∗+)2, such that

∀(τ1, τ2) ∈ R2, |Γn(τ1, τ2)| ≤ Ae−α1|τ1|−α2|τ2|. (37)

Consider also functions ψm, m ∈ NM , satisfying the assump-
tions of Prop. 4. Then, there exists C̃ ∈ R+ such that for all

j ∈ Z, m ∈ N2
M and ` = (`1, `2) ∈ Z2,

|Γnj,m,nj,m [`]| ≤ C̃

(1 + |`1|2Nm+1)(1 + |`2|2Nm+1)
(38)

|Γnj,m,nH
j,m

[`]| ≤ C̃

(1 + |`1|2Nm+1)(1 + |`2|2Nm+1)
. (39)

Besides, for all j ∈ Z, m ∈ N?2M and ` = (`1, `2) ∈ Z2,

|Γwj,m,wj,m [`]| ≤ 2C̃
(1 + |`1|2Nm+1)(1 + |`2|2Nm+1)

(40)

|ΓwH
j,m,w

H
j,m

[`]| ≤ 2C̃
(1 + |`1|2Nm+1)(1 + |`2|2Nm+1)

. (41)

Proof: Due to the separability of the 2D dual-tree wavelet
analysis, (38) and (39) are obtained quite similarly to (35) and
(36). The proof of (40) and (41) then follows from (27) and
(28).

The two previous propositions provide upper bounds on
the decay rate of the covariance sequences of the dual-tree
wavelet coefficients, when the norm of the lag variable (` or `)
takes large values. We end this section by providing asympotic
results at coarse resolution (as j →∞).

Proposition 7: Let n be a 1D zero-mean wide-sense sta-
tionary process with covariance function Γn ∈ L1(R)∩L2(R).
Then, for all (m,m′) ∈ N2

M , we have

lim
j→∞

Γnj,m,nj,m′ [`] = Γ̂n(0) δm−m′δ` (42)

lim
j→∞

Γnj,m,nH
j,m′

[`] = Γ̂n(0) γψm,ψH
m′

(−`) . (43)

Proof: See Appendix VII.
In other words, at coarse resolution in the transform domain,
a stationary noise n with arbitrary covariance function Γn
behaves like a white noise with spectrum density Γ̂n(0). This
fact further emphasizes the interest in studying more precisely
the dual-tree wavelet decomposition of a white noise. Note
also that, by calculating higher order cumulants of the dual-
tree wavelet coefficients and using techniques as in [18], [40],
it could be proved that, for all (m,m′) ∈ N2

M and (k, k′) ∈ Z2,
[nj,m(k) nH

j,m′(k
′)] is asymptotically normal as j → ∞.

Although Prop. 7 has been stated for 1D random processes,
we finally point out that quite similar results are obtained in
the 2D case.

V. WAVELET FAMILIES EXAMPLES

For a white noise (see (14), (15), (30) and (31)) or for
arbitrary wide-sense stationary noises analyzed at coarse reso-
lution (cf. Prop. 7), we have seen that the cross-correlation
functions between the primal and dual wavelets taken at
integer values are the main features. In order to better evaluate
the impact of the wavelet choice, we will now specify the
expressions of these cross-correlations for different wavelet
families.

A. M -band Shannon wavelets

M -band Shannon wavelets (also called sinc wavelets in the
literature) correspond to an ideally selective analysis in the
frequency domain. These wavelets also appear as a limit case
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for many wavelet families, e.g. Daubechies or spline wavelets.
We have then, for all m ∈ NM ,

ψ̂m(ω) = 1(−(m+1)π,−mπ]∪[mπ,(m+1)π)(ω),

where 1S denotes the characteristic function of the set S ⊂ R:

1S(ω) =

{
1 if ω ∈ S
0 otherwise.

In this case, (20) reads: for all τ ∈ R,

γψ0,ψH
0
(τ) =

1
π

∫ π

0

cos
(
(
1
2

+ d+ τ)ω
)
dω

=





(−1)d cos (πτ)
π( 1

2 + d+ τ)
if τ 6= −d− 1

2

1 otherwise.

For m ∈ N?M , (19) leads to

γψm,ψH
m

(τ) = − 1
π

∫ (m+1)π

mπ

sin (ωτ)dω

=





cos
(
(m+ 1)πτ

)− cos(mπτ)
πτ

if τ 6= 0

0 otherwise.

We deduce from the two previous expressions that, for all
` ∈ Z,

γψ0,ψH
0
(`) =

(−1)(d+`)

π(d+ `+ 1
2 )

(44)

and, for all m 6= 0,

γψm,ψH
m

(`) =





(−1)(m+1)` 1− (−1)`

π`
if ` 6= 0

0 otherwise.
(45)

We can remark that, for all (m,m′) ∈ N?2M ,

γψm,ψH
m

(`) = (−1)(m
′−m)`γψm′ ,ψH

m′
(`) (46)

and γψm,ψH
m

(`) = 0, when ` is odd. Besides, the correlation
sequences decay pretty slowly as `−1. We also note that, as
the functions ψm, m ∈ NM , have non-overlapping spectra, (6)-
(8) (resp. (21)-(23)) allow us to conclude that, dual-tree noise
wavelet coefficients corresponding respectively to subbands
(j,m) and (j,m′) with m 6= m′ (resp. (j,m1,m2) and
(j,m′

1,m
′
2) with m1 6= m′

1 or m2 6= m′
2) are perfectly

uncorrelated.

B. Meyer wavelets

These wavelets [41], [42, p. 116] are also band-limited but
with smoother transitions than Shannon wavelets. The scaling
function is consequently defined as

ψ̂0(ω) =





1 if 0 ≤ |ω| ≤ π(1− ε)

W
( |ω|

2πε
− 1− ε

2ε

)
if π(1− ε) ≤ |ω| ≤ π(1 + ε)

0 otherwise,
(47)

where 0 < ε ≤ 1/(M + 1) and

∀ θ ∈ [0, 1], W (θ) = cos
(π

2
ν(θ)

)

with ν : [0, 1] → [0, 1] such that

ν(0) = 0 (48)
∀ θ ∈ [0, 1], ν(1− θ) = 1− ν(θ).

Then, it can be noticed that

∀ θ ∈ [0, 1], W 2(1− θ) = 1−W 2(θ). (49)

A common choice for the ν function is [42, p. 119]:

∀ θ ∈ [0, 1], ν(θ) = θ4(35− 84 θ + 70 θ2 − 20 θ3). (50)

For m ∈ {1, . . . ,M − 2}, the associated M -band wavelets
are given by (51) while, for the last wavelet, we have (52).
Hereabove, the phase functions ηm, m ∈ N?M , are odd
functions and we have

∀ω ∈ (Mπ,M(1 + ε)π),
ηM−1(ω) = −ηM−1(2Mπ − ω) mod 2π.

In addition, for the orthonormality condition to be satisfied,
the following recursive equations must hold:

∀ω ∈ ((m− ε)π, (m+ ε)π),
ηm(ω − 2mπ)− ηm−1(ω − 2mπ)

= ηm(ω)− ηm−1(ω) + π mod 2π.

by setting: ∀ω ∈ R, η0(ω) = 0. Generally, linear phase
solutions to the previous equation are chosen [43].

Using the above expressions, the cross-correlations between
the Meyer basis functions and their dual counterparts are
derived in Appendix VIII. It can be deduced from these results
that: ∀ ` ∈ Z,

γψ0,ψH
0
(`) =

(−1)d+`

π(d+ `+ 1
2 )
− (−1)d+` Iε

(
d+ `+

1
2

)
, (53)

where

∀x ∈ R, Iε(x) = 2ε
∫ 1

0

W 2
(1 + θ

2

)
sin (πεxθ) dθ. (54)

For the wavelets, we have when m ∈ {1, . . . ,M − 2}:

γψm,ψH
m

(`) =



(−1)(m+1)`
(
1− (−1)`

)(
1
π`
− Iε(`)

)
if ` 6= 0

0 otherwise
(55)

whereas

γψM−1,ψH
M−1

(`) =




(−1)M`
(1− (−1)`

π`
+ (−1)`Iε(`)− IMε(`)

)
if ` 6= 0

0 otherwise.
(56)

Similarly to Shannon wavelets, for (m,m′) ∈ {1, . . . ,M −
2}2, (46) holds and γψm,ψH

m
(`) = 0, when m 6= 0 and

` is odd. As expected, we observe that the previous cross-
correlations converge pointwise to the expressions given for
Shannon wavelets in (44) and (45), as we let ε→ 0.
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ψ̂m(ω) =





eıηm(ω)W
(m+ ε

2ε
− |ω|

2πε

)
if (m− ε)π ≤ |ω| ≤ (m+ ε)π

eıηm(ω) if (m+ ε)π ≤ |ω| ≤ (m+ 1− ε)π

eıηm(ω)W
( |ω|

2πε
− m+ 1− ε

2ε

)
if (m+ 1− ε)π ≤ |ω| ≤ (m+ 1 + ε)π

0 otherwise

(51)

ψ̂M−1(ω) =





eıηM−1(ω)W
(M − 1 + ε

2ε
− |ω|

2πε

)
if (M − 1− ε)π ≤ |ω| ≤ (M − 1 + ε)π

eıηM−1(ω) if (M − 1 + ε)π ≤ |ω| ≤M(1− ε)π

eıηM−1(ω)W
( |ω|

2πεM
− 1− ε

2ε

)
if M(1− ε)π < |ω| ≤M(1 + ε)π

0 otherwise.

(52)

Besides, let us make the following assumption: W 2 is 2q+2
times continuously differentiable on [0, 1] with q ∈ N∗ and,
for all ` ∈ {0, . . . , 2q − 1}, (W 2)(`)(1) = 0. This assumption
is typically satisfied by the window defined by (50) with
q = 4. From (49), it can be further noticed that, for all
` ∈ {1, . . . , q+ 1}, (W 2)(2`)(1/2) = 0. Then, when x 6= 0, it
is readily checked by integrating by parts that

∫ 1

0

W 2
(1 + θ

2

)
sin (πεxθ) dθ =

1
2πεx

+
(−1)q−1(W 2)(2q)(1)

22q(πεx)2q+1
cos(πεx)

+
(−1)q(W 2)(2q+1)(1)

22q+1(πεx)2q+2
sin(πεx)

+
(−1)q+1

22q+2(πεx)2q+2

∫ 1

0

(W 2)(2q+2)
(1 + θ

2

)
sin (πεxθ) dθ.

This shows that, as |x| → ∞,

Iε(x) =
1
πx

+
(−1)q−1(W 2)(2q)(1)
22q−1π2q+1ε2qx2q+1

cos(πεx) +O(x−2q−2).
(57)

For example, for the taper function defined by (50), we get

Iε(x) =
1
πx

− 385875
4π7ε8x9

cos(πεx) +O(x−10).

Combining (57) with (53), (55) and (56) allows us to see that
the cross-correlation sequences decay as `−2q−1 when |`| →
∞. Eq. (57) also indicates that the decay tends to be faster
when ε is large, which is consistent with intuition since the
basis functions are then better localized in time. Note that, as
shown by (51) and (52), under the considered differentiability
assumptions, |ψ̂m|2 is 2q−1 times continuously differentiable
on R whereas ψ̂m(ω) = 0 for m ∈ N?M and |ω| < π(m− ε).
Prop. 4 then guarantees a decay rate at least equal to |`|−2q+1

(here, Nm = q − 1). In this case, we see that the decay rate
derived from (57) is more acurate than the decay given by
Prop. 4.

C. Wavelet families derived from wavelet packets
1) General form: One can generate M -band orthonormal

wavelet bases from dyadic orthonormal wavelet packet de-
compositions corresponding to an equal subband analysis.

We are consequently limited to scaling factors M which are
power of 2. More precisely, let (ψm)m∈N be the considered
wavelet packets [44], for all P ∈ N∗ an orthonormal M -band
wavelet decomposition is obtained using the basis functions
(ψm)0≤m<M with M = 2P . In this case, the basis functions
satisfy the following two-scale relations: for all m ∈ N,

√
2ψ̂2m(2ω) = A0(ω)ψ̂m(ω) (58)√

2ψ̂2m+1(2ω) = A1(ω)ψ̂m(ω), (59)

where A0 and A1 are the frequency responses of the low-pass
and high-pass filters of the associated two-band para-unitary
synthesis filter bank. We can infer the following result.

Proposition 8: For all τ ∈ R and m ∈ N∗, we have

γψ2m,ψH
2m

(τ) = γa0 [0]γψm,ψH
m

(2τ)

+
∞∑

k=1

γa0 [k]
(
γψm,ψH

m
(2τ + k) + γψm,ψH

m
(2τ − k)

)
(60)

γψ2m+1,ψH
2m+1

(τ) = γa1 [0]γψm,ψH
m

(2τ)

+
∞∑

k=1

γa1 [k]
(
γψm,ψH

m
(2τ + k) + γψm,ψH

m
(2τ − k)

)
,

(61)

where, for all ε ∈ {0, 1}, (γaε [k])k∈Z is the autocorrelation of
the impulse response (aε[k])k∈Z of the filter with frequency
response Aε:

∀k ∈ Z, γaε [k] =
∞∑

q=−∞
aε[q] aε[q − k].

Proof: See Appendix IX.
It is important to note that (60) and (61) are not valid for
m = 0. These two relations define recursive equations for the
calculation of the cross-correlations (γψm,ψH

m
)m>1, provided

that γψ1,ψH
1

has been calculated first.
For this specific class of M -band wavelet decompositions,

it is possible to relate the decay properties of the cross-
correlation functions to the number of vanishing moments of
the underlying dyadic wavelet analysis.

Proposition 9: Assume that the filters with frequency re-
sponse A0 and A1 are FIR and A1 has a zero of order N ∈ N∗
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at frequency 0 (or, equivalently, A0 has a zero of order N at
frequency 1/2). Then, there exists C0 ∈ R+ such that

∀τ ∈ R∗, |γψ0,ψH
0
(τ)| ≤ C0|τ |−2N−1. (62)

In addition, for all m ∈ N∗, let (ε1, ε2, . . . , εr) ∈ {0, 1}r,
r ∈ N∗, be the digits in the binary representation of m, that
is

m =
r∑

i=1

εi2i−1. (63)

Then, there exists Cm ∈ R+ such that

∀τ ∈ R∗, |γψm,ψH
m

(τ)| ≤ Cm|τ |−2N(
Pr
i=1 εi)−1. (64)

Proof: The filters of the underlying dyadic multiresolu-
tion being FIR (Finite Impulse Response), the wavelet packets
are compactly supported. Consequently, their Fourier trans-
forms are infinitely differentiable, their derivatives of any order
belonging to L2(R). In addition, the binary representation of
m ∈ N∗ being given by (63), Eqs. (58) and (59) yield

ψ̂m(ω) = ψ̂0

( ω

2P
) r∏

i=1

(
1√
2
Aεi

( ω
2i

)) P∏

i=r+1

(
1√
2
A0

( ω
2i

))

that is Hm(ω) =
∏r
i=1Aεi(2

P−iω)
∏P
i=r+1A0(2P−iω).

Moreover, by assumption A1(ω) = O(ωN ) as ω → 0, whereas
A0(0) =

√
2 and |ψ̂0(0)| = 1. This shows that, when m 6= 0,

ψ̂m(ω) = O(ωN(
Pr
i=1 εi)) as ω → 0. From (33), we deduce

the upper bound in (64). Furthermore, by applying Prop. 4
when M = 2, we have then N0 = N1 = N and (62) is
obtained.
We see that the cross-correlation γψm,ψH

m
decays all the more

rapidly as the number of 1’s in the binary representation of m
is large.2

2) The particular case of Walsh-Hadamard transform: The
case M = 2 corresponds to Haar wavelets. In contrast with
Shannon wavelets, these wavelets lay emphasis on time/spatial
localization. We consequently have:

ψ̂0(ω) = sinc(
ω

2
) e−ı

w
2 (65)

ψ̂1(ω) = ı sinc(
ω

4
) sin(

ω

4
) e−ı

w
2 , (66)

where

sinc(ω) =





sin(ω)
ω

if ω 6= 0

1 otherwise.
(67)

After some calculations which are provided in Appendix X,
we obtain for all τ ∈ R,

πγψ0,ψH
0
(τ) =

∞∑

k=0

(−1)k
(1

2
Sk(3 + 2d+ 2τ)

− Sk(1 + 2d+ 2τ) +
1
2
Sk(−1 + 2d+ 2τ)

)
, (68)

where, for all k ∈ N and for all x ∈ R,

Sk(x) = x

∫ (k+1)πx

kπx

sinc(u) du.

2The characterization of the sum of digits of integers remains an open
problem in number theory [45], [46].

Furthermore, we have (adopting the convention: 0 ln(0) = 0):

πγψ1,ψH
1
(τ) = 6 τ ln |τ |+ (τ+1) ln |τ+1|+ (τ−1) ln |τ−1|

− 4
(
τ +

1
2

)
ln

∣∣∣τ +
1
2

∣∣∣ − 4
(
τ − 1

2

)
ln

∣∣∣τ − 1
2

∣∣∣. (69)

For M = 2P with P > 1, the cross-correlations γψm,ψH
m

,
m ∈ {2, . . . , 2P−1}, can be determined in a recursive manner
thanks to Prop. 8. For Walsh-Hadamard wavelets, we have

∀ε ∈ {0, 1}, ∀k ∈ Z, γaε [k] =





1 if k = 0
(−1)ε

2
if |k| = 1

0 otherwise

(70)

and, consequently, for all m 6= 0 and τ ∈ R,

γψ2m,ψH
2m

(τ) = γψm,ψH
m

(2τ)

+
1
2

(
γψm,ψH

m
(2τ + 1) + γψm,ψH

m
(2τ − 1)

)
(71)

γψ2m+1,ψH
2m+1

(τ) = γψm,ψH
m

(2τ)

− 1
2

(
γψm,ψH

m
(2τ + 1) + γψm,ψH

m
(2τ − 1)

)
. (72)

From (69), it can be noticed that γψ1,ψH
1
(τ) = 1/(8πτ3) +

O(τ−5) when |τ | > 2, which corresponds to a faster asymp-
totic decay than with Shannon wavelets. The asymptotic
behaviour of γψm,ψH

m
(τ), m > 2, can also be deduced from

(69), (71) and (72). The expressions given in Table I are in
perfect agreement with the decay rates predicted by Prop. 9.

D. Franklin wavelets

Franklin wavelets [47], [48] correspond to a dyadic or-
thonormal basis of spline wavelets of order 1 [42, p. 146 sq.].
With the Haar wavelet, they form a special case of Battle-
Lemarié wavelets [49], [50]. The Fourier transforms of the
scaling function and the mother wavelet are given by:

ψ̂0(ω) =
(

3
1 + 2 cos2(ω/2)

)1/2

sinc2
(ω

2

)
(73)

ψ̂1(ω) = −
(

3(1 + 2 sin2(ω/4))(
1 + 2 cos2(ω/2)

)(
1 + 2 cos2(ω/4)

)
)1/2

× sin2
(ω

4

)
sinc2

(ω
4

)
exp (−ıω

2
). (74)

The expression of the cross-correlation of the scaling functions
readily follows from (20):

∀τ ∈ R, γψ0,ψH
0
(τ) =

6
π

∞∑

k=0

(−1)kTk(1 + 2d+ 2τ),

where, for all k ∈ N and x ∈ R,

Tk(x) =
∫ (k+1)π

kπ

sinc4(u)
1 + 2 cos2(u)

cos(ux) du.

The expression of the cross-correlation of the mother wavelet
can be deduced from (19) and (74) and resorting to numerical
methods for the computation of the resulting integral, but it
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is also possible to obtain a series expansion of the cross-
correlation as shown next.

Taking the square modulus of (74), we find

2|ψ̂1(2ω)|2 = |Ã1(ω)|2 |χ̂(ω)|2, (75)

where

Ã1(ω) =

(
6
(
2− cos(ω)

)
(
1 + 2 cos2(ω)

)(
2 + cos(ω)

)
)1/2

,

χ̂(ω) =
( sin2 (ω/2)

ω/2

)2

.

Let (ã1[k])k∈Z (resp. χ) be the sequence (resp. function)
whose Fourier transform is Ã1 (resp. χ̂). Similarly to (61),
(75) leads to the following relation

∀τ ∈ R, γψ1,ψH
1
(τ) = γea1 [0] γχ,χH(2τ)

+
∞∑

k=1

γea1 [k]
(
γχ,χH(2τ + k) + γχ,χH(2τ − k)

)
, (76)

where (γea1 [k])k∈Z denotes the autocorrelation of the sequence
(ã1[k])k∈Z.

We have then to determine γχ,χH and (γã1 [k])k∈N. First, it
can be shown (see Appendix XI for more detail) that

3πγχ,χH(τ) = q0τ
3 ln |τ |

+
4∑
p=1

qp
(
(τ + p)3 ln |τ + p|+ (τ − p)3 ln |τ − p|), (77)

where

q0 = −35
16
, q1 =

7
4
, q2 = −7

8
, q3 =

1
4
, q4 = − 1

32
.

Secondly, the sequence (γã1 [k])k∈N can be deduced from
|Ã1(ω)|2 by using z-transform inversion techniques (calcula-
tions are provided in Appendix XI). This leads to ∀k ∈ N,




γã1 [2k] =
2
√

3
9

(2−
√

3)k
(
7(−1)k + 4(2−

√
3)k

)

γã1 [2k + 1] =
8
√

3
9

(2−
√

3)k
(
(−1)k(1−

√
3)

−(2−
√

3)k+1
)
.
(78)

Equations (76), (77) and (78) thus allow an accurate numerical
evaluation of γψ1,ψH

1
. Since

γχ,χH(τ) ∼ −3/(2πτ5) as |τ | → ∞ (79)

and

γã1 [k] = O((2−
√

3)k/2) as k →∞ (80)

the convergence of the series in (76) is indeed pretty fast.
From Prop. 4, we further deduce that γψ0,ψH

0
(τ) and

γψ1,ψH
1
(τ) decay as |τ |−5 (here, we have N0 = N1 = 2).

The decay rate of γψ1,ψH
1

can be derived more precisely from

(76). Indeed, we have

|τ |5
∞∑

k=−∞
|γea1 [k]||γχ,χH(2τ − k)|

≤ 1
2

∞∑

k=−∞
|γea1 [k]|

(|2τ − k|5 + |k|5)|γχ,χH(2τ − k)|

≤
(

sup
u∈R

(|u|5|γχ,χH(u)|) + sup
u∈R

|γχ,χH(u)|
)

×
∞∑

k=−∞
(1 + |k|5)|γea1 [k]| <∞,

(81)

where the convexity of |.|5 has been used in the first inequality
and the last inequality is a consequence of (79) and (80). It
can be deduced from the dominated convergence theorem that

lim
|τ |→∞

τ5γψ1,ψH
1
(τ) =

∞∑

k=−∞
γea1 [k] lim

|τ |→∞
τ5γχ,χH(2τ − k)

=− 3
64π

∞∑

k=−∞
γea1 [k] = − 3

64π
|Ã1(0)|2

=− 1
32π

.

Finally, we would like to note that similar expressions can
be derived for higher order spline wavelets although the
calculations become tedious.

VI. EXPERIMENTAL RESULTS

A. Results based on theoretical expressions

At first, we provide numerical evaluations of the expressions
of the cross-correlation sequences obtained in the previous sec-
tion when the lag variable (denoted by `) varies in {0, 1, 2, 3}.
The cross-correlations for lag values in {−3,−2,−1} can be
deduced from the symmetry properties shown in Section III-A.
We notice that cubic spline wavelets [51] have not been studied
in Section V, so that their cross-correlation values have to be
computed directly from (19) and (20). The results concerning
the dyadic case are given in Table II. They show that the cross-
correlations between the noise coefficients at the output of a
dual-tree analysis can take significant values (up to 0.64). We
also observe that the wavelet choice has a clear influence on
the magnitude of the correlations. Indeed, while Meyer wavelet
leads to results close to the Shannon wavelet, the correlations
are weaker for the Haar wavelet. As expected, spline wavelets
yield intermediate cross-correlation values between the Meyer
and the Haar cases.
Our next results concern the M -band case with M ≥ 3. Due
to the properties of the cross-correlations, the study can be
simplified as explained below.
• Shannon wavelets: due to (46), the M -band cross-

correlations are, up to a possible sign change, equal to
the dyadic case cross-correlations (see Table II).

• Meyer wavelets: still due to (46), the first M − 2 cross-
correlations of the wavelets are easily deduced from the
first one. So, we only need to specify γψ0,ψH

0
, γψ1,ψH

1
and

γψM−1,ψH
M−1

. Tables III and IV give the related values
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when M ranges from 3 to 8, the ε parameter being set
to its possible maximum value (M + 1)−1.

• Walsh-Hadamard wavelets: when M = 2P , P ∈ N, P ≥
2, (ψm)0≤m<M is the set of basis functions of the M -
band wavelet decomposition. In this way, the results in
Table V allow us to evaluate the cross-correlation values
for M ∈ {4, 8}.

As shown in Tables III and IV, the cross-correlations in the
Meyer case remain significant, their magnitudes being even
slightly increased as the number of subbands becomes larger.
Table V shows that the cross-correlation of Walsh-Hadamard
wavelets are much smaller and that they are close to zero when
the subband index m is large.

B. Monte Carlo simulations
A second approach for computing the cross-correlations

consists in carrying out a Monte Carlo study. More precisely,
a realization of a white standard Gaussian noise sequence of
length L = MJb 214

MJ c (with J = 3) is drawn and its 1D
dual-tree decomposition over J resolution levels is performed.
Then, the cross-covariances for each subband can be estimated
by their classical sample estimates. In our experiments, aver-
age values of these cross-correlations are computed over 100
runs.
This Monte Carlo study allows us to validate the theoretical
expressions we have obtained for several wavelet families
in Section V. In addition, this approach can be applied to
wavelets whose Fourier transforms do not take a simple form.
For instance, we are able to compute the cross-correlation
values for symlets [42, p.259] associated to filters of length
8 as well as for 4-band compactly supported wavelets (here
designated as AC) associated to 16-tap filters [52].
Table VI shows the estimations of the cross-correlations ob-
tained in the dyadic case, while the results in the M -band case
with M ≥ 3 are listed in Tables VII and VIII. By comparing
these results with the ones in Tables V, III and IV, a good
agreement is observed between the theoretical values and the
estimated ones for Shannon, Meyer and cubic spline wavelets.
For less regular wavelets such as Franklin or Haar wavelets,
the agreement remains quite good at coarse resolution (j = 3)
but, at fine resolution (j = 1), it appears that the correlations
are stronger in practice than predicted by the theory. The fact
that we use a discrete decomposition instead of the classical
analog wavelet framework may account for these differences.
Indeed, we use the implementation of the M -band dual-tree
decomposition described in [32], which requires some digital
prefilters. The selectivity of these filters is inherited from the
frequency selectivity of the scaling function. As a side effect,
the noise is colored by these prefilters.
Some comments can also be made concerning symlets 8
and 4-band AC wavelets. We see that the symlets behave
very similarly to Franklin wavelets whereas AC wavelets
provide intermediate correlation magnitudes between the M -
band Meyer and Hadamard cases.

C. Inter-band cross-correlations
Although the cross-correlations between primal/dual basis

functions corresponding to different subbands have not been

much investigated in the previous sections, we provide in this
part some numerical evaluations for them.
More precisely, we are interested in studying (γψm,ψH

m′
(`))`∈Z

with m 6= m′, which represents the inter-band cross-
correlations. We are able to compute them thanks to (16) and
(17). Numerical results are given in Table IX.
Some symmetry properties can be observed, which can be
deduced from (16), (17) and the specific form of the consid-
ered wavelet functions. Most interestingly, it can be noticed
that the inter-band cross-correlations often have a significantly
smaller amplitude than the corresponding intra-band cross-
correlations. As expected, the more frequency-selective the
decomposition filters, the more negligible the values of the
inter-band cross-correlations.

D. Two-dimensional experiment

We aim here at comparing the obtained theoretical expres-
sions of the two-dimensional cross-covariances with Monte
Carlo evaluations of these second-order statistics. We consider
a two-dimensional 3-band Meyer dual-tree wavelet decompo-
sition of a white standard Gaussian field of size 756 × 756.
The Monte Carlo study is carried out over 10000 realizations.
The decomposition is performed over J = 2 resolution levels
and the results are provided at the coarsest resolution. The
covariance fields are depicted in Fig. 2 as well as the ones
derived from (31), (53)-(56). For more readibility, a dashed
separation line between the subbands has been added (for a
3-band decomposition, 9 covariance fields (Γnj,m,nH

j,m
[`])`∈Z2

have to be computed when m ∈ {0, 1, 2}2). We compute these
fields for ` ∈ {0, 1, 2, 3}2, thus resulting in 16 covariance
values for each subband. Succinctly, each small gray-scaled
square represents the intensity of the cross-covariance in a
given subband m at spatial position `. Comparing theoretical
results with numerical ones (left and right sides of Fig. 2,
respectively), it can be noticed that they are quite similar.
In addition, we observe that, due to the separability of the
covariance fields and (13), for all m = (m1,m2) and ` =
(`1, `2), (Γnj,m,nH

j,m
[`])`∈Z2 vanishes when either (m1 6= 0

and `1 = 0) or (m2 6= 0 and `2 = 0).

VII. CONCLUSION

In this paper, we have investigated the covariance properties
of the M -band dual-tree wavelet coefficients of wide-sense
stationary 1D and 2D random processes. We have stated a
number of results helping to better understand the structure
of the correlations introduced by this frame decomposition.
These results may be useful in the design of efficient denoising
rules using dual-tree wavelet decompositions, when the noise
is additive and stationary. In particular, if a pointwise estimator
is applied to the pair of primal/dual coefficients at the same
location and in the same subband, we have seen that the related
components of the noise are uncorrelated. On the contrary,
if a block-based estimator is used to take advantage of some
spatial neighborhood of the primal and dual coefficients around
some given position in a subband, noise correlations generally
must be taken into account. Recently, this fact has been
exploited in the design of an efficient image denoising method
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using Stein’s principle, yielding state-of-the-art performance
for multichannel image denoising [38], [53].

In future work, it would be interesting to extend our analysis
to other classes of random processes. In particular, a similar
study could be undertaken for self-similar processes [54], [55]
and processes with stationary increments [21], [56].

Finally, we would like to note that the expressions of the
cross-correlations between the primal and dual wavelets which
have been derived in this paper may be of interest for other
problems. Indeed, let

T =
[
D
DH

]

denote the dual-tree decomposition where D (resp. DH) is the
primal (resp. dual) wavelet decomposition. The studied cross-
correlations then characterize the “off-diagonal” terms of the
operator

TT ∗ =
[

I D(DH)∗

DHD∗ I

]
,

where A∗ denotes the adjoint of a bounded linear operator
A. The operator TT ∗ is encountered in the solution of some
inverse problems.

APPENDIX I
PROOF OF PROPOSITION 1

The M -band wavelet coefficients of the noise are given by

∀m ∈ NM ,∀k ∈ Z,
nj,m[k] =

∫ ∞

−∞
n(x)

1
M j/2

ψm(
x

M j
− k) dx

nH
j,m[k] =

∫ ∞

−∞
n(x)

1
M j/2

ψH
m(

x

M j
− k) dx.

For all (m,m′) ∈ N2
M and (k, k′) ∈ Z2, we have then

E{nj,m[k]nj,m′ [k′]} =
∫ ∞

−∞

∫ ∞

−∞
E{n(x)n(x′)}

× 1
M j/2

ψm(
x

M j
− k)

1
M j/2

ψm′(
x′

M j
− k′)dx dx′ .

After the variable change τ = x − x′, using the definition of
the autocovariance of the noise in (5), we find that

E{nj,m[k]nj,m′ [k′]} =
∫ ∞

−∞
Γn(τ)

( ∫ ∞

−∞

1
M j/2

ψm(
x

M j
− k)

1
M j/2

ψm′(
x− τ

M j
− k′)dx

)
dτ

which readily yields

E{nj,m[k]nj,m′ [k′]} =
∫ ∞

−∞
Γn(τ)γψm,ψm′ (

τ

M j
+k′−k) dτ.

Note that, in the above derivations, permutations of the in-
tegral symbols/expectation have been performed. For these
operations to be valid, some technical conditions are required.
For example, Fubini’s theorem [57, p. 164] can be invoked
provided that∫ ∞

−∞
Γ|n|(τ)γ|ψm|,|ψm′ |(

τ

M j
+ k′ − k) dτ <∞,

where Γ|n| is the autocovariance of |n|.
Relations (7) and (8) follow from similar arguments.

APPENDIX II
PROOF OF PROPOSITION 2

For all (m,m′) ∈ N2
M , ∀τ ∈ R,

1
2π

∫ ∞

−∞
ψ̂H
m(ω)

(
ψ̂H
m′(ω))∗eıωτ dω = γψH

m,ψ
H
m′

(τ). (82)

Since the Fourier transform defines an isometry on L2(R),
it can be deduced from (82) that γψH

m,ψ
H
m′

is in L2(R) and

its Fourier transform is ω 7→ ψ̂H
m(ω)

(
ψ̂H
m′(ω))∗. 3 According

to (3) and (4), when m = m′ = 0 or mm′ 6= 0, the latter
function is equal to ω 7→ ψ̂m(ω)

(
ψ̂m′(ω))∗, thus showing that

γψH
m,ψ

H
m′

= γψm,ψm′ . The equality of the covariance sequences
defined by (6) and (7) straightforwardly follows.

When mm′ 6= 0, the Fourier transform of γψm,ψH
m′

is

equal to ω 7→ ı sign(ω)ψ̂m(ω)ψ̂∗m′(ω) whose conjuguate is
the Fourier transform of −γψm′ ,ψH

m
. This proves (11), which

combined with (8) leads to

∀` ∈ Z,
Γnj,m,nH

j,m′
[`] = −

∫ ∞

−∞
Γn(x)γψ′m,ψH

m

(
− x

M j
+ `

)
dx.

After a variable change and using the fact that Γn is an even
function, we obtain (12).

Consider now the Fourier transform ω 7→ ψ̂0(ω)(ψ̂H
0 (ω))∗

of γψ0,ψH
0

. For all ω ≥ 0, there exists k ∈ N such that ω ∈
[2kπ, 2(k + 1)π) and, from (4), we get

ψ̂0(ω)(ψ̂H
0 (ω))∗ = (−1)keı(d+

1
2 )ω |ψ̂0(ω)|2

= eı(2d+1)ωψ̂0(−ω)(ψ̂H
0 (−ω))∗.

For symmetry reasons, the equality between the first and last
terms extends to all ω ∈ R. Coming back to the time domain,
we find

∀τ ∈ R, γψ0,ψH
0
(τ) = γψ0,ψH

0
(−τ − 2d− 1).

This shows the symmetry of γψ0,ψH
0

w.r.t. −d − 1/2. Eq. (8)
then yields, for all ` ∈ Z,

Γnj,0,nH
j,0

[`] =
∫ ∞

−∞
Γn(x)γψ0,ψH

0

(
− x

M j
+ `− 2d− 1

)
dx

=
∫ ∞

−∞
Γn(x)γψ0,ψH

0

( x

M j
+ `− 2d− 1

)
dx

= Γnj,0,nH
j,0

[−`+ 2d+ 1].

APPENDIX III
WHITE NOISE CASE

Recall that a white noise is not a process with finite variance,
but a generalized random process [58], [59]. As such, some
caution must be taken in the application of (6)-(8). More
precisely, if n is a white noise, its autocovariance can be
viewed as the limit as ε > 0 tends to 0 of

Γnε(τ) =
σ2

√
2πε

exp(− τ2

2ε2
), τ ∈ R.

3 As {ψH
m′ (t − k), k ∈ Z} is an orthonormal family of L2(R), we have

| bψH
m′ (ω)| ≤ 1 and bψH

m

` bψH
m′ )

∗ ∈ L2(R).
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Formula (8) can then be used, yielding for all (m,m′) ∈ N2
M

and (j, `) ∈ Z2,

Γnεj,m,nεHj,m′ [`] =

σ2

∫ ∞

−∞

1√
2π

exp(−x
2

2
) γψm,ψH

m′

( εx

M j
− `

)
dx.

Since ψm and ψH
m′ are in L2(R), γψm,ψH

m′
is a bounded contin-

uous function. By applying Lebesgue dominated convergence
theorem, we deduce that

Γnj,m,nH
j,m′

[`] = lim
ε→0

Γnεj,m,nεHj,m′ [`]

= σ2

∫ ∞

−∞

1√
2π

exp(−x
2

2
) lim
ε→0

γψm,ψH
m′

( εx

M j
− `

)
dx

= σ2γψm,ψH
m′

(−`)
∫ ∞

−∞

1√
2π

exp(−x
2

2
)dx

which leads to (15). Equations (14) are similarly obtained
by further noticing that, due to the orthonormality property,
γψm,ψm′ (−`) = γψH

m,ψ
H
m′

(−`) = δm−m′δ`.

APPENDIX IV
PROOF OF PROPOSITION 3

From (25) and (26) defining the unitary transform applied to
the detail noise coefficients (nj,m[k])k∈Z2 and (nH

j,m[k])k∈Z2 :

E{wj,m[k]wj,m′ [k′]} =
1
2

(
E{nj,m[k]nj,m′ [k′]}+ E{nj,m[k]nH

j,m′ [k′]}

+ E{nH
j,m[k]nj,m′ [k′]}+ E{nH

j,m[k]nH
j,m′ [k′]}

)
.

Using (24) and the fact that Γnj,m,nH
j,m′

(`) = ΓnH
j,m,nj,m′

(`),
one can easily deduce (27). Concerning (28), we proceed in
the same way, taking into account the relation:

E{wH
j,m[k]wH

j,m′ [k′]} =
1
2

(
E{nj,m[k]nj,m′ [k′]} − E{nj,m[k]nH

j,m′ [k′]}

− E{nH
j,m[k]nj,m′ [k′]}+ E{nH

j,m[k]nH
j,m′ [k′]}

)
.

Finally, noting that

E{wj,m[k]wH
j,m′ [k′]} =

1
2

(
E{nj,m[k]nj,m′ [k′]} − E{nj,m[k]nH

j,m′ [k′]}

+ E{nH
j,m[k]nj,m′ [k′]} − E{nH

j,m[k]nH
j,m′ [k′]}

)

and, invoking the same arguments, we see that wj,m[k] and
wH
j,m′ [k′] are uncorrelated random variables.

APPENDIX V
PROOF OF PROPOSITION 4

Since ψm ∈ L2(R), we have

∀τ ∈ R, γψm,ψm(τ) =
1
2π

∫ ∞

−∞
|ψ̂m(ω)|2eıωτ dω.

Furthermore, |ψ̂m|2 is 2Nm + 1 times continuously differen-
tiable and for all q ∈ {0, . . . , 2Nm + 1}, (|ψ̂m|2)(q) ∈ L1(R).
It can be deduced [60, p. 158–159] that

∀τ ∈ R,
(−ıτ)2Nm+1γψm,ψm(τ) =

1
2π

∫ ∞

−∞
(|ψ̂m|2)(2Nm+1)(ω) eıωτ dω

which leads to

∀τ ∈ R,
|τ |2Nm+1|γψm,ψm(τ)| ≤ 1

2π

∫ ∞

−∞

∣∣(|ψ̂m|2)(2Nm+1)(ω)
∣∣ dω.

(83)
Let us now consider the cross-correlation functions γψm,ψH

m

with m 6= 0. Similarly, we have

∀τ ∈ R,
γψm,ψH

m
(τ) =

1
2π

∫ ∞

−∞
α(ω)|ψ̂m(ω)|2eıωτ dω, (84)

where α(ω) = ı sign(ω). The function ω 7→ α(ω)|ψ̂m(ω)|2 is
2Nm + 1 times continuously differentiable on R∗, where its
derivative of order q ∈ {0, . . . , 2Nm + 1} is

(α|ψ̂m|2)(q) = α (|ψ̂m|2)(q). (85)

Due to the fact that |ψ̂m(ω)|2 = O(ω2Nm) as ω → 0, we
have for all q ∈ {0, . . . , 2Nm − 1}, (|ψ̂m|2)(q)(0) = 0. From
(85), we deduce that the function (α|ψ̂m|2)(q) admits limits on
the left side and on the right side of 0, which are both equal
to 0. This allows to conclude that α|ψ̂m|2 is 2Nm − 1 times
continuously differentiable on R, its 2Nm− 1 first derivatives
vanishing at 0. Besides, (α|ψ̂m|2)(2Nm−1) is continuously
differentiable on (−∞, 0] and on [0,∞) ((α|ψ̂m|2)(2Nm) may
be discontinuous at 0). Using the same arguments as for
γψm,ψm , this allows us to claim that, for all τ ∈ R,

(−ıτ)2Nmγψm,ψH
m

(τ)

=
1
2π

∫ ∞

−∞
α(ω)(|ψ̂m|2)(2Nm)(ω)eıωτ dω

= − 1
π

∫ ∞

0

(|ψ̂m|2)(2Nm)(ω) sin(ωτ) dω. (86)

We can note that limω→∞(|ψ̂m|2)(2Nm)(ω) ∈ R as it is
equal to (|ψ̂m|2)(2Nm)(0) +

∫∞
0

(|ψ̂m|2)(2Nm+1)(ν) dν. Since
(|ψ̂m|2)(2Nm) ∈ L1([0,∞)), the previous limit is necessarily
zero. Using this fact and integrating by parts in (86), we find
that, for all τ ∈ R,

τ

∫ ∞

0

(|ψ̂m|2)(2Nm)(ω) sin(ωτ) dω = (|ψ̂m|2)(2Nm)(0)

+
∫ ∞

0

(|ψ̂m|2)(2Nm+1)(ω) cos(ωτ) dω.

Combining this expression with (86), we deduce that

∀τ ∈ R,
|τ |2Nm+1|γψm,ψH

m
(τ)| ≤ 1

π

( ∫ ∞

0

|(|ψ̂m|2)(2Nm+1)(ω)| dω

+ |(|ψ̂m|2)(2Nm)(0)|
)
. (87)
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Let us now study the case when m = 0. Eq. (84) still holds,
but as shown by (4), α takes a more complicated form:

∀k ∈ Z, ∀ω ∈ [2kπ, 2(k + 1)π),

α(ω) =

{
(−1)keı(d+

1
2 )ω if k ≥ 0

(−1)k+1eı(d+
1
2 )ω otherwise.

So, the function α as well as its derivatives of any order now
exhibit discontinuities at 2kπ where k ∈ Z∗. However, from
(1) and the low-pass condition ψ̂0(0) = 1, we have, for all
m 6= 0,

Hm(ω) = O(ωNm), as ω → 0.

As a consequence of the para-unitary condition (2), we get

M−1∑
m=0

|Hm(ω)|2 = M

and
M−1∑
p=0

|H0(ω + p
2π
M

)|2 = M

which allows to deduce that

∀p ∈ N?M , H0(ω + p
2π
M

) = O(ωN0).

From (1), it can be concluded that

∀k ∈ Z∗, ψ̂0(ω + 2kπ) = O(ωN0), as ω → 0. (88)

The derivatives of order q ∈ {0, . . . , 2N0 + 1} of α|ψ̂0|2 over
R \ {2kπ, k ∈ Z∗} are given by

(α|ψ̂0|2)(q) =
q∑

`=0

(
q

`

)
(α)(`)(|ψ̂0|2)(q−`), (89)

where

∀k ∈ Z, ∀ω ∈ (2kπ, 2(k + 1)π),

α(`)(ω) =

{
(−1)kı`(d+ 1

2 )` eı(d+
1
2 )ω if k ≥ 0

(−1)k+1ı`(d+ 1
2 )` eı(d+

1
2 )ω otherwise.

We deduce that, for all q ∈ {0, . . . , 2N0 + 1}, (α|ψ̂0|2)(q) ∈
L1(R). Furthermore, combining (88) with (89) allows us to
show that, for all q ∈ {0, . . . , 2N0 − 1}, the derivative of
order q of α|ψ̂0|2 at 2kπ, k ∈ Z∗, is defined and equal
to 0. Consequently, α|ψ̂0|2 is 2N0 − 1 times continuously
differentiable on R while (α|ψ̂0|2)(2N0−1) is continuously
differentiable on ∪k∈Z(2kπ, 2(k+ 1)π). Similarly to the case
m 6= 0, this leads to

∀τ ∈ R,
(−ıτ)2N0γψ0,ψH

0
(τ) =

1
2π

∫ ∞

−∞
(α|ψ̂0|2)(2N0)(ω) eıωτ dω

=
1
2π

∞∑

k=−∞

∫ 2(k+1)π

2kπ

(α|ψ̂0|2)(2N0)(ω) eıωτ dω. (90)

By integration by parts, we deduce that, for all τ ∈ R,

(−ıτ)2N0+1γψ0,ψH
0
(τ) =

1
2π

(∫ ∞

−∞
(α|ψ̂0|2)(2N0+1)(ω) eıωτ dω + β

)
(91)

β =
∑

k∈Z∗

(
(α|ψ̂0|2)(2N0)

+ (2kπ)− (α|ψ̂0|2)(2N0)
− (2kπ)

)
eı2πkτ

= 4ı
∑

k>0

(|ψ̂0|2)(2N0)(2kπ) sin(2kπτ), (92)

where (α|ψ̂0|2)(2N0)
+ (ω0) (resp. (α|ψ̂0|2)(2N0)

− (ω0)) denotes
the right-side (resp. left-side) derivative of order 2N0 of α|ψ̂0|2
at ω0 ∈ R. We conclude that

∀τ ∈ R,
|τ |2N0+1|γψ0,ψH

0
(τ)| ≤ 1

2π

( ∫ ∞

−∞

∣∣(α|ψ̂0|2)(2N0+1)(ω)
∣∣ dω

+ 4
∑

k>0

|(|ψ̂0|2)(2N0)(2kπ)|
)
. (93)

Note that the series
∑
k>0 |(|ψ̂0|2)(2N0)(2kπ)| is conver-

gent. Indeed, ∀ν ∈ [2kπ, 2(k + 1)π], (|ψ̂0|2)(2N0)(ν) −
(|ψ̂0|2)(2N0)(2kπ) =

∫ ν
2kπ

(|ψ̂0|2)(2N0+1)(ω)dω. Conse-
quently,

|(|ψ̂0|2)(2N0)(2kπ)|
≤ |(|ψ̂0|2)(2N0)(ν)|+

∫ ν

2kπ

|(|ψ̂0|2)(2N0+1)(ω)|dω

≤ |(|ψ̂0|2)(2N0)(ν)|+
∫ 2(k+1)π

2kπ

|(|ψ̂0|2)(2N0+1)(ω)|dω.

Integrating both sides of the inequality, we obtain

2π |(|ψ̂0|2)(2N0)(2kπ)| ≤
∫ 2(k+1)π

2kπ

|(|ψ̂0|2)(2N0)(ν)|dν

+ 2π
∫ 2(k+1)π

2kπ

|(|ψ̂0|2)(2N0+1)(ω)|dω

which leads to

∑

k>0

|(|ψ̂0|2)(2N0)(2kπ)| ≤ 1
2π

∫ +∞

−∞
|(|ψ̂0|2)(2N0)(ν)|dν

+
∫ +∞

−∞
|(|ψ̂0|2)(2N0+1)(ω)|dω

In summary, we have proved that (32) and (33) hold, the
constant C being chosen equal to the maximum value of the
left-hand side terms in the inequalities (83), (87) and (93).

APPENDIX VI
PROOF OF PROPOSITION 5

Let m ∈ NM . Since ψm is a unit norm function of L2(R),
the function γψm,ψH

m
is upper bounded by 1. As γψm,ψH

m

further satisfies (33), it can be deduced that

∀τ ∈ R, |γψm,ψH
m

(τ)| ≤ 1 + C

1 + |τ |2Nm+1
. (94)

The same upper bound holds for γψm,ψm .
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For a white noise, the property then appears as a straight-
forward consequence of the latter inequality and Eqs. (14) and
(15).

Let us next turn our attention to processes with exponen-
tially decaying covariance sequences. From (8), (34) and (94),
we deduce that, for all ` ∈ Z,

|Γnj,m,nH
j,m

[`]| ≤ A(1+C)
∫ ∞

−∞

e−α|x|

1 + |M−jx− `|2Nm+1
dx.

(95)

As the left-hand side of (95) corresponds to an even function
of `, without loss of generality, it can be assumed that ` ≥ 0.
We can decompose the above integral as

∫ ∞

−∞

e−α|x|

1 + |M−jx− `|2Nm+1
dx

=
∫ ∞

0

e−αx

1 + (M−jx+ `)2Nm+1
dx

+
∫ ∞

0

e−αx

1 + |M−jx− `|2Nm+1
dx .

The first integral in the right-hand side can be upper bounded
as follows

∫ ∞

0

e−αx

1 + (M−jx+ `)2Nm+1
dx

≤ (1 + `2Nm+1)−1

∫ ∞

0

e−αx dx

= α−1(1 + `2Nm+1)−1.

Let ε ∈ (0, 1) be given. The second integral can be decom-
posed as

∫ ∞

0

e−αx

1 + |M−jx− `|2Nm+1
dx

=
∫ εMj`

0

e−αx

1 + (`−M−jx)2Nm+1
dx

+
∫ ∞

εMj`

e−αx

1 + |M−jx− `|2Nm+1
dx.

Furthermore, we have
∫ εMj`

0

e−αx

1 + (`−M−jx)2Nm+1
dx

≤ (1 + (1− ε)2Nm+1`2Nm+1)−1

∫ εMj`

0

e−αx dx

≤ α−1(1− ε)−2Nm−1(1 + `2Nm+1)−1 (96)∫ ∞

εMj`

e−αx

1 + |M−jx− `|2Nm+1
dx

≤
∫ ∞

εMj`

e−αx dx = α−1e−αεM
j`.

From the above inequalities, we obtain

∀` ∈ N∗,
|Γnj,m,nH

j,m
[`]| ≤ A(1 + C)α−1

(
(1 + (1− ε)−2Nm−1)

× (1 + `2Nm+1)−1 + e−αεM
j`

)
.

As lim`→∞(1 + `2Nm+1)e−αεM
j` = 0, it readily follows that

there exists C̃ ∈ R+ such that (36) holds.
The right-hand side of (95) being also an upper bound for

|Γnj,m,nj,m [`]|, ` 6= 0, (35) is proved at the same time.

APPENDIX VII
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Let us prove (43), the proof of (42) being quite similar.
We first note that ψ̂m(ψ̂H

m′)
∗ and therefore γψm,ψH

m′
belong to

L2(R) (see footnote 3). Applying Parseval’s equality to (8),
we obtain for all ` ∈ Z,

Γnj,m,nH
j,m′

[`]

=
1
2π

∫ ∞

−∞
Γ̂n(ω)M jψ̂∗m(M jω)ψ̂H

m′(M
jω)eıM

j`ωdω

=
1
2π

∫ ∞

−∞
Γ̂n

( ω

M j

)
ψ̂∗m(ω)ψ̂H

m′(ω)eı`ωdω.

As Γn ∈ L1(R), the spectrum density Γ̂n is a bounded contin-
uous function. According to Lebesgue dominated convergence
theorem,

lim
j→∞

Γnj,m,nH
j,m′

[`]

=
1
2π

∫ ∞

−∞
lim
j→∞

Γ̂n
( ω

M j

)
ψ̂∗m(ω)ψ̂H

m′(ω)eı`ωdω

=
Γ̂n(0)

2π

∫ ∞

−∞
ψ̂∗m(ω)ψ̂H

m′(ω)eı`ωdω = Γ̂n(0)γψm,ψH
m′

(−`).

APPENDIX VIII
CROSS-CORRELATIONS FOR MEYER WAVELETS

Substituting (47) in (20), we obtain, for all τ ∈ R,

γψ0,ψH
0
(τ) =

1
π

( ∫ π(1−ε)

0

cos
(
ω(d+

1
2

+ τ)
)
dω

+
∫ π(1+ε)

π(1−ε)
W 2

( ω

2πε
− 1− ε

2ε
)
cos

(
ω(d+

1
2

+ τ)
)
dω

)

=(1− ε)sinc
(
π(1− ε)(d+

1
2

+ τ)
)

+ε
∫ 1

−1

W 2
(1 + θ

2

)
cos

(
π(εθ + 1)

(
d+

1
2

+ τ
))
dθ

(97)

where the sinc function is defined by (67). Using (49), we get
∫ 0

−1

W 2
(1 + θ

2

)
cos

(
π(εθ + 1)

(
d+

1
2

+ τ
))
dθ

=
∫ 1

0

cos
(
π(εθ − 1)

(
d+

1
2

+ τ
))
dθ

−
∫ 1

0

W 2
(1 + θ

2

)
cos

(
π(εθ − 1)

(
d+

1
2

+ τ
))
dθ. (98)

This allows us to rewrite (97) as

γψ0,ψH
0
(τ) = sinc

(
π(d+

1
2

+ τ)
)
− sin

(
π
(
d+

1
2

+ τ
))

× Iε

(
d+

1
2

+ τ
)
. (99)
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After simplification, (53) follows.
According to (19) and (51), we have for all m ∈

{1, . . . ,M − 2} and τ ∈ R∗,

γψm,ψH
m

(τ)

=− 1
π

(∫ π(m+ε)

π(m−ε)
W 2

(m+ ε

2ε
− ω

2πε

)
sin(ωτ)dω

+
∫ π(m+1−ε)

π(m+ε)

sin(ωτ)dω

+
∫ π(m+1+ε)

π(m+1−ε)
W 2

( ω

2πε
− m+ 1− ε

2ε

)
sin(ωτ)dω

)

=
cos

(
π(m+ 1− ε)τ

)− cos
(
π(m+ ε)τ

)

πτ

+ ε

∫ 1

−1

W 2
(1 + θ

2

)
sin

(
π(εθ −m)τ

)
dθ

− ε

∫ 1

−1

W 2
(1 + θ

2

)
sin

(
π(εθ +m+ 1)τ

)
dθ.

By proceeding similarly to (97)-(98), we find

γψm,ψH
m

(τ) =
(
cos(π(m+ 1)τ)− cos(πmτ)

)( 1
πτ

− Iε(τ)
)
.

When τ is an integer, this expression further simplifies in (55).
Finally, when m = M − 1, we have, for all τ ∈ R∗,

γψM−1,ψH
M−1

(τ)

=− 1
π

( ∫ π(M−1+ε)

π(M−1−ε)
W 2

(M − 1 + ε

2ε
− ω

2πε

)
sin(ωτ)dω

+
∫ πM(1−ε)

π(M−1+ε)

sin(ωτ)dω

+
∫ πM(1+ε)

πM(1−ε)
W 2

( ω

2πεM
− 1− ε

2ε

)
sin(ωτ)dω

)

=
cos

(
πM(1− ε)τ

)− cos
(
π(M − 1 + ε)τ

)

πτ

+ ε

∫ 1

−1

W 2
(1 + θ

2

)
sin

(
π(εθ −M + 1)τ

)
dθ

− εM

∫ 1

−1

W 2
(1 + θ

2

)
sin

(
πM(εθ + 1)τ

)
dθ

=
cos

(
πMτ

)− cos
(
π(M − 1)τ

)

πτ
+ cos

(
π(M − 1)τ

)
Iε(τ)

− cos(πMτ)IMε(τ).

This yields (56).

APPENDIX IX
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Let m ∈ N∗. Given (19), (58) leads to

−πγψ2m,ψH
2m

(τ) =
∫ ∞

0

|ψ̂2m(ω)|2 sin(ωτ) dω

=
∫ ∞

0

|A0(ω)|2|ψ̂m(ω)|2 sin(2ωτ) dω

(100)

Furthermore, we have

|A0(ω)|2 =
∑

k

γa0 [k] exp(−ıkω)

= γa0 [0] + 2
∞∑

k=1

γa0 [k] cos(kω).

Combining this equation with (100) and using classical
trigonometric equalities, we obtain

−πγψ2m,ψH
2m

(τ) = γa0 [0]
∫ ∞

0

|ψ̂m(ω)|2 sin(2ωτ)dω

+
∞∑

k=1

γa0 [k]
( ∫ ∞

0

|ψ̂m(ω)|2 sin
(
(2τ − k)ω

)
dω

+
∫ ∞

0

|ψ̂m(ω)|2 sin
(
(2τ + k)ω

)
dω

)

which, again invoking Relation (19), yields (60). Eq. (61) can
be proved similarly starting from (59).

APPENDIX X
CROSS-CORRELATIONS FOR HAAR WAVELET

Knowing the expression of the Fourier transform of the Haar
scaling function in (65) and using the cross-correlation formula
(20), we obtain:

∀τ ∈ R, γψ0,ψH
0
(τ)

=
1
π

∞∑

k=0

(−1)k
∫ 2(k+1)π

2kπ

sinc2(
ω

2
) cos

(
ω (

1
2

+ τ + d)
)
dω

=
2
π

∞∑

k=0

(−1)k
∫ (k+1)π

kπ

sin2 (ν)
ν2

cos
(
ν (1 + 2τ + 2d)

)
dν.

(101)

By integration by parts, we find: for all (α, β, η) ∈ R3,
∫ β

α

sin2(ω)
ω2

cos(ηω)dω

=
sin2(α) cos(ηα)

α
− sin2(β) cos(ηβ)

β

+
1
4
(2 + η)

∫ β

α

sin
(
(2 + η)ω

)

ω
dω − η

2

∫ β

α

sin(ηω)
ω

dω

+
1
4
(2− η)

∫ β

α

sin
(
(2− η)ω

)

ω
dω

=
sin2(α) cos(ηα)

α
− sin2(β) cos(ηβ)

β

+
1
4
(η + 2)

∫ β(η+2)

α(η+2)

sin(ν)
ν

dν − η

2

∫ βη

αη

sin(ν)
ν

dν

+
1
4
(η − 2)

∫ β(η−2)

α(η−2)

sin(ν)
ν

dν.

Combining this result with (101) leads to (68).
On the other hand, according to (66) and (19), we have

∀τ ∈ R,
γψ1,ψH

1
(τ) = − 1

π

∫ ∞

0

sinc2(
ω

4
) sin2 (

ω

4
) sin(ωτ) dω .
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In [61, p.459], an expression of
∫∞
0

sin2 (αx) sin2 (βx) sin (2ηx)dx
x2

with (α, β, η) ∈ (R∗+)3 is given. Using this relation yields (69)
when τ > 0. The general expression for τ ∈ R follows from
the oddness of γψ1,ψH

1
.

APPENDIX XI
CROSS-CORRELATION FOR THE FRANKLIN WAVELET

We have, for all τ ∈ R,

γχ,χH(τ) = − 1
π

∫ ∞

0

|χ̂(ω)|2 sin(ωτ)dω

= − 2
π

∫ ∞

0

sin8(ω)
ω4

sin(2ωτ)dω.

After two successive integrations by parts, we obtain

γχ,χH(τ) =− 4
3π

(
4

∫ ∞

0

sin7(ω) cos(ω) sin(2ωτ)
ω3

dω

+τ
∫ ∞

0

sin8(ω) cos(2ωτ)
ω3

dω
)

=− 2
3π

(
28

∫ ∞

0

sin6(ω) cos2(ω) sin(2ωτ)
ω2

dω

−2(2 + τ2)
∫ ∞

0

sin8(ω) sin(2ωτ)
ω2

dω

+ 16τ
∫ ∞

0

sin7(ω) cos(ω) cos(2ωτ)
ω2

dω
)
. (102)

Standard trigonometric manipulations allow us to write:

sin6(ω) cos2(ω) sin(2ωτ) =
1
8

sin4(ω)
(

sin(2τω)

−1
2

sin
(
2(τ + 2)ω

)− 1
2

sin
(
2(τ − 2)ω

))

sin8(ω) sin(2ωτ) =
1
16

sin4(ω)
(

sin
(
2(τ + 2)ω

)

+ sin
(
2(τ − 2)ω

)− sin
(
2(τ + 1)ω

)

−4 sin
(
2(τ − 1)ω

)
+ 6 sin(2τω)

)

sin7(ω) cos(ω) cos(2ωτ) =
1
16

sin4(ω)
(

sin
(
2(τ − 2)ω

)

− sin
(
2(τ + 2)ω

)
+ 2 sin

(
2(τ + 1)ω

)

−2 sin
(
2(τ − 1)ω

))
.

Inserting these expressions in (102) yields

3πγχ,χH(τ) = Q0(τ)J(τ)−Q1(τ)J(τ+1)−Q1(−τ)J(τ−1)
+Q2(τ)J(τ + 2) +Q2(−τ)J(τ − 2), (103)

where (see [61, p. 459])

∀x ∈ R, J(x) = 2
∫ ∞

0

sin4(ω)
ω2

sin(2ωx)dω

= −3
2
x ln |x|+ (1 + x) ln |1 + x|

− (1− x) ln |1− x| − 2 + x

4
ln |2 + x|

+
2− x

4
ln |2− x|

and

Q0(τ) =
3
4
τ2−2, Q1(τ) =

τ2

2
+2τ+1, Q2(τ) =

1
8
(τ+4)2.

Simple algebra allows us to prove that (103) is equivalent to
(77).

On the other hand, |Ã1(ω)|2 can be viewed as the frequency
response of a non causal stable digital filter whose transfer
function is

P eA1
(z) =

6(2− z+z−1

2 )
(
1 + 2

(
z+z−1

2

)2)(2 + z+z−1

2 )

=
2
√

3
9

( 4(2 +
√

3)
z + 2 +

√
3
− 4(2−√3)
z + 2−√3

+
7(2 +

√
3)− 4(1 +

√
3)z

z2 + 2 +
√

3
− 7(2−√3)− 4(1−√3)z

z2 + 2−√3

)
.

We next expand P eA1
(z) in Laurent series on the holomorphy

domain containing the unit circle, that is

DP eA1
=

{
z ∈ C |

√
3− 1√

2
< |z| <

√
3 + 1√

2

}
.

We thus deduce from the partial fraction decomposition of
P eA1

(z) that

P eA1
(z) =

2
√

3
9

(
4

∞∑

k=−∞
(−1)k(2−

√
3)|k|z−k

+ 7
∞∑

k=−∞
(−1)k(2−

√
3)|k|z−2k

+ 4(1−
√

3)
∞∑

k=0

(−1)k(2−
√

3)k
(
z2k+1 + z−2k−1

))
.

By identifiying the latter expression with
∑∞
k=−∞ γã1 [k]z

−k,
(78) is obtained.
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m 1 2 3 4 5 6 7 8 9 10 11 12
πγψm,ψH

m
(τ) 1

23τ3
1

25τ3 − 3
27τ5

1
27τ3 − 3

29τ5 − 3
211τ5

45
214τ7

1
29τ3 − 3

211τ5 − 3
213τ5

45
216τ7 − 3

215τ5

TABLE I
ASYMPTOTIC FORM OF γψm,ψH

m
(τ) AS |τ | → ∞ FOR WALSH-HADAMARD WAVELETS.

γψ0,ψ
H
0

γψ1,ψ
H
1

Wavelets \ ` 0 1 2 3 1 2 3
Shannon 0.63662 -0.21221 0.12732 −9.0946× 10−2 0.63662 0 0.21221

Meyer ε = 1/3 0.63216 -0.19916 0.10668 −6.4166× 10−2 0.59378 −4.1412× 10−2 0.11930
Splines order 3 0.62696 -0.18538 8.8582×10−2 -4.6179×10−2 0.55078 -5.8322×10−2 8.2875×10−2

Splines order 1 0.60142 -0.12891 3.4815× 10−2 −9.2967× 10−3 0.38844 −5.7528× 10−2 1.8659× 10−2

Haar 0.51288 −1.1338× 10−2 −1.0855× 10−3 −2.6379× 10−4 0.10816 5.6994× 10−3 1.5610× 10−3

TABLE II
THEORETICAL CROSS-CORRELATION VALUES IN THE DYADIC CASE (d = 0).

γ
ψ0,ψ

H
0

γ
ψ1,ψ

H
1

Wavelets \ ` 0 1 2 3 1 2 3

Meyer 3-band ε = 1/4 0.63411 -0.20478 0.11530 -7.4822×10−2 0.62662 0 0.18391
Meyer 4-band ε = 1/5 0.63501 -0.20742 0.11950 -8.0293×10−2 0.63020 0 0.19367
Meyer 5-band ε = 1/6 0.63550 -0.20887 0.12184 -8.3419×10−2 0.63216 0 0.19917
Meyer 6-band ε = 1/7 0.63580 -0.20975 0.12327 -8.5357×10−2 0.63334 0 0.20255
Meyer 7-band ε = 1/8 0.63599 -0.21033 0.12421 -8.6637×10−2 0.63411 0 0.20478
Meyer 8-band ε = 1/9 0.63612 -0.21072 0.12486 -8.7525×10−2 0.63463 0 0.20632

TABLE III
THEORETICAL VALUES FOR THE FIRST TWO CROSS-CORRELATION SEQUENCES IN THE M -BAND MEYER CASE (d = 0).

γψM−1,ψ
H
M−1

Wavelets \ ` 1 2 3
Meyer 3-band ε = 1/4 -0.58918 -6.0378×10−2 -0.11965
Meyer 4-band ε = 1/5 0.58555 -7.0840×10−2 0.11961
Meyer 5-band ε = 1/6 -0.58278 -7.7359×10−2 -0.11940
Meyer 6-band ε = 1/7 0.58063 -8.1773×10−2 0.11914
Meyer 7-band ε = 1/8 -0.57893 -8.4944×10−2 -0.11888
Meyer 8-band ε = 1/9 0.57755 -8.7324×10−2 0.11863

TABLE IV
THEORETICAL VALUES FOR THE LAST CROSS-CORRELATION SEQUENCE IN THE M -BAND MEYER CASE (d = 0).

` 1 2 3
γψ2,ψ

H
2

6.0560× 10−2 1.5848× 10−3 4.0782× 10−4

γψ3,ψ
H
3

−4.9162× 10−2 −3.0109× 10−4 −3.4205× 10−5

γψ4,ψ
H
4

3.2069×10−2 4.0952×10−4 1.0319×10−4

γψ5,ψ
H
5

-2.8899×10−2 -8.0753×10−5 -8.7950×10−6

γψ6,ψ
H
6

-2.4899×10−2 -2.6077×10−5 -2.4511×10−6

γψ7,ψ
H
7

2.4297×10−2 1.0608×10−5 4.8118×10−7

TABLE V
THEORETICAL CROSS-CORRELATION VALUES IN THE WALSH-HADAMARD CASE.
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γ
ψ0,ψ

H
0

γ
ψ1,ψ

H
1

Wavelets j \ ` 0 1 2 3 0 1 2 3

1 0.63538 -0.21134 0.12586 -9.1515×10−2 9.97×10−6 0.63680 -1.7137×10−4 0.21165
Shannon 2 0.63558 -0.21347 0.12970 -8.7908×10−2 2.6426×10−6 0.63404 7.0561×10−4 0.21210

3 0.63467 -0.20732 0.13168 -9.0116×10−2 -1.0078×10−4 0.63846 -1.2410×10−3 0.20975

1 0.63091 -0.19828 0.10517 -6.4650×10−2 1.8257×10−5 0.61092 -1.2433×10−2 0.15307
Meyer 2 0.63112 -0.20043 0.10903 -6.1060×10−2 -7.5431×10−6 0.59115 -4.0881×10−2 0.11888
ε = 1/3 3 0.62971 -0.19391 0.11084 -6.3378×10−2 4.0868×10−4 0.59522 -4.2624×10−2 0.11651

1 0.62587 -0.18459 8.7088×10−2 -4.6635×10−2 -1.4511×10−4 0.58458 -1.2651×10−2 0.12557
Splines 2 0.62606 -0.18679 9.1068×10−2 -4.3124×10−2 1.9483×10−4 0,54841 -5.8083×10−2 8.2386×10−2

order 3 3 0.62398 -0.17984 9.2793×10−2 -4.5682×10−2 1.2400×10−3 0.55204 -5.9368×10−2 8.0105×10−2

1 0.60016 -0.12749 3.2975×10−2 -9.7419×10−3 -4.5287×10−4 0.47691 1.6224×10−2 6.9681×10−2

Splines 2 0.60059 -0.13045 3.7613×10−2 -6.5441×10−3 6.6358×10−4 0.38507 -5.7502×10−2 1.8042×10−2

order 1 3 0.59771 -0.12303 3.9388×10−2 -9.3208×10−3 2.2725 ×10−3 0.38958 -5.8143×10−2 1.6160×10−2

1 0.50297 -3.3557×10−3 -1.1706×10−3 2.7788×10−4 3.8368×10−4 0.22455 7.2451×10−2 4.6418×10−2

Haar 2 0.50966 -1.0083×10−2 7,2357×10−6 1.5087×10−3 -1.2135×10−3 9.9745×10−2 5.1371×10−3 1.0847×10−3

3 0.51023 -8.3267×10−3 2.7936×10−3 7.0343×10−5 1.2329×10−3 0.10703 6.7651×10−3 2.2422×10−3

1 0.59822 -0.12059 2.3566×10−2 -3.3325×10−3 -5.0189×10−4 0.46392 2.1155×10−2 6.1137×10−2

Symlets 8 2 0.59899 -0.12432 2.8865×10−2 -2.8960×10−4 6.7795×10−4 0.36368 -5.7692×10−2 9.7533×10−3

3 0.59654 -0.11703 3.0357×10−2 -2.8071×10−3 1.8568×10−3 0.37012 -5.8376×10−2 6.9416×10−3

TABLE VI
CROSS-CORRELATION ESTIMATES IN THE DYADIC CASE (d = 0).

γ
ψ0,ψ

H
0

γ
ψ1,ψ

H
1

Wavelets j \ ` 0 1 2 3 0 1 2 3

Meyer 1 0.63337 -0.20549 0.11431 -7.1877×10−2 -6.8977×10−4 0.62533 -1.3630×10−4 0.18236
3-band 2 0.63284 -0.19932 0.11938 -7.5331×10−2 -1.7781×10−4 0.63013 1.2830×10−3 0.18409
ε = 1/4 3 0.63886 -0.19987 0.11763 -6.6380×10−2 -3.9622×10−4 0.61503 8.4042×10−4 0.17519

Meyer 1 0.63383 -0.20856 0.12176 -7.7150×10−2 2.1961×10−5 0.62739 7.6636×10−4 0.19339
4-band 2 0.63648 -0.19903 0.11757 -7.7337×10−2 4.8821×10−4 0.62676 3.8876×10−3 0.18683
ε = 1/5 3 0.64642 -0.19651 0.12202 -6.9984×10−2 2.3054×10−3 0.63384 -1.6254×10−3 0.19233

Meyer 1 0.63338 -0.20818 0.12534 -8.0594×10−2 8.6373×10−4 0.62902 8.3871×10−4 0.1981
5-band 2 0.64020 -0.20288 0.12135 -7.3844×10−2 5.3607×10−4 0.62230 4.6651×10−4 0.19093
ε = 1/6 3 0.6566 -0.19609 0.12891 -7.6061×10−2 -2.8654×10−3 0.62281 -4.7324×10−3 0.19364

Meyer 1 0.63403 -0.20818 0.12711 -8.2124×10−2 4.5293×10−4 0.63229 -1.9919×10−3 0.20228
6-band 2 0.64471 -0.20716 0.13141 -8.4914×10−2 3.7150×10−4 0.62450 6.5942×10−4 0.20313
ε = 1/7 3 0.66409 -0.19532 0.14401 -9.3486×10−2 2.0490×10−3 0.63619 1.5614×10−2 0.17595

Meyer 1 0.63323 -0.20781 0.12663 -8.3335×10−2 1.5731×10−3 0.63528 -8.6821×10−4 0.20509
7-band 2 0.64286 -0.20057 0.12881 -8.1995×10−2 -1.6505×10−4 0.62782 -7.9119×10−3 0.20007
ε = 1/8 3 0.68445 -0.1845 0.12065 -9.0295×10−2 -5.9955×10−3 0.62572 -5.3033×10−2 0.17409

Meyer 1 0.63426 -0.20592 0.12928 -8.6766×10−2 -2.1756×10−4 0,63658 -1.3977×10−3 0.20385
8-band 2 0.64743 -0.19970 0.12725 -7.7096×10−2 1.4856×10−3 0.63725 -2.4313×10−3 0.20396
ε = 1/9 3 0.69342 -0.20505 0.11257 -6.0075×10−2 -3.6363×10−3 0.61590 1.3830×10−2 0.22112

1 0.59148 -0.11001 1.9635×10−2 2.4318×10−3 -6.6559×10−6 0.36856 -6.0858×10−2 8.4608×10−5

AC 2 0.59855 -0.10412 1.6012×10−2 1.8921×10−4 -7.1462×10−3 0.37379 -5.8026×10−2 -4.4309×10−3

4-band 3 0.60057 -9.5335×10−2 2.0094×10−2 7.6430×10−3 2.5313×10−3 0.37514 -5.6207×10−2 6.8164×10−3

γ
ψ2,ψ

H
2

γ
ψ3,ψ

H
3

1 -1.9012×10−4 -0.34054 5.5692×10−2 4.6899×10−5 -5.5011×10−5 0.36755 4.1274×10−2 5.6594×10−2

AC 2 1.0139×10−3 -0.32275 5.4137×10−2 -6.7903×10−3 3.6460×10−3 0.18371 -4.1645×10−2 6.8637×10−3

4-band 3 6.8587×10−3 -0.32199 4.5083×10−2 -9.7023×10−3 8.3037×10−3 0.19070 -3.7675×10−2 -4.5919×10−4

1 2.4712×10−4 0.20479 6.9476×10−2 4.4200×10−2 -1.8669×10−4 -6.1810×10−2 -1.2677×10−3 2.4199×10−5

Hadamard 2 3.5680×10−3 5.9530×10−2 -5.3171×10−3 4.3827×10−3 6.2437×10−4 -5.0635×10−2 4.6773×10−3 -8.7358×10−3

3 1.1391×10−2 5.9541×10−2 8.3376×10−4 -1.4604×10−3 1.9009×10−3 -5.5798×10−2 -5.7086×10−3 -1.1253×10−2

TABLE VII
CROSS-CORRELATION ESTIMATES IN THE M -BAND CASE (d = 0).
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γ
ψM−1,ψ

H
M−1

Wavelet j \ ` 0 1 2 3

1 5.2467×10−6 0.63606 2.0952×10−3 0.21261
Shannon 2 5.9145×10−6 0.63592 -4.1893×10−3 0.21083
4-band 3 -1.2667×10−4 0.62746 -5.7616×10−3 0.2020

Meyer 1 4.1334×10−4 -0.60986 -2.5395×10−2 -0.16095
3-band 2 3.9059×10−4 -0.58694 -6.1089×10−2 -0.11754
ε = 1/4 3 3.5372×10−3 -0.5879 -5.1057×10−2 -0.11499

Meyer 1 3.9730×10−4 0.60845 -2.9936×10−2 0.16111
4-band 2 -1.3788×10−3 0.58530 -7.5797×10−2 0.11985
ε = 1/5 3 1.0644×10−3 0.57418 -7.6790×10−2 0.10690

Meyer 1 -7.2077×10−6 -0.60862 -3.4588×10−2 -0.16162
5-band 2 -3.2301×10−3 -0.58482 -8.6826×10−2 -0.11844
ε = 1/6 3 -8.8877×10−3 -0.56937 -9.3811×10−2 -0.11512

Meyer 1 8.2632×10−4 0.60806 -3.7209×10−2 0.16215
6-band 2 -1.2448×10−3 0.58023 -8.3257×10−2 0.11022
ε = 1/7 3 5.5425×10−3 0.58196 -8.4671×10−2 0.12368

Meyer 1 2.7863×10−4 -0.60863 -3.9804×10−2 -0.16443
7-band 2 -5.9703×10−3 -0.57749 -9.9056×10−2 -0.11228
ε = 1/8 3 1.8490×10−3 -0.58901 -6.4289×10−2 -0.13516

Meyer 1 -2.5084×10−4 0.60811 -4.1611×10−2 0.16612
8-band 2 1.0345×10−3 0.57216 -9.4172×10−2 0.12014
ε = 1/9 3 -1.0777×10−2 0.56259 -0.12183 0.10776

TABLE VIII
ESTIMATION OF THE LAST CROSS-CORRELATION SEQUENCE FOR M -BAND SHANNON AND MEYER WAVELETS.

Wavelets \ ` -3 -2 -1 0 1 2 3
Meyer 2-band γψ0,ψ

H
1

(`) 9.1502×10−2 -0.10848 0.11800 -0.11800 0.10848 -9.1502×10−2 7.0491×10−2

ε = 1/3 γψ1,ψ
H
0

(`) -8.1258×10−2 0.10073 -0.11434 0.11924 -0.11434 0.10073 -8.1258×10−2

Splines γψ0,ψ
H
1

(`) -8.2660×10−2 0.13666 -0.18237 0.18237 -0.13666 8.2660×10−2 -4.5433×10−2

order 3 γψ1,ψ
H
0

(`) 6.1604×10−2 -0.10838 0.16319 -0.18941 0.16319 -0.10838 6.1604×10−2

Haar γψ0,ψ
H
1

(`) -9.2323×10−3 -2.2034×10−2 -0.16656 0.44127 -0.16656 -2.2034×10−2 -9.2323×10−3

γψ1,ψ
H
0

(`) -3.1567×10−3 -1.9621×10−2 0.35401 -0.35401 1.9621×10−2 3.1567×10−3 1.0758×10−3

Meyer γψ0,ψ
H
1

(`) -8.4807×10−2 8.8904×10−2 -8.8904×10−2 8.4807×10−2 -7.7120×10−2 6.6763×10−2 -5.4904×10−2

3-band γψ1,ψ
H
0

(`) 6.0944×10−2 -7.2206×10−2 8.1363×10−2 -8.7347×10−2 8.9428×10−2 -8.7347×10−2 8.1363×10−2

ε = 1/4 γψ1,ψ
H
2

(`) -6.3891×10−2 -7.4738×10−2 -8.3192×10−2 -8.8252×10−2 -8.9297×10−2 -8.6196×10−2 -7.9333×10−2

Meyer γψ0,ψ
H
1

(`) 6.5090×10−2 -6.9156×10−2 7.1274×10−2 -7.1274×10−2 6.9156×10−2 -6.5090×10−2 5.9394×10−2

4-band γψ1,ψ
H
0

(`) -6.2421×10−2 6.7350×10−2 -7.0473×10−2 7.1543×10−2 -7.0473×10−2 6.7350×10−2 -6.2421×10−2

ε = 1/5 γψ1,ψ
H
2

(`) 6.0949×10−2 6.6274×10−2 6.9878×10−2 7.1475×10−2 7.0939×10−2 6.8312×10−2 6.3804×10−2

γψ2,ψ
H
3

(`) -6.5090×10−2 6.9156×10−2 -7.1274×10−2 7.1274×10−2 -6.9156×10−2 6.5090×10−2 -5.9394×10−2

TABLE IX
INTER-BAND CROSS-CORRELATION VALUES FOR SOME WAVELET FAMILIES. WE RECALL THAT PROPERTY (12) HOLDS AND THAT, FOR M -BAND MEYER

WAVELETS γψm,ψH
m′

IS ZERO WHEN |m−m′| > 1.


