IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005 1

Image Analysis Using a Dual-Tre&/-Band
Wavelet Transform

Caroline ChauxStudent MemberLaurent Duval Memberand
Jean-Christophe Pesqu&gnior Member, IEEE

Abstract— We propose a 2D generalization to the\/-band case dependencies, at the expense of an increased computational
of the dual-tree decomposition structure (initially proposed by cost, which often becomes intractable in higher dimensions
N. Kingsbury and further investigated by I. Selesnick) based Less computationally-expensive approaches have been- deve

on a Hilbert pair of wavelets. We particularly address () the d lex filt f I si | fer to [6] f
construction of the dual basis and i) the resulting directional ©P€d on complex filters for real signals (we refer to [6] for an

analysis. We also revisit the necessary pre-processing stage inPVerview and design examples), or by employing other wavele
the M-band case. While several reconstructions are possible frames [7]. For instance, it is possible to resort to the atec

because of the redundancy of the representation, we proposenation of several wavelet bases. One of the most promising
a new optimal signal reconstruction technique, which minimizes decomposition is thedual-tree discrete wavelet transform,

potential estimation errors. The effectiveness of the proposeM - d bv N. Ki b 8l two classical let t
band decomposition is demonstrated via denoising comparisons proposed by N. Kingsbury [8]: two classical wavelet trees

on several image types (natural, texture, seismics), with various are developed in parallel, with filters forming (approxiejat
M-band wavelets and thresholding strategies. Significant im- Hilbert pairs. Advantages of Hilbert pairs had been earlier
provements in terms of both overall noise reduction and direction recognized by other authors [9]. In the complex case, the
preservation are observed. resulting analysis yields a redundancy of oril§ for d-
Index Terms— Wavelets, M-band filter banks, Hilbert trans-  dimensional signals, with a much lower shift sensitivitydan

form, Dual-tree, Image denoising, Direction selection. better directionality in 2D than the DWT. The design of
dual-tree filters is addressed in [10] through an approxémat
. INTRODUCTION Hilbert pair formulation for the “dual” wavelets. |. Selésk

The classical discrete wavelet transform (DWT) providedso proposed the double-density DWT and combined both
a means of implementing a multiscale analysis, based Hame approaches [11]. Thehaseletextension of the dual-
a critically sampled filter bank with perfect reconstruatio tree¢ DWT has been recently introduced by R. Gopinath in
It has been shown to be very effective both theoreticall2]- More recently, several authors have also proposed a
and practically [3] in the processing of certain classes 8fojection scheme with an explicit control of the redundanc
signals, for instance piecewise smooth signals, havingite finor With specific filter bank structures [13], [14]. Finallyther
number of discontinuities. But, while decimated transfernvorks on the blending of analytic signals and wavelets must
yield good compression performance, other data processhfymentioned [15], [16], in the context of denoising or highe
applications (analysis, denoising, detection) often irequore dimension signal processing. Recent developments based on
sophisticated schemes than DWT. “geometrical” wavelets are not mentioned here, in spite of
One first drawback usually limiting the practical perfortheir relevance.
mance of DWT algorithms is their shift-variance with respect A third drawback concerns design limitations in two-band
to the value of the transformed coefficients at a given scafecompositions: orthogonality, realness, symmetry, @mtp
It often results in shift-variant edge artifacts at the nityi ness of the support and other properties (regularity, témgs
of jumps, which are not desirable in real-world applicasion Moments) compete. The relative sparsity of good filter banks
signal delays being rarely known. amongst all possible solutions is also well-known. In order
A second drawback arises in dimensions greater than ofeimprove both design freedom and filter behavibf;band
tensor products of standard wavelets usually possess pbiéer banks and wavelets have been proposed [17]-[19].
directional properties. The later problem is sensitivesatfire ~ Improving on our previous work [1], we propose the con-
detection or denoising applications. A vast majority of thgtruction of a 2D dual-tree//-band wavelet decomposition.
proposed solutions relies on adding some redundancy to tHee organization of the paper is as follow: in Section I,
transform. Redundancy based on shift-invariant wavesetstr Weé investigate the theoretical conditions for the consiouc

forms (See [4]’ [5] and references therein) Suppresse$ Sﬁi& M-band Hilbert pairS. In Section ”I, we extend pl’eViOUS
results on the pre-processing stage toAtidband context and

Part of this work was presented at the 2004 EUSIPCO conferfijand  jjjystrate the direction extraction with the constructeaalets.
at the 2005 ICASSP conference [2]. Si | tructi ible. d to th
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UMR 8049, Universié de Marne-la-Vaie, 77454 Marne-la-Vale Cedex 2, position redundancy, we then propose an optimal pseudo-
France. E-mail{chaux, pesquet j@niv-mv. fr. inverse based frame reconstruction, which allows to reduce
L. Duval is with the Institut Frangais dué®ole, Technology, Computer h ff f ffici . . | | .

Science and Applied Mathematics Division, 92500 Rueil Mabuaj France. (€ €IT€Cts of coefficient estimation errors. Implemeotati

E-mail: | aurent . duval @fp.fr. issues are discussed in Section IV. In Section V, we consider



IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005 2

image denoising applications and provide experimentalli®s As it is common in wavelet theory, Eqg. (4), as well as all
showing significant improvements in terms of both noisequalities in the paper involving square integrable fundij
reduction and direction preservation. Conclusions arevdraholds almost everywhere (that is, for all¢ 2 where() is a

in Section VI. real set of zero measure).
Furthermore, the functions)l!l are defined by scaling
[I. CONSTRUCTION OFM-BAND HILBERT PAIRS equations similar to (1) involving real-valued sequences
(gm[kaGZ:

A. Problem statement
In this section, we will focus on 1D signals belonging to V7 € {0,..., M — 1},

the spacel.?(R) of square integrable functions. Leét/ be 1 oy, t s -

an integer greater than or equal to 2. Recall thatVafband mwm(ﬁ) = Z gm[Kg (= k) (6)
multiresolution analysis of.2(R) is defined by one scaling . k=—o0 .

function (or father wavelet), € L2(R) and (M — 1) mother = VMY (Mw) = G (W)Y (w). (7)

waveletsy,, € L%(R), m € {1,...,M — 1} [18]. These

: . : . . In order to generate a dual/-band orthonormal wavelet
functions are solutions of the following scaling equations

basis of L?(R), the Fourier transforms/,,, of the sequences

vm e {0,...,M — 1}, (gm|k]) ez must also satisfy the para-unitarity conditions:
1 t - V(m,m') € {0,...,M —1}?
m\ 73 ,7) — hm k t—k s 1 ’ ’ ’ )
7V (57) k;@ [kt = k), (1) " N .
_ > Gm(w+p )G (W +pT7) = M. (8)
where the sequencés,,, [k])rcz are square integrable. In the =0 M M

following, we will assume that these functions (and thus the . . . . .
associated sequencds, [k])rcz) are real-valued. The FourierThe corresponding para—un_ltary Hilbert filter banks aresil
transform of (h,,[k])rez IS a 2w-periodic function, denoted trated by the lower branch in Fig. 1.

by H,,. Thus, in the frequency domain, Eq. (1) can be re-

expressed as: B. Sufficient conditions for obtaining dual decompositions
vm € {0,...,M =1}, VMip,(Mw) = Hy,(w)do(w), (2) The Hilbert condition (4) yields

wherea denotes the Fourier transform of a functienFor the Vme{l,....M—1},  [Phw)]=ldnw)]. (9)

set of functionsuy, =y {M /24, (M7t — k), (j. k) € 22}t \we further impose thatyfl (w)| = |¢o(w)], the scaling

to correspond to an orthonormal basisI3{RR), the following equations (2) and (7) lead to
para-unitarity conditions must hold:
Ym e {0,...,M—1}, Gm(w) = e @ H, (W), (10)
Y(m,m') € {0,..., M — 1}?, _ o _
M—1 whered,, is 2w-periodic. The phase functios, should also

Z Hyp(w +p%)H:;L/ (w +p2j) — Mbyr, (3) be odd (for real filters) and thus only need to be determined
ooy over [0, 7.

) ) , ) For any (m,m/) € {0,...,M — 1}? with m < m/,
whered,, = 1if m = 0 and O otherwise. The filter with ¢ (Pon.m') denote the following assumption: The function
frequency responsél, is low-pass whereas usually the fllteram o _ 0,0 — 0, is such that, for (almost) alb € [0, 2n]
with frequency responsH,,,, m € {1,..., M —2} (resp.m = '

M —1) is band-pass (resp. high-pass). In this case, cascading o (W + QE) = Q. (W) (mod 27). (11)

the M-band para-unitary analysis and synthesis filter banks, ’ M '

depicted in the upper branch in Fig. 1, allows us to decomposeAssuming that Eq. (3) is satisfied, it is then straightforvar

and to reconstruct perfectly a given signal. to verify that the para-unitarity conditions (8) for the dua
Our objective is to construct a “dualt/-band multireso- filter bank hold if (P, ,,,») holds. We are then able to state

lution analysis defined by a scaling functigd! and mother the following result:

waveletsyll, m € {1,..., M —1}. More precisely, the mother  Proposition 1: Assume that Conditions (10) hold. A neces-
wavelets will be obtained by a Hilbert transform from theary and sufficient condition for Eq. (4) to be satisfied ig tha
“original” wavelets,,, m € {1,..., M —1}. In the Fourier there exist¥)y = 6, (mod 2) such that
domain, the desired property reads: o
- =56, (= 12)
Vme {1,...,M-1}, o8 (w) = —sign(w)dm(w), (4) Blw)=>_0 (M) (

=1

wheresign is the signum function defined as: is a convergent series andm € {1,...,M — 1}
1 if w>0

~ w T .
sign(w) =40 ifw=0 (5) &0,m (M) +Aw) = gsign(w) (mod 2m)  (13)

-1 if w<0. wheredg ., = 6, — bo.
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Proof: Given thatyy(0) = 1, for m = 0 Eq. (2) is and Vp € {0,..., [%-‘ — 1} Vw € {p%,(p—k 1)?77}[,
equivalent to .
fo(w) = (d+ 5)(M = D)w = pr, (20)

~ 1 w
w) = ——H, -)]. 14
Yo(w) H[\/M 0(M’ ) (14) whered € Z and [u] denotes the upper integer part of a real

. “ " . L U.
Similarly, we have for the “dual” scaling function: The integerd defines a possible arbitrary delay between
~ 1 w the filters of the original and dual decompositions. Up ta thi
Yo (W) = H[ﬁGO(W”' (15) delay, Proposition 2 states that, subject to (1®g,,)m>1

=1 and (18), there exists a unigue solution to Eq. (13). It sthoul
Furthermore, the expressions of the Fourier transformb@f talso be noted that except for the 2-band cakeexhibits
mother wavelets and “dual” mother wavelets can be deducéidcontinuities on]0, [ due to thepr term (see Fig. 2).
from Egs. (2) and (7). Consequently, Condition (4) may behese discontinuities however occur at zeros of the frequen

oo

rewritten asvm € {1,...,M — 1}, response of the lowpass filter since we haig2pr /M) = 0,
- forallpe{1,...,M —1} [18].
w 1 w We subsequently deduce the following corollary of the
Gm s —Go(—)] = "
(M) 1:1—[2[\/]\/[ O(Ml)] above proposition:
o0 Proposition 3: Para-unitaryl/ -band Hilbert filter banks are

w 1 w . : . .
—usign(w)Hm () | |[==Ho(5)]. (16) obtained by choosing the phase functions defined by Eq. (20)
M _1_[2 VM M and
Using Eg. (10), we see that the above relation is verified if
and only if there existgy, = 6y (mod 27) such that

T 1 .
Yme{l,...,M — 1}, 9m(w)—{ 2<d+2>w !fw€]0,27r[, 1)
w . 0 if w=0,

w .
om(ﬁ) + ZHO(Mi) = §Sign(w) (mod 27) whered € Z. Then, the scaling function associated to the dual
i=2 wavelet decomposition is such that
where the involved series is convergent. The above equation
is obviously equivalent to Eq. (13). m  VEEN, Vw e [2km,2(k + 1)n],

Egs. (13) and (12) constitute a generalization tothédand %{(w) = (fl)keﬂ(d%)w 7;()(w). (22)
case of a famous result by Selesnick [10] restricted to dyadi  proof: It is readily shown that, ifd, is given by
wavelets. One can remark that the convergence propertiesgf (20),a.,, is a2r/M-periodic function satisfying (almost
the series3(w) are only related to the behaviour @f around  eyerywhere) Eq. (19) if and only if the functiors,, m ¢
the origin sincev/M" — 0 asi — oo. Itis also worth noting (1 A7 — 1}, are expressed by Eq. (21) (modudo).
that the function is given by the following “additive” scaling Then, we conclude from Proposition 2 that the phases given
equation: w W by Egs. (20)-(21) allow us to satisfy the Hilbert condition

Blw)=p (M) + 6 (M) . (17) (13). Furthermore, the function,,, m € {1,..., M — 1},
being all equal, the paraunitary conditiofB,, .,/ )m’>m>0
are obviously fulfilled. According to Egs. (12), (14) and 15
~ P (w) = e7P) go(w). When b, takes the form (20), the
In the 2-band case (under weak assumptiofts)erifying expression of3 is given by Eq. (65) in Appendix I, thus

vme {1,...,M — 1},

C. Linear phase solution

Egs. (13) and (12) is a linear function da-, «[ [10]. In  yielding Eq. (22). =
the M-band case, we will slightly restrict this constraint on &jote that in the dyadic case, necessary and sufficient condi-
smaller interval by imposing: tions have been found for the linear phase property [20].

Vw e [0,20/M[,  fo(w) = w, (18)

D. Compact support

where~y € R. This choice clearly guarantees that the series Compactly supported wavelets are obtained with FIR (Fi-

6(“.’) I conver_gent._ Using Eq. (17), after some calculatiorhsne Impulse Response) filters. However, if the filters with
which are provided in Appendix I, the following result can b?requency responses,, (w) with m € {1 M—1} are FIR
m yr

proved: (i.e. Hy,(w) is a Laurent ial ire*w i
. ) . .e. H, polynomial ire*), the dual filters
szé)a?r(])n 2'|Utnder the t(;lremi C?ngt'onig(m)%?m)mzi) with frequency responses,,, (w) cannot be FIR. Indeed, the
and (18), the solutions (modultr) to Eq. (13) are given by w/2 termin Eq. (21) prevent§,,,(w) from being a polynomial
or even a rational function ig*’. When M is even, a similar
1 5 argument holds showing that the low-pass filt&j(w) cannot
s s . . - . g
Z_ Mo if =L be FIR if the primal one is FIR and Eq. (20) is satisfied. When
&O,m(w):{ (d+2) w i we]O,M[, (19) p | Eq. (20)

Yme{l,...,M —1},

02 T M is odd, the jumps ofr arising forf, at frequencie@px /M
Hw=0. withp € {1,..., M—1} allow us to draw the same conclusion.
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In other words, starting from orthonormal compactly supgdr connection between the analog theoretical framework and it
scaling functions/wavelets, it is not possible to genetatal discrete-time implementation whereas the post-procgsisin
basis functions having a compact support. However, theystuased to provide directional analysis features to the decemp
of approximate FIR Hilbert pairs satisfying perfect redoms-  sition. We will now revisit these problems in the context of
tion has been addressed by several authors in the dyadic cisédand decompositions.
[21], [8]. The propose@D M-band dual-tree decomposition is illus-
trated in Fig. 3. For the sake of simplicity, only two levels
E. Symmetry properties of decomposition { = 2) are represented but this tran_sform
can be implemented over further levels, the approximation

As already pointed out, one of the main advantage of tIE‘(J)efficients being re-decomposed iteratively. For eachhef t

M—banq case with\/ > 2 is to alloyv the construction of ;" - pong decompositions, we gék M2 —.J+1 subbands.
non-trivial real orthonormal bases with compact supgoml \\\, opserve that theD dual-tree decomposition can be

symmetric_(or antisymmetric) wavel_ets. Assume that SYMMERided into three steps which are detailed hereafter.
try properties are fglf|lled il pnma} fllte.r bank. W.e now 1) Prefiltering: The wavelet transform is a continuous-
show that the dual filters and wavelets inherit these prasert space formalism that we want to apply to a “discrete” image.

Indeed, it can be proved (see Appendix Il) that: ; Al
Proposition 4 Let phase conditions (20), (21) be satisfiedwe consider that the analog scene corresponds to the 2D field:

If the Ilow—pass impulse respongey [k])rcz is symmet'ric wW.r.t. fla,y) = Z Flk ) sz —kyy — 1) (26)
ko € 5Z, and, form € {1,..., M — 1}, (hpy[k])rez is sym- ol
metric (resp. antisymmetric) W.rk.,, € 1Z, then (go[k])xez _ ) ) ) )
is symmetric W.r.tko + (d + 1)(M — 1) and (g [k])rez is wheres is some interpolation function and'[k, []) yez2 IS
antisymmetric (resp. symmetric) w.rk,, — d — % the image sample sequence. Let us project the image onto the
Under the assumptions of the above proposition, Egs. (1dt) HPProximation space
2) allow us to claim that), is symmetric w.r.t. =
@ s Vo = Span{uo(e — K)oy = 1), (k1) € 2%} (@7)

0

“M_1 (23) The projection off reads

anq, for m € {1,....,M — 1}, ¥, is. ;ymmgtric (resp. Py (f(z,y)) = ZCo,o,o[k,l] oz — k) oy —1)  (28)

antisymmetric) w.r.t(r + k,,)/M. Then, it is easily deduced kol

from Egs. (22) and (4) thatl' is symmetric w.r.tr +d+1/2 o -

and, form € {1,...,M — 1}, ¢} is antisymmetric (resp. where the approximation coefficients are

symmetric) W.r.t.(7 + k,,) /M. conolksl] = (@) oz — F) doly — 1)) (29)
[1l. EXTENSION TO 2D DUAL-TREE M-BAND WAVELET and(, ) denotes the inner product &f (R?). Using Eq. (26)

ANALYSIS we obtain:

A. 2D Decomposition co00lk 1 =S fIp.d) Yowwoo(k —p.l—q)  (30)

Two-dimensional separabl&/-band wavelet bases can be Pq

deduced from the 1D dual-tree decomposition derived \i/Uhere\I/ (1) = wo(2)to(y) and is the Cross-
Section II. The so-obtained bases bf(R*) (the space of __ - = %" fﬁ’rgztio; de?‘inxe doaé/ Vs o,0
square integrable functions defined BA) are

' —J :c Yy oy Yevoo(®y) = / / s(u,v)¥g0(u — z,v — y) dudv.
U U 2l — W (5 =0, (6D € 27) . -
Jf—w(;zl(b%)) In the same way, we can project the analog image onto the

dual approximation space
U 70577 — Ro(577 — 0. (k1) € 2% (24)
Vol = Span{Wilo(x — k,y — 1), (k1) € 2%} (32)

J
—j T Y
U U JTZ)E(M —k) EL’(M =), (k1) € 2%} where U (z,y) = ¢ (x)¢f (y). We have then

j=—00 (m,m’)
#(0,0) H H
Pyu(f(z,y)) = D cooolk:l] Yool —k,y—1)
U 7ull (577 = Wl (577 = DL (kD) € 27} (25) )2

where J € Z is the considered coarsest decomposition levé¥here the dual approximation coefficients are given by

A discrete implementation of these wavelet decompositions H

starts from levelj = 1 to J € N*. As pointed out in the co.00lk 1] = Zflp, q) s, (k=p.l—q).  (33)
seminal works of Kingsbury and Selesnick, it is however P

advantageous to add some pre- and post-processing to @iwiously, Eq. (30) and (33) can be interpreted as the use
decomposition. The pre-processing aims at establishieg ®f two prefilters on the discrete imag¢|[k, []) x,)cz> before
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the dual-tree decomposition. The frequency response stth&or (m,m’) € {1,..., M — 1}?, using Eq. (4), the Fourier
filters are transform of this function is seen to be equal to
(oo} oo
_ - ~ 1 . ~ ~
Fi(we, wy) —p;oo q;oo 5(wz + 2pm, wy + 2qT) @ (Waywy) = 5(1 + sign(wz wy )V (wa )Y (wy)
1])\8 (wg + 2pm) Aé (wy + 2¢m) (34) _ ] Unm (Wa) Vs (wy) !f S?gn(wm) = S?gn(wy), (42)
o oo 0 if sign(w,) # sign(wy).
Fy(wg,wy) = Z Z 5wz + 2pm, wy + 2qm) As illustrated in Fig. 4, this function allows us to extrabet
p=—00g=—00 “directions” falling in the first/third quarter of the frequcy

(6 (wa + 2pm))* (V' (w, + 27))". (35)  plane.
In the same way, the real part of the tensor product of an

By using Eq. (22), it can be noticed that, whers compactl : . !
y g Eq. (22) pactly analytic wavelet and an anti-analytic one reads

supported orj—, 72, for all (w,,w,) € [-m,7[2,

Fo(wg,wy) = e/t o, w)).  (36) W me (2, y) = Re{or, (y)n, (x)} (43)
Different kinds of interpolation functions may be envisdgie and, for(m,m’) € {1,..., M — 1}, its Fourier transform is
particular separable functions of the fosf, y) = x(z)x(y). ga (Way ) = (44)
The two prefilters are then separable with impulse response®:™ % ¥ N R _

(’yXﬂ/Jo (p)7X7¢o (Q))(p,q)622 and (’Yxﬂpé{ (p)VX,wé{ (Q))(p,q)EZQy { VY (Wa )P (Wy) If sign(w; ) # Sign(wy)a
respectively. A natural choice foy is the Shannon-Nyquist 0 if sign(w,) = sign(wy).

interpolation functiony(¢) = sinc(rt), which allows the ideal i 4 shows that these functions allow us to select frequenc
digital-to-analog conversion ofa band—llmlteg S'Q”EI*- Mé¥e  omponents which are localized in the second/fourth quarte
then, for (w?,wy) € [—Wg?r[ s Fi(wa, wy) = ¥5(wa) 5 (wy)-  of the frequency plane. This yields “opposite” directioms t

Moreover, in the specific case whefy also corresponds ihose obtained withr®

m,m’*

to an ideal low-pass filter, that igy(f) = sinc(rt), the At a given resolution level, for each subbanin, m’) with
prefilter for the primal decomposition reduces to the iden;, # 0 andm’ # 0, the directional analysis is achieved by

tity (Fi(wg,wy) = 1) whereas the prefilter for the dua'computing the coefficients
decomposition is an half-integer shift with frequency e )
Fy(wy, wy) = e/ (@eten) for (wy,w,) € [—m,7[?, Qi [k, 1] =V2(f (2, y), —= T (e — e, L — 1))
2) M-band wavelet decomposition§he M-band multires- UM M M (45)
olution analysis of the first prefiltered image is performed, .
resulting in coefficients Ak =V2(f (), =0 (o L))
J7,m,m ) v I/ m,m P .
) . y M Mi M (46)
Cjm,m/’ [kvl} = <f(1'7y); M"/)m(m - k)"/}m’(m - l)>

(37) According to Egs. (39), (41), (40) and (43), we have for all
where § € {1,...,J} and (m,m’) # (0,0)) or (j = J and (m,m’) € {1,..., M — 1}?,

m = m’ = 0). In parallel, the dual decomposition of the 1
second prefiltered image is computed, generating coeffiien  dj m.m’ [k, 1] = ﬁ(cj,m,’m/ k1) + ¢l [R5 1) (A7)
1 T Y
H , H H
om0l = (@), g 0m (G = 000w (5 = 10 B 1] = (om0 = e 1) (48)

m.m’[

(38) o V2

3) Direction extraction in the different subbandb order which amounts to app|y|ng a Simpmx 2 isometry to the
to better extract the local directions present in the imége, )/-band wavelet coefficients. Note that Relations (42) and
useful to introduce linear combinations of the primal andldu(44) are not valid for horizontal or vertical low-pass suhtig
subbands. To do so, we define the analytic wavelets as  sych thatm = 0 or m’ = 0. The corresponding coefficients
" 1 are left unchanged by setting} ., [k, 1] = ¢;m.m [k, 1] and
wm(t):ﬁ(¢771,(t)+l¢5(t))7 mE{O,...,M—l} di ,[k; l] :cg [)2; l] ng) 7 [ ] ]7) [ ]

7,m,m ’ 7,m,m’ L™V ¥]r
(39) To illustrate the improved directional analysis provided b
and the anti-analytic wavelets as the proposed decompositions, the basis functions used in a
1 3-band dual-tree structure are shown in Fig. 5.

P (t) = —=(Um(t) =i (1),  me{0,...,M—1}.

V2
(40) B. Reconstruction
Let us now calculate the tensor product of two analytic

waveletsy¢, and v ,. More precisely, we are interested in L€t US denote byf € ((Z?) the vector of image samples
the real part of this tensor product: where ¢?(Z?) is the space of finite-energy 2D discrete fields.

. . . Besides, we denote by the vector of coefficients generated
o me (@,y) = Re{og, (2)v5, ()} by the primal)/-band decomposition and ey the vector of
1 H H coefficients produced by the dual one. These vectors consist
= 5 \Um\L)¥Pm/ - m’ 41 i
2(¢’ (@) (9) = (@) o (1) (42) of M2J — J + 1 sequences each belonging #4Z?). The
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linear combination of the subbands described in Section Il « Primal wavelets with compact support: the first exam-
A.3 can be omitted in the subsequent analysis since we have ple consists in four finite impulse response (FIR) 16-

seen that this post-processing reduces to a trivia orthog- tap filters (denoted as AC in [25]), generating regular,
onal transform. The global decomposition operator (inicigd orthonormal and symmetric basis functions. The scaling
decomposition steps 1 and 2) is function and the wavelets associated to the duiband
¢ filter bank are represented in Fig. 6. We observe that the
D :f— (CH> = (gl f> (49) constructed dual wavelets possess regularity and satisfy
¢ 2 the symmetry properties stated in Proposition 4. We also
where D; = U;F; and D, = UyF,, F; and F, being have constructed and tested dual wavelets from standard
the prefiltering operations described in Section Ill-A.ldan  Symmlets as well as &channel modulated lapped trans-
U, and U, being the two considered orthogonaf-band form [17].
wavelet decompositions. We have then the following resulte Primal wavelets without compact support: we have con-
whose proof is provided in Appendix Il structed M-band generalizations of Meyer's wavelets.
Proposition 5: Provided that there exist positive constants ~ The corresponding filters possess a good frequency se-
A, B, Cy and Ay, such that, for (almost) allw,,w,) € lectivity. To implement these filters, we have used a
[—m, 7[2, method similar to that developed in [26]. Taking the same
. wavelet family with a different number of bands helps in
As < |5(wz,wy)| < Bs,  [o(we)| > Ay, (50) providing fair assessment on the benefits of using more
Z 3(wy + 2pm,wy, + 2g7)]2 < Cs < AfA%U (51) channels.
(p,9)#(0,0)
D is a frame operator. The “dual’” frame reconstructiorl?' Frequency-domain implementation

operator is given by Two solutions are possible to implement a wavelet de-
composition; a time-domain or a frequency-domain approach
f=(F1'F1 +F,'Fo)! (F1'U; e+ F2'U; ') (52) The first one is probably the most popular for classical
wavelet decompositions when wavelets with compact support
are used. Sometimes however, especially for wavelets gavin
an infinite support (for instance orthonormal spline watg)le
a frequency-domain implementation is often preferablanta

where T designates the adjoint of an operafbr
A particular case of interest is whén(z—k,y—1), (k,1) €
72} is an orthonormal family ofL.?(R%). We then have

o~ 2 __
th.,q [5(ws tQp”’ “;]y +| 2qm))| bi 1;;? consiquently WE Can,gvantage of FFT algorithms [27] (see also [28] for a tholoug
chooseB, = 1. The lower boundsd, and Ay, prevents giqqssion of these problems). In particular, FFTs are used
and<, from vanishing for low frequencies whereas Eq. (S}, compute Fractional Spline Wavelet Transform [29] and

controls the amount of energy &fout 'of the frequency band 550 to implement steerable pyramids [30]. In the case of
[~1/2,1/2[*. Note that the assumptions onare obviously ga1tree decompositions, we have noticed in Section II-
satisfied by the Shannon-Nyquist interpolation function. D that, when the primal wavelets are compactly supported,
Although other reconstructions dffrom (c, c'') could be e qual ones are not. If a time-domain implementation is
envisaged, Formula (52) minimizes the impact of possiblg,nsen, it then becomes necessary to approximate the énfinit
errors in the computation of the wavelet coefficients. Fofnyise responses of the dual filter bank by finite sequences
example, these errors may arise in the estimation procedué‘étisfying constraints related to the para-unitarity ¢tos,
when a denoising application is considered. Finally, it ttiv symmetry, number of vanishing moments, etc. The result-
pointling out th?t Eq. (52_) is not difficult to implement sincqng optimal design problem may become involved and, for
Uy andU?* are the inversel/-band wavelet transforms 5 4004 approximation of the ideal dual responses, it may
and Fle F>' and (F1'F; + F»'F2)~! correspond to fil- happen that the obtained solutions only approximatelysfati
tering with frequency responseés’ (w;, wy), F3(ws,wy) and  the para-unitarity conditions which correspond to nonvesn

2 2\—1 o
([F1(was wy)|* + [Fo(wz, wy)[*)~, respectively. constraints. In spite of these difficulties, such an appoeas
followed in [31] which is approximate in the sense of the
IV. MPLEMENTATION AND DESIGN ISSUES Hilbert transform and symmetry and in one of our previous

work [1]. For the simulations in this paper, frequency-dama
. implementations have been adopted. They may provide better
In our experiments, the advantage of the dual-tree decomp@merical solutions in the context of dual-tree decomparsit

sition has been tested over several classical dyadic asthwl |n this case, both convolutions and decimations/intetjmia
wavelet bases. Since we are interested inlitshand gener- are performed in the frequency domain.

alization, several othef/-band filter banks decompositions

have been considered, including batli-band wavelets and V. APPLICATION TO DENOISING
lapped transforms (we refer to [23], [24] for more details on
filter banks regularity):

A. M-band wavelet and filter bank families

The 2-band multidimensionnal dual-tree complex wavelet
transform has already been proved to be useful in denoising

IHere “dual” is meant in the sense of the frame theory [22] whigh i.prObllem& in partic‘_‘"ar for video processing [32] or sittell
different from the sense given in the rest of the paper. imaging [33]. In this part, we show tha/-band dual-tree
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wavelet transforms also demonstrate good performances in Cai and Silverman estimator [37]. This block thresholding
image denoising and outperform existing methods such as approach exploits correlations between neighboring coef-

those relying on classical/-band wavelet transforms\{ >

2) or even2-band dual-tree wavelet transforms. We will be

mainly interested in applications involving images comitag
directional information and texture-like behavior suchsags-
mic images.

A. Denoising problem

In this part, we will consider the estimation of an image
s, corrupted by an additive zero-mean white Gaussian ripisé€ s

with power spectrum density?. The observed imagé(z, y)
is therefore given byif(z,y) = s(x,y) + b(z,y). We will

denote by (b;m,m'[k,1])k,; the coefficients resulting from a
2D M-band wavelet decomposition of the noise in a given
subbandj, m, m’). The associated wavelet coefficients of the

dual decomposition are denoted W', .. [k, 1)) These

ficients. In our work, we use a variant of the NeighBlock
method.

« Bivariate Shrinkage [38]. This method exploits the inter-
scale dependencies i.e. relations between the coefficients
and their parents.

C. Mesures of performance

Let N be the number of points in the observed imagje
the standard deviation of We define two signal-to-noise
ratios, denoted by SNR, as:

o2 N
SNRipitial = 10 log; (sz||2>
o2 N
SNRina| = 10 loglo <|ss_§||2> (56)

sequences are white zero-mean Gaussian with variafice where3 is the estimated image.

Besides, we have for alk, ) € Z2,

E{Dj mm [k, 165y [, 1} =
/ E{B(@, 9)b(@,4')} ot (e — Ko (< — 1)
R4 ’ TS M T M KRYVT]
1§ x’ H Yy’
Mwm(m_k) m’(m_

where E{b(z,y)b(z’,y")} = 0% 6(z — 2')5(y — v') (0 is the
Dirac distribution). After some straightforward calcudets
whenm # 0 or m’ # 0, this yields

Tayaxr ay
1) dedydaz’dy’ (53

E{Bj m.m [k, 005y [, ]} = 0. (54)

Visual comparisons are provided as well, since SNR does
not always faithfully accounts for image quality, espdygiah
highly structured areas (textures, edges,...)

D. Experimental results

Tests have been carried out on a variety of images corrupted
by an additive zero-mean white Gaussian noise. We have con-
sidered two possible situations : first, when the noise aaga
is known and second, when it is not. In the latter case, the
noise variance is estimated with the robust median estimato
as defined in Eq. (55). The noisy image is decomposed via an
M-band DWT or anM-band Dual-Tree Transform (DTT) in
the2, 3 and4-band cases. For each decomposition, the number
of decomposition levels is fixed so as to get approximation

Itis deduced that, whem # 0 orm’ # 0, the Gaussian vector jmages having roughly the same size at the coarsest resuluti

pH

7,m,m/’

(bj.mm [k 1] [k,1])T has independent components.

This means that 2-band decompositions are carried out over 4

The variance of the noise may be unknown. In such a caggsolution, whereas 3 or 4-band decompositions are peefrm
we use a robust estimatérof o which is computed from the gyer 2 resolution levels. Under these conditions, the com-

wavelets coefficients at scale= 1 in a high-pass subbandptational costs of the differemt/-band decompositions are

(see [3, p. 447)):

a 0.6745 mEdiachl,M—l,M—l[/ﬁ,l”)(kyl)}. (55)

B. Thresholding

comparable. Different wavelet families have been tested, t
provided results corresponding to the use of Meyer’'s wasele
[26]. For various noise levels, the values of the SNR’s are
obtained from a Monte Carlo study over ten noise realization
Since we address more specifically the ability of the
band DTT to preserve features in specific directions, com-

Various thresholding techniques have been applied on tharisons are made on the following three images containing

wavelet coefficients of the observed imafieAlthough many

rich directional contents: a high frequency textured imalge

choices of estimators can be envisaged, we have studied stendard Barbara image and a set of 2D seismic data with

following ones:

oriented patterns.

« Visushrink (see [34]) defined by the “universal” hard . We have first applied our method on &2 x 512

thresholdT = o /2 In(N), N being the number of
pixels of the original image.

directional texture image (Straw D15 image from the
Brodatz album) corrupted by an additive zero-mean white

o Hybrid SUREshrink [35], [36]. This subband-adaptive
threshold technique relies on Stein's Unbiased Risk Es-
timate and uses a soft thresholding. As a result, if the
signal to noise ratio is very small, the SURE estimate
may become unreliable. If such a situation is detected, a
universal threshold is used.

Gaussian noise.

The obtained SNR'’s (in dB) for three different initial
noise levels are listed in Tab. I. We observe for this image
that, by increasing the number of bands the denoising
results are improved in almost all cases for the DWT
(sometimes only marginally) and significantly in almost
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all cases for the DTT. Furthermore, the DTT clearly  4-band DTT respectively. Some of the oblique features

leads to an improvement of the denoising performance (e.g. on the top-right corner) that are almost hidden in

compared with the DWT, whatever the initial SNR or  the noisy image become apparent in both the 2- and the
the threshold selection method is. We remark that the 4-band DTT. We observe for this image that denoising

more dramatic improvement over DWT is observed for results are more satisfactory with a 4-band than with

Visushrink, which does not perform very well compared a 2-band DTT: the 2-band denoising image possesses
with SURE, NeighBlock or Bivariate. Results are also  larger blurred areas, especially in weakly energetic zones
relatively consistent between the top (noise variance Careful examination also indicates a reduced presence of
known) and the bottom of the table (noise variance mosquito effects in the 4-band case.

unknown), which is important in real applications where \We have experimented the DTT denoising algorithm on
noise statistics often have to be estimated from the dagaher image sets. Dual-trek/-band structures with/ > 2
Fig. 7 also illustrates that, compared with other decongrenerally outperform existing wavelet decompositiongimis
positions, the DTT withM = 4 leads to sharper visual of SNR. We shall remark that visual improvement is not

results and reduced artifacts. It can be seen from thevays perceptible in image areas with weak directionality
bottom left corner that a 4-band DTT (Fig. 7d) better

preserves the thin lines that are often blurred or merg%d Basis choice

in the other cropped images.

« Second, we have performed the same denoising tests orfhe previous section focused on the comparison between
the 512 x 512 8-bit Barbara image. The obtained sNR'PWT and DTT withM-band Meyer wavelets, for different im-

(in dB) are listed in Tab. II. ages, noise levels and threshold selection methods. Giposi

For this image, we observe that, by increasing the numbesingle wavelet family allowed us to provide a relatively fa
of bands)M, the denoising results are improved in almogomparison concerning the choice of the different aforemen
all cases bloth for the DWT and the DTT. Furthermordioned characteristics but it also appears interestingatuate
the DTT clearly outperforms the DWT, as in the textureg‘e influence of the decomposition filters. Amongst a varagty
image case. choices, we have testédband symmlets (with length 8), the
Fig. 8 represents a zoom on a leg with a regular textuf@@Sic 4-band Modulated Lapped Transform (MLT, see [17])
This illustrates that, compared with other decomposition&d finally, Alkin and Caglari-band filter bank [25]. The
the 4-band DTT leads to better visual results. Fig. ggsults concerning Meyer's wavelets can be found in previou

corresponding to the 2-band DWT is strongly blurredaples. _ o
Details are better preserved in the 4-band decompositionThe results reported in Tab. IV show the superiority of the

(Fig. 8b), but it clearly appears that the texture with afi/Pand DTT (with M > 1) over M-band DWT or 2-band
apparent angle of /4 is heavily corrupted by patterns inDTT, in particular when th_e pop_ular symmlets are employed.
the opposite direction, due to the mixing in the “diagonalThere is however no family which always leads to the best
subband. Although Fig. 8c remains blurry, there is mudigSults. We remark indeed that DT MLT or AC DTT may
less directional mixture in both DTT decompositions. |€ad to slightly improved results compared with Meyer DTT,
« Finally, we have tested our method ofi2 x 512 seismic PUt the best choice often depends on the image.
image displayed in Fig. 9a. The data exhibits mostly
horizontal structures as well as other directions which VI. CONCLUSION
are important to the geophysicist for the underground Motivated by applications where directional selectiviyoif
analysis. main interest, we have proposed an extension of existingsvor
Similarly to previous cases, the seismic image is coon Hilbert transform pairs of dyadic orthonormal wavelets
rupted by an additive white Gaussian noise. The obtaineal the M-band case. In this context, we have pointed out
denoising results are listed in Tab. Ill. that, when several wavelet decompositions are performed in
We observe that in most of the cases, denoising improvearallel, special care should be taken concerning theitemp
objectively with the increase of the number of bardds mentation, by designing appropriate pre- and post-prauogss
with DWT and DTT as well. Again, the best results arstages. Since the decomposition is redundant, an optimal
obtained with both dual-tree and a 4-band wavelet, brgconstruction has also been proposed.
the gain over traditional DWT is sometimes smaller than By taking advantage of the Hilbert pair conditions aht
in the previous example, for instance for NeighBlockand features which offer additional degrees of freedois, th
shrinkage. It should be noted that the original image is noew transform has been applied to image denoising. Various
noise-free in general. SNR measures are therefore msimulations have allowed us to conclude that dual-tree de-
difficult to interpret. The existence of prior noise mayxompositions with more than two bands generally outperform
explain the relatively weaker SNR increase between DWHiscrete orthonormal wavelet decompositions and dyadit-du
and DTT, since denoising may attempt to remove both tleee representations.
added and the original noise, and thus the denoised imagé&ncouraged by these results, we will consider further im-
strays away from the original noisy data. provements with other filter bank designs, including redtya
Fig. 9b represents the original data corrupted with a -2 d& well as applications of dual-tréd-band wavelets to other
additive noise. Figs. 9c-d display the results with 2- angignal and image processing tasks, especially in seismics.
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APPENDIXI filters satisfying Egs. (19) and (20) are solutions to Eq.).(13

PROOF OFPROPOSITIONZ2: More precisely, we will proceed by induction to show that
Assuming thatf, verifies the linearity relation (18) and
using the fact that it is an odd function, we find that Vk €N, Vw €]2km, 2(k + )z,

Vw €] —2m, 27r[ Blw) = (d+ %)w —kr  (mod 2r) (65)

and dom () + W) = & (mod 27).  (66)

_ M 2
Z =37 Z o - 1. (57)
- « It is readily checked that the properties (65)-(66) are
We deduce from Eq. (13) that, for alk € {1,..., M — 1}, satisfied fork = 0.
9% o o Assuming that the properties hold true up to the index
Vwe] - —, —| k—1 >0, we will demonstrate it remains valid at index
MM k.

(mod 27). (58) We can writek = Mp—+q with p € Nandq € {0, ..., M —
1} and, consequently,

o,m (@) = Fsign(w) -

Furthermore, according to Conditiqi®g ., ),

y | o 0 o Qﬂ) o) (mod 2r) w €]2km, 2(k + V)7 <= (67)
weE|— =, Ao,m(W + =) = agm(w mod 27). w
M O M ' (59) 2 2+ %)M( q]\—zl)ﬁ[C]?p?T,Q(p—Fl)ﬁ[.

This allows us to claim that there exisfs= Z such that . _ _ . .
Sincep < k, according to the induction hypothesis, we

1
vy=(d+ 5)(M —1). (60) havevw €)2km, 2(k 4+ 1)~
This leads to the expression @} ,, in Eq. (19). Asag , is a w 1, w
2 /M-periodic function, it is fully defined by its expression MM) (d+ Q)M —pm (mod 2m).  (68)
on [0, 271, In contrast, we have to determine the expression of o ~ _
6, outside the interva] — QMQ %[_ Using Egs (13) and (17), Moreover, the2r-periodicity of  allows us to write:
we obtain, for allm € {0 oo, M =1}, W W
. - Qo(ﬁ) = QO(M — 2pm). (69)
o.m( M) +00(57) +B(57) = =350 (mod 2n)
2 ’ lead to
(61)
S W M -1 1
Consider now the intervalp2=, (p + 1)22[ where p € Oo(57) = —7(d+ 5w (70)
{1 { ] } As [pM,( +1)22[C (0,27, Eq. (57) —(2d+1)(M = 1)p+g)r (mod 2)
ylelds M-1 1
5 5 ) == (d+ g)w—(k—p)w (mod 2).
™ ™
Vw € [pﬁv(p+1)ﬁ[a ﬁ(w):(d+§)w' (62) L . .
Combining Egs. (17), (68) and (70), Eq. (65) is obtained.
Using Eq. (61) and ther /M -periodicity of ag,,,,, we deduce By invoking the 27 /M -periodicity of &, the second
that part of the property is proved in the similar way. Indeed,
o0 o0 for w €]2kn, 2(k + 1)x[, we have:
Vw € [pMa (p+ 1)M[7
. 1 o Gom(+r) = Gom(sr = 2p+ ~-)m)  (71)
fo(w) = g —(d+ J)w — dom(w— T7p)  (mod 2r). M M M
(63) which, using Eq. (19), leads to

Combining this result with Eq. (19) leads to Eq. (20). As a

- w s 1 w
consequence of the antisymmetry of the phase of a real fiter, ~ do.m(77) =5 — (d+5)M(5; —2(p + %)W)
a similar expression is obtained fpre { [%1 seey M — 1}: T p 1 & 42 29
) ) —5—(‘*‘5)@‘*‘” (mod 27).  (72)
s s
Yw € }pﬁ, (p+ I)M ) Thgn, s(ggn)ming Eq. (65) and the above expression results
in Eq. .

éo(w) =(d+ 1)(M —1Dw—pr (mod 27). (64) . ] )
2 In conclusion, we have proved by induction that Eq. (66) kold
In summary, under the considered assumptions, we hdve almost allw > 0. The functiond, (and thus3) being odd
seen that, if there exists a solution to Eq. (13), it is givgn ks well asay ,,,, we deduce that Eq. (13) is satisfied almost
Egs. (19) and (20). Conversely, we will now prove that angverywhere. This ends the proof of Proposition 2.
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APPENDIX I
PROOF OFPROPOSITION4:

Assuminghg is symmetric w.r.tky, we have

Vk € Z, ho[2ko — k] = ho[k] (73)
= e MY HG (w) = Ho(w). (74)
Thanks to Eq. (10), this may be rewritten as
e 2w 20 G (w) = Go(w). (75)
According to Eqg. (20),
20(w) = (2d +1)(M — 1)w (mod 27).  (76)

which leads to

VEEeZ,  go[2ko+ (2d+1)(M —1) — k] = go[k]. (77)

This shows thay, is symmetric w.r.tky + (d + )(M —1).
In the same way, for anyn € {1, ..., M — 1}, the symme-
try/antisymmetry property:

Vk € Z, R 2k — k] = LR, [K] (78)
combined with Eq. (21), results in:
Yk € Z, gm[2km — 2d — 1 — k] = Fgm[k]. (79)

APPENDIXIII
PROOF OFPROPOSITIONS:

We denote by||.|| the norms of the underlying Hilbert
spaces. We have then, for dlic ¢?(Z?),
|IDE[|* = || D1 f[|* + [[Daf]|. (80)

Let us next focus on the first term on the right-hand side
this equation. AU, is unitary, we have
[Daf|]* = [[Faf]? (81)

1 T T N
(27T)2 /_ﬂ_ /_Tr‘Fl(wwva)f<wm,wy)‘2dwajdwy.

10

Besides, the frequency magnitude of the first prefilter can be
lower bounded as follows:

|F1(way wy)| 2 [8(we, wy )t (ws) o (wy)]

— > [8(wa +2pm, wy +2q7)th0 (wWa +2pm) b0 (wy + 2q7)).
(p,9)
#(0,0)
(84)
The latter summation can be upper bounded as we did for
| F1 (wz, wy )|, which combined with the assumptions (50) and
(51), yields:

|Fi (way wy)| > AgAZ —+/Cs. (85)
From Egs. (81), (83) and (85), we conclude that
(As AT, — VO]l < IDafl| < /B2 + Collfll.  (86)

Now, using Eq. (35) and invoking the same arguments as
previously lead to

(As AT, = VOl < ID2f|| < /B2 + Cillfll.  (87)
Combining Egs. (86) and (87) allows us to conclude that

V(A A2, — /T < |DE| < V2(BZ T Cu) €] (88)

As we have assumed in Eq. (51) thatA} — /C. > 0,
this means thaD is a frame operator. Note that, when ideal
low-pass filters are used for and v, (that is s(z,y) =
Yo(2)o(y) with o (t) = sinc(t)), we have|Fy (wq, w, )| =
|[Fa(ws,w,)| = 1, and thus, |Daf| = [Daof| = [f].
Therefore, in this ideal cas®) is a tight frame operator with
bound2.

To determine the “dual” frame reconstruction operator, we
have to calculate the pseudo-inversdivhich is defined by
D! = (D'D)~!'D'. In our case, the adjoint d is

Df =(D," D,')=(F,'U," F,'U,). (89)

flence, by virtue of the unitarity otJ; and U,, we obtain
DD =F,'F; + F,'F,
and, finally,
Df = (F1'F1 + Fo'Fy) 7! (FL UL FyTU, 7).
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Fig. 1. A pair of analysis/synthesi&/-band para-unitary filter banks.
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Fig. 7.
DTT M = 4.

Denoising results for a cropped version of the textusing Bivariate Shrinkage and: (a) DWW = 2; (b) DWT M = 4; (c) DTT M = 2; (d)
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(d)

Fig. 8. Denoising results for a cropped version of “Barbarsihg Bivariate Shrinkage and: (a) DWW = 2; (b) DWT M = 4; (c) DTT M = 2; (d) DTT
M = 4.

(d)

Fig. 9. Seismic data and denoising results using Neighbl@kOriginal data; (b) Noisy data; (c) DTHM = 2; (d) DTT M = 4.
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SNR; ;¢ = 7.71 dB SNR; i+ = 5.71 dB SNR; ;¢ = 3.71 dB
Visu | SURE | Biv NB Visu | SURE | Biv NB Visu | SURE | Biv NB
DWT M =2 | 5.44 | 10.07 | 10.37 | 10.72 || 4.36 8.70 9.02 | 9.40 3.37 7.49 7.75 | 8.14
DWT M =3 | 557 | 10.25 | 10.38| 10.86 | 453 | 8.82 | 9.01| 9.52 362 752 [ 772] 8.24
DWT M =4 | 5,53 | 10.25 | 10.38 | 10.94 || 4.43 8.83 9.03 | 9.59 3.44 7.65 7.75 | 8.31
DTTM =2 | 6.67| 10.67 | 10.85| 11.01 | 551 | 9.38 | 954 | 9.70 || 439 | 8.12 | 8.29 | 8.46
DTT M =3 6.72 | 10.80 | 10.93 | 11.19 || 5.54 9.47 9.60 | 9.85 4.54 8.15 8.33 | 8.57
DTT M =4 6.91 | 10.91 | 10.96 | 11.31 || 5.64 9.50 9.65 | 9.98 4.48 8.28 8.40 | 8.69

DWT M =2 | 478 | 9.71 9.99 | 1049 (| 3.94| 856 | 8.78| 9.30 313 | 7.41 | 7.60 | 8.12
DWT M =3 | 518 | 9.96 | 10.29| 1080 | 429 | 859 | 8.95| 951 349 | 750 | 7.68 | 8.26
DWT M =4 | 520 | 10.04 | 10.40 | 10.90 || 4.22 | 8.78 | 9.04 | 9.59 332 | 763 | 7.75| 8.32
DTT M =2 | 591 | 10.33 | 10.53| 10.86 || 498 | 9.15 | 9.32 | 9.66 404 | 8.04 | 8.14 | 8.48
DTT M =3 | 6.23 | 10.45 | 10.87 | 11.17 || 525 | 9.22 | 9.56 | 9.87 437 | 8.06 | 8.29 | 8.60
DTT M =4 | 652 | 10.62 | 10.99 | 11.31 || 540 | 9.45 | 9.68 | 10.00 || 433 | 8.23 | 8.42 | 8.73

TABLE |
DENOISING RESULTS ON TEXTURE IMAGE FOR DIFFERENT INITIAISNR’S. IN THE TOP PART OF THE TABLE THE VARIANCE IS ASSUMED TO BE KNOWN
AND IN THE BOTTOM ONE, IT IS ESTIMATED. THE CONSIDERED ESTIMATORS ARESURESHRINK (SURE) [35], NEIGHBLOCK (NB) [37], BIVARIATE
SHRINKAGE (BIV) [38] AND VISUSHRINK (VISU).

SNR; ;¢ = 5.67 dB SNR;y,: = 4.17 dB SNR;,,;: = 2.67 dB

Visu SURE Biv NB Visu SURE Biv NB Visu | SURE Biv NB

DWT M =2 8.67 12.21 | 13.27 | 13.44 8.18 10.90 | 12.30 | 12.49 7.83 | 10.15 | 11.37 | 11.57
DWT M =3 9.65 12.18 | 13.32 | 13.52 9.06 11.13 | 12.41 | 12.59 8.53 | 1043 | 1154 | 11.68
DWT M =4 9.65 12.60 | 13.37 | 13.65 9.01 11.03 | 1251 | 12.73 8.42 | 10.39 | 11.68 | 11.83
DTT M =2 9.38 12.89 | 13.76 | 13.69 8.73 11.93 | 12.79 | 12.74 8.25 | 10.88 | 11.84 | 11.80
DTT M =3 10.45 | 12.80 | 13.99 | 13.83 9.66 11.69 | 13.06 | 12.88 8.97 | 10.95 | 12.15 | 11.93
DTT M =4 10.80 | 13.32 | 14.16 14.01 10.05| 1228 | 13.31| 13.07 9.35| 11.20| 12.47| 12.15

DWT M =2 8.63 12.19 | 13.25 | 13.50 8.16 10.89 | 12.28 | 12.55 7.82 | 10.14 | 11.35 | 11.62
DWT M =3 9.63 12.17 | 13.31 | 13.55 9.05 11.13 | 12.41 | 12.61 8.53 | 10.42 | 1154 | 11.70
DWT M =4 9.62 1255 | 13.37 | 13.68 8.99 11.04 | 1251 | 12.76 8.41 | 10.39 | 11.68 | 11.86
DTT M =2 9.33 12.88 | 13.74 | 13.75 8.70 11.92 | 12.77 | 12.79 8.23 | 10.85 | 11.82 | 11.84
DTT M =3 10.43 | 12.78 | 13.99 | 13.85 9.65 11.70 | 13.06 | 12.89 8.97 | 10.96 | 12.14 | 11.94
DTT M =4 10.78 13.30 | 14.17 | 14.04 10.04 | 12.23 13.31 | 1310 9.34 | 11.21 12.47 | 12.17

TABLE I
DENOISING RESULTS ONBARBARA IMAGE FOR DIFFERENT INITIAL SNR'S. IN THE TOP PART OF THE TABLE THE VARIANCE IS ASSUMED TO BE KNOWN
AND IN THE BOTTOM ONE, IT IS ESTIMATED. THE CONSIDERED ESTIMATORS ARESURESHRINK (SURE) [35], NeIGHBLOCK (NB) [37], BIVARIATE
SHRINKAGE (BIV) [38] AND VISUSHRINK (VISU).

SNR; i+ = 4.13 dB SNR;,,it = 3.13 dB SNR; i+ = 2.13 dB
Visu | SURE | Biv NB Visu | SURE | Biv NB Visu | SURE | Biv NB
DWT M =2 | 3.17 6.66 | 6.78 7.46 || 2.83 | 6.05 6.19 | 6.87 || 251 | 5.48 | 5.64 | 6.30
DWT M =3 3.53 7.12 7.14 | 7.84 3.21 6.51 6.53 7.23 2.90 5.91 5.96 | 6.64
DWT M =4 | 3.60 752 | 747] 816 3.24| 6.91 6.83 | 753 || 291 6.31 | 6.23 | 6.93
DTT M =2 3.82 7.12 7.10 | 7.57 3.47 6.52 6.50 6.98 3.12 5.96 596 | 6.42
DTT M =3 4.15 7.49 7.42 | 7.92 3.79 6.91 6.82 7.31 3.46 6.28 6.25 | 6.72
DTT M =4 4.23 7.82 7.72 | 8.21 3.84 7.23 7.09 7.58 3.49 6.65 6.49 | 6.98

DWT M =2 | 2.56 519 | 573 | 6.76 || 2.34 | 4.92 537 | 6.34 || 211 | 4.64 | 503 | 5.92
DWT M =3 | 3.27 6.60 | 6.77 | 7.72 || 3.01 | 6.28 6.26 | 7.16 || 2.75 | 5.62 | 5.76 | 6.61
DWT M =4 | 3.50 751 | 7.36| 816 || 3.17 | 6.88 6.74 | 754 || 286 | 6.29 | 6.15| 6.94
DTT M =2 3.12 586 | 597 | 6.93 | 289 | 551 562 | 651 || 265 | 495 | 528 | 6.10
DTT M =3 3.84 7.07 | 7.04] 784 | 3.55| 6.56 6.52 | 7.27 || 3.27 | 597 | 6.02 | 6.72
DTT M =4 411 781 | 760 | 8.23 || 3.76 | 7.22 699 | 760 || 342 | 6.64 | 6.41 | 7.00

TABLE Il
DENOISING RESULTS ON SEISMIC IMAGE FOR DIFFERENT INITIAISNR'S. IN THE TOP PART OF THE TABLE THE VARIANCE IS ASSUMED TO BE KNOWN
AND IN THE BOTTOM ONE, IT IS ESTIMATED. THE CONSIDERED ESTIMATORS ARESURESHRINK (SURE) [35], NEIGHBLOCK (NB) [37], BIVARIATE
SHRINKAGE (BIV) [38] AND VISUSHRINK (VISU).
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Visu [ SURE] Biv. | NB Visu | SURE] Biv [ NB Visu [ SURE] Biv [ NB
Texture SNR; i+ = 7.71 dB SNR; i+ = 5.71 dB SNR; it = 3.71 dB

symlet DWT 5.01 9.78 9.96 10.33 || 3.97 8.40 8.58 8.99 3.07 7.12 7.31 7.73
DW MLT 5.04 10.08 10.11 | 10.58 || 3.94 8.60 8.71 9.20 3.01 7.33 7.38 7.89
AC DWT 5.18 10.06 10.07 | 10.58 || 4.11 8.61 8.70 9.22 3.19 7.32 7.39 7.94

symlet DTT 6.59 10.64 10.85 | 10.91 || 5.36 9.36 9.55 9.61 4.24 8.16 8.32 8.38

DT MLT 6.94 11.04 11.07 | 11.32 || 5.56 9.72 9.79 9.99 4.35 8.50 8.54 8.70
AC DTT 6.95 10.97 11.01 | 11.29 || 5.60 9.69 9.74 9.97 4.40 8.45 8.52 8.71
Barbara SNR;,.;+ = 5.67 dB SNR; ;¢ = 4.17 dB SNR; it = 2.67 dB

symlet DWT | 8.66 11.83 | 12.72 | 1295 8.21 | 10.76 | 11.83 | 12.06 7.85 9.94 | 10.98 | 11.19
DW MLT 8.95 12.05 | 12.70 | 1296 || 8.37 | 11.00 | 11.81 | 12.05 7.88 9.81 | 10.97 | 11.17
AC DWT 9.20 12.17 | 1293 | 13.17 || 8.58 | 10.86 | 12.06 | 12.27 8.08 9.94 | 11.23| 11.39

symlet DTT 9.45 1292 | 13.69 | 1362 | 8.86 | 11.82 | 12.74 | 12.70 8.43 | 10.85 | 11.83 | 11.80
DT MLT 10.49 | 13.29 | 14.15 | 1398 || 9.67 | 12.32| 13.26 | 13.07 8.94 | 11.07 | 12.39 | 12.17
AC DTT 10.71| 13.40| 1431 | 1408 9.88 | 12.31 13.43 | 13.17 | 9.12 11.16 | 1256 | 12.28
Seismic SNR; i+ = 4.13 dB SNR; i+ = 3.13 dB SNR; i+ = 2.13 dB

symlet DWT | 3.22 6.64 6.74 7.39 2.91 6.04 6.15 6.80 2.60 5.47 5.60 6.23
DW MLT 3.54 7.09 7.08 7.72 3.22 7.11 6.47 7.11 2.92 5.90 5.90 6.53
AC DWT 3.64 7.27 7.26 7.90 3.31 6.61 6.64 7.29 3.01 6.06 6.05 6.70

symlet DTT 3.99 7.22 7.25 7.63 3.64 | 6.65 6.66 7.05 3.31 6.11 6.12 6.50

DT MLT 4.30 8.01 7.74 8.13 3.95| 7.40 7.12 7.53 3.62 6.82 6.53 6.96
AC DTT 4.39 8.04 7.83 8.24 || 4.02 | 7.44 7.20 7.64 3.68 6.85 6.60 7.05
TABLE IV

DENOISING RESULTS FOR DIFFERENT INITIALSNR’S AND DIFFERENT WAVELETS FAMILIES THE THREE PREVIOUS IMAGES ARE STUDIEDTHE
CONSIDERED ESTIMATORS ARESURESHRINK (SURE) [35], NeIGHBLOCK (NB) [37], BIVARIATE SHRINKAGE (BIV) [38] AND VISUSHRINK (VISU).



