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Abstract

We consider the detection problem of correlations in a p-dimensional Gaussian vector

for p large, when we observe n independent, identically distributed random vectors. We

assume that the covariance matrix vary in some ellipsoid with parameter α > 1/2 and

total energy bounded by L > 0. We prove here both rate and sharp asymptotic results

in the minimax setup.

Our test procedure is a U-statistic of order 2 corrected by weighting with an optimal

sequence, chosen as solution of an extremal problem. This procedure weights diagonal

elements in a polynomial way and truncates the number of diagonals to take into account.

We show that our test statistic has a Gaussian asymptotic behaviour under the null

hypothesis and under the alternatives close to the detection boundary. Moreover, it

attains the sharp asymptotic rate, i.e. with explicit asymptotic constant, for the maximal

type II error and the total error probabilities, when n = o(1)p2α.

We show that sharp asymptotic lower bounds for the maximal type II error and total

error probabilities under no restriction on p and n.

We deduce rate asymptotic minimax results for testing the inverse of the covariance

matrix.

Mathematics Subject Classifications 2000: 62G10, 62H15, 62G20

Key Words: covariance matrix, goodness-of-fit tests, high-dimensional data, minimax sep-

aration rate, sharp asymptotic rate, U-statistic
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1 Introduction

A large variety of applied fields collect and need to recover information from high-dimensional

data. Among these we can cite for example communications and signal theory, econometrics,

biology and finance. Testing large covariance matrix is an important problem and has recently

been approached via several techniques: corrected likelihood ratio test using the theory of

large random matrices, methods based on the sample covariance matrix and so on.

Let X1, . . . , Xn, be n independent and identically distributed p-vectors following a mul-

tivariate normal distribution Np(0,Σ), where Σ = [σij ]1≤i,j≤p is the normalized covariance

matrix, with σii = 1, for all i = 1 to p. Let us denote by Xk = (Xk,1, . . . , Xk,p)
T for all

k = 1, . . . , p. In this paper we also assume that the size p of the vectors grows to infinity as

well as the sample size n.

We consider the following goodness-of-fit test, where we test the null hypothesis

H0 : Σ = I, where I is the p× p identity matrix (1)

against the composite alternative hypothesis

H1 : Σ ∈ F(α,L), such that
1

2p
‖Σ− I‖2F ≥ ϕ2.

The class of matrices F(α,L) is defined as follows, for α > 0,

F(α,L) = {Σ ∈ C>0 ;
1

p

∑
1≤i<j≤p

σ2
ij |i− j|2α ≤ L for all p and σii = 1 for all i = 1, . . . , p}

where C>0 is the set of all non-negative definite symmetric p× p matrices.

Note that null hypothesis H0 : Σ = Σ0 with a given non-negative definite covariance

matrix Σ0 is equivalent to (1). This follows simply from the fact that we can always transform

the observations Xi into Zi = Σ
− 1

2
0 Xi and then test (1) using the Zi.

Let us denote by

Q(α,L, ϕ) = {Σ ∈ F(α,L) ;
1

p

∑
1≤i<j≤p

σ2
ij ≥ ϕ2 } (2)

The set of covariance matrices under the alternative hypothesis consists of matrices of size

p × p, whose elements decrease polynomially when moving away from the diagonal. In the

following, we assume that n→∞ , p→∞ and that ϕ2 = ϕ2(n, p) is related to n and p, but

also to α,L.

The problem of estimation of large covariance matrices has been considered from a mini-

max and adaptive point of view in various setups, see [4], [3], [8], [9] and references therein.

Unlike the estimation of the covariance matrix, the goodness-of-fit test has been considered

in a minimax setup in one previous paper, by [7]. They do not restrict the alternative to
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a nonparametric class, they consider H1 : ‖Σ − I‖F ≥ ϕ. For this alternative the minimax

optimal rate is of order
√
p/n. We will see in next Section that this rate corresponds to

the first order term 1/n in the variance of the estimator of ‖Σ − I‖2F /p. In our setup, the

restriction to the nonparametric class Q(α,L, ϕ) makes us go further to second order terms.

Likelihood ratio tests (LRT) were first designed for fixed dimension p, p ≤ n, but the

LRT statistic tends to infinity as p is also large. This was noted by [1] who proposed a

correction of the LRT statistic and showed its convergence in law under the null hypothesis,

as soon as p/n → c, for some fixed c ∈ (0, 1). Indeed, this correction is based on the

asymptotic behaviour of the spectrum of the covariance matrix. A similar phenomenon was

noted for tests based on quadratic forms of the sample covariance matrix by [16], who also

gave corrected tests for goodness-of-fit and for sphericity for normally distributed random

vectors. In order to deal with non Gaussian random vectors, [10] do moment assumptions

for the stationary law of the observations.

Tests for the identity matrix for large non Gaussian vectors were constructed under mild

dependence assumptions by [17]. They use maximum deviation of the sample covariance

matrix whose limit behaviour was studied by [6] under the null hypothesis and generalized

to Gaussian m-dependent data. These methods show an original limit behaviour of Gumbel

type for the test statistic.

A non-asymptotic sphericity test for Gaussian vectors was studied by [2]. The alternative

is given by a model with rank-one and sparse additive perturbation in the variance.

We describe here the rate asymptotics of the error probabilities from the minimax point

of view. We recall that a test procedure ∆ is a measurable function with respect to the ob-

servations, taking values in [0, 1]. Set η(∆) = EI(∆) = PI(∆ = 1) its type I error probability,

β(∆, Q(α,L, ϕ)) = sup
Σ∈Q(α,L,ϕ)

EΣ(1 − ∆) = sup
Σ∈Q(α,L,ϕ)

PΣ(∆ = 0) its maximal type II error

probability over the set Q(α,L, ϕ), and by

γ(∆, Q(α,L, ϕ)) = η(∆) + β(∆, Q(α,L, ϕ))

the total error probability of ∆. Let us denote by γ the minimax total error probability over

Q(α,L, ϕ) which is defined by

γ = γ(ϕ) := γ(Q(α,L, ϕ)) = inf
∆
γ(∆, Q(α,L, ϕ))

where the infimum is taken over all test procedures. We want to describe the separation rate

ϕ̃ = ϕ̃(n, p) such that, on the one hand,

γ → 1 if
ϕ

ϕ̃
→ 0.
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In this case we say that we can not distinguish between the two hypotheses. On the other

hand, we exhibit an explicit test procedure ∆∗ such that its total error probability tends to 0

γ(∆∗, Q(α,L, ϕ))→ 0 if
ϕ

ϕ̃
→ +∞.

We say that ∆∗ is asymptotically minimax consistent test and ϕ̃ is the asymptotically mini-

max rate.

In this paper, we find asymptotically minimax rates for testing over the class F(α,L).

The minimax consistent test procedure is based on a U-statistic of second order, weighted

in an optimal way. In this, our procedure is very different from known corrected procedures

based on quadratic forms of the sample covariance matrix, see e.g. [16]. This is the first time

a weighted test-statistic is used for testing covariance matrices.

Moreover, our rates are sharp minimax. We show a Gaussian asymptotic behaviour of the

test statistic in the neighbourhood of the separation rate. We get the following expression

for the maximal type II probability error

inf
∆:η(∆)≤w

β(∆, Q(α,L, ϕ)) = Φ(z1−w − n
√
pb(ϕ)) + o(1),

where Φ denotes the cumulative distribution function (cdf) of the standard Gaussian distri-

bution and z1−w is the 1−w quantile of the standard Gaussian distribution for any w ∈ (0, 1).

We deduce that the minimax total error probability is of the type

γ(ϕ) = 2Φ(−n√p b(ϕ)/2) + o(1),

where b2(ϕ) = C(α,L)ϕ4+1/α as ϕ → 0, C(α,L) is explicitly given. This shows that the

asymptotically sharp minimax rate is

ϕ̃ = (C(α,L)n2p)−α/(4α+1),

corresponding to n2pb2(ϕ̃) = 1 and to the asymptotic testing constant C(α,L).

Analogous results were obtained by [5] in the particular case where the covariance matrix

is Toeplitz, that is σi,j = σ|i−j| for all different i and j from 1 to p. We note a gain of a factor

p in the minimax rate. The results are valid for any n ≥ 2 and asymptotics are taken with

p. The asymptotically sharp minimax rate for Toeplitz covariance matrices is

ψ̃ = (C(α,L)n2p2)−α/(4α+1).

This additional factor p can be heuristically explained by the number of parameters p− 1 for

a Toeplitz matrix, instead of p(p − 1)/2 for an arbitrary covariance matrix. For n = 1 the
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test problem for Toeplitz covariance matrices was solved in the sharp asymptotic framework,

as p→∞, by [11]. Let us also recall that the adaptive rates (to α) for minimax testing are

obtained for the spectral density problem by [12] by a non constructive method using the

asymptotic equivalence with a Gaussian white noise model.

Important generalizations of this problem include testing in a minimax setup of composite

null hypotheses like sphericity, H0 : Σ = v2 ·I, for unknown v2 in some compact set separated

from 0, or bandedness, H0 : Σ = Σ0 such that [Σ0]ij = 0 for all i 6= j with |i − j| > K.

Our proofs rely on the Gaussian distribution of Gaussian vectors. Generalizations to non

Gaussian distributions with finite moments of some order can be proposed under additional

assumptions on the behaviour of higher order moments, like e.g. [10]. Finding explicit test

procedures which adapt automatically to parameters α and/or L of our class of matrices will

be the object of future work. We focus here on sharp minimax rates.

Section 2 introduces the test statistic and studies its asymptotic properties. Next we give

upper bounds for the maximal type II error probability and for the total error probability

and refine these results to sharp asymptotics under the condition that n = o(1)p2α.

In Section 3 we prove sharp asymptotic optimality without restriction on n and p large

and deduce the optimality of the minimax separation rates. In Section 4 we present the

rate minimax ressults for testing the inverse of the covariance matrix. Proofs are given in

Section 5 and the Appendix contains the extremal problem providing both optimal weights

for the test statistic and a family of optimal covariance matrices for the lower bounds.

2 Test procedure and sharp asymptotics

In the minimax theory of tests developped since [15], it is well understood that optimal test

statistics are estimators (suitably normalized and tuned) of the functional which defines the

separation of an element in the alternative from the element of the null hypothesis. In our

case this is the Frobenius norm ‖Σ− I‖2F = tr[(Σ− I)2].

Weighting the elements of the sample covariance matrix appeared first as hard threshold-

ing in minimax estimation of large covariance matrices. Let us mention [4] for banding i.e.

truncation of the matrix to its k first diagonals (closest to the main diagonal), [3] for hard

thresholding, then [8] where tapering was studied. It is a natural idea when coming from

minimax nonparametric estimation.

However, that was never used for tests concerning large covariance matrices. In this

section, we introduce a weighted U-statistic of order 2 for testing large covariance matrices,

study its asymptotic properties and give asymptotic upper bounds for the minimax rates of

testing.
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From now on asymptotics and symbols o, O, ∼ and � are considered n and p tend to

infinity. Recall that, given sequences of real numbers u and real positive numbers v, we

say that they are asymptotically equivalent, u ∼ v, if limu/v = 1. Moreover, we say that

the sequences are asymptotically of the same order, u � v, if there exist two constants

0 < c ≤ C <∞ such that c ≤ lim inf u/v and lim supu/v ≤ C.

2.1 Test statistic and its asymptotic behaviour

For any covariance matrix Σ, we recall that the Frobenius norm is computed as

‖Σ− I‖2F = tr[(Σ− I)2] = 2
∑

1≤i<j≤p
σ2
ij .

Our test statistic is a weighted U-statistic of order 2. It can be also seen as a weighted

functional of the sample covariance matrix. The weights w∗ij are constant on each diagonal

(they depend on i and j only through i − j), non-zero only for |i − j| ≤ T for some large

integer T and decreasing polynomially for elements further from the main diagonal (as |i− j|
is increasing). More precisely, we consider the following test statistic:

D̂n =
1

n(n− 1)p

∑
1≤k 6=l≤n

∑
1≤i<j≤p

w∗ijXk,iXk,jXl,iXl,j (3)

where

w∗ij =
λ

2b(ϕ)

(
1−

( |i− j|
T

)2α)
+
, T = bCT (α,L) · ϕ−

1
α c

λ = Cλ(α,L) · ϕ
2α+1
α , b(ϕ) = C1/2(α,L) · ϕ2+ 1

2α

(4)

with

CT (α,L) = ((4α+ 1)L)
1
2α , Cλ(α,L) =

2α+ 1

2α
((4α+ 1)L)−

1
2α ,

C(α,L) =
2α+ 1

2α(4α+ 1)1+1/(2α)
L−

1
2α .

(5)

Note that the weights {w∗ij}i,j and the parameters T, λ, b2(ϕ) are obtained by solving an

extremal problem which is postponed to the Appendix.

In fact the weights in (4) have further properties:

w∗ij ≥ 0 ,
1

p

∑
1≤i<j≤p

w2∗
ij =

1

2
,

sup
i,j

w∗ij �
1√
T
, as ϕ→ 0 and pϕ1/α →∞.

The following Proposition gives the moments of D̂n under the null and their bounds under

the alternative hypothesis, respectively, as well as the asymptotic normality under the null

hypothesis.

6



Proposition 1 The test statistic D̂n defined by (3) with parameters given by (4) and (5) has

the following moments, under the null hypothesis:

EI(D̂n) = 0, VarI(D̂n) =
2

n(n− 1)p2

p∑
i=1

p∑
j=1

i<j

w∗2ij =
1

n(n− 1)p

n
√
p D̂n

d→ N (0, 1).

Moreover, under the alternative, if we assume that ϕ → 0, p ϕ1/α → ∞ and α > 1/2, we

have, uniformly over Σ in Q(α,L, ϕ):

EΣ(D̂n) =
1

p

p∑
i=1

p∑
j=1

i<j

w∗ijσ
2
ij ≥ b(ϕ) and VarΣ(D̂n) =

T1

n(n− 1)p2
+

T2

np2
,

where

T1 ≤ p · (1 + o(1)) + p · EΣ(D̂n) ·O(T
√
T ), (6)

T2 ≤ p3/2
(
o(1)EΣ(D̂n)) +O(T 3/4)E3/2

Σ (D̂n)
)

+ p ·O(
√
T )EΣ(D̂n). (7)

Note that, under the alternative, we have the additional assumption that pϕ−1/α � T/p→ 0,

when p grows to infinity. This is natural in order to a have a meaningful weighted statistic.

When applied to the asymptotically minimax rate, this condition becomes n = o(1)p2α.

Let us take a quick look at the extremal problem (36): for given ϕ > 0, b(ϕ) is the least

value that EΣ(D̂n) can take over Σ in the alternative set of hypotheses.

Under the alternative, we shall establish the asymptotic normality under additional con-

ditions that the underlying covariance matrix close to the border of the null set. This will be

sufficient to give upper bounds of the total error probability of Gaussian type in next Section.

Proposition 2 The test statistic D̂n defined by (3) with parameters given by (4) and (5),

such that ϕ→ 0, pϕ1/α →∞ and under the aditionnal assumption that n2pb2(ϕ) = O(1), is

asymptotically normal:

n
√
p(D̂n − EΣ(D̂n))→ N (0, 1),

uniformly over Σ in Q(α,L, ϕ) such that EΣ(D̂n) = O(b(ϕ)).

2.2 Upper bounds for the error probabilities

In order to distinguish between the two hypothesis H0 and H1 defined previously, we defined

the following test procedure

∆∗ = ∆∗(t) = 1(D̂n > t), t > 0 (8)
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where D̂n is the estimator defined in (3).

The following theorem proves that the previously defined test procedure is minimax con-

sistent if t is conveniently chosen.

Theorem 1 If n and p tend to infinity, the test procedure ∆∗ defined in (8) with t > 0 has

the following properties :

Type I error probability : if n
√
p · t→ +∞ then η(∆∗)→ 0.

Type II error probability : if α > 1/2 and if

ϕ→ 0, pϕ1/α →∞ and n2pb2(ϕ)→ +∞

then, uniformly over t such that t ≤ c · C1/2(α,L) · ϕ2+ 1
2α , for some constant c in (0, 1), we

have

β(∆∗(t), Q(α,L, ϕ))→ 0.

If, moreover, t is such that n
√
p · t→ +∞, then ∆∗(t) is asymptotically minimax consistent:

γ(∆∗(t), Q(α,L, ϕ))→ 0.

In the next Theorem we give a more refined upper bound of error probabilities of Gaussian

type. The proof of this result explains the choice of the weights as solution of the extremal

problem given in the Appendix.

Recall that Φ is the cumulative distribution function (cdf) of standard Gaussian random

variable and, for any w ∈ (0, 1), z1−w is defined by Φ(z1−w) = 1− w.

Theorem 2 If n and p tend to infinity, the test procedure ∆∗ defined in (8) with t > 0 has

the following properties :

Type I error probability : we have η(∆∗(t)) = 1− Φ(n
√
p · t) + o(1).

Type II error probability : if α > 1/2 and if

ϕ→ 0, pϕ1/α →∞ and n2p b2(ϕ) = O(1), (9)

then, uniformly over t, we have

β(∆∗(t), Q(α,L, ϕ)) ≤ Φ(n
√
p · (t− b(ϕ))) + o(1).

In particular, for t = tw such that n
√
p · tw = z1−w we have η(∆∗(tw)) ≤ w+ o(1) and we

also get

β(∆∗(tw), Q(α,L, ϕ)) ≤ Φ(z1−w − n
√
p · b(ϕ)) + o(1).

Another important consequence of the previous theorem, is that the test procedure ∆∗, with

t∗ = b(ϕ)/2 is such that

γ(∆∗(t∗), Q(α,L, ϕ)) ≤ 2 Φ

(
−n√p b(ϕ)

2

)
+ o(1).
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In particular, we get the asymptotically minimax consistent test procedure ∆∗(t∗) if ϕ/ϕ̃→
∞, where we call sharp separation rate

ϕ̃ =
(
C1/2(α,L)n

√
p
)− 2α

4α+1
.

It is obtained from the relation n2pb2(ϕ̃) = 1. Note that the separation rate verifies (9) when

p and n are such that p2α/n→∞. Indeed, pϕ̃1/α →∞ implies that n = o(1)p2α.

Proof of Theorems 1 and 2. The proof is based on the Proposition 1 and the

asymptotic normality of the weighted test statistic n
√
pD̂ in Proposition 2. We get for the

type I error probability of ∆∗

η(∆) = P(D̂n > t) = 1− Φ(n
√
p · t) + o(1).

For the type II error probability of ∆∗, uniformly in Σ over Q(α,L, ϕ), we have

PΣ(D̂n ≤ t) ≤ PΣ(|D̂n − EΣ(D̂n)| ≥ EΣ(D̂n)− t) ≤ VarΣ(D̂n)

(EΣ(D̂n)− t)2
,

for t ≤ c · b(ϕ) and 0 < c < 1. It implies that n
√
p · t ≤ cn√pb(ϕ). Therefore, we distinguish

the cases where n2pb2(ϕ) tends to infinity or is bounded.

We use the fact that, under the alternative, EΣ(D̂n) ≥ b(ϕ). We bound from below as

follows:

EΣ(D̂n)− t ≥ (1− c)EΣ(D̂n).

Then, it gives

PΣ(D̂n ≤ t) ≤
T1

n(n− 1)p2(1− c)2E2
Σ(D̂n)

+
T2

np2(1− c)2E2
Σ(D̂n)

=: S1 + S2.

Let us bound from above S1 using (6):

S1 ≤
1 + o(1)

n(n− 1)p(1− c)2b2(ϕ)
+

O(T 3/2)

n(n− 1)p b(ϕ)
.

We have T 3/2b(ϕ) � ϕ2− 1
α = o(1), for all α > 1/2, which proves that :

S1 ≤
1 + o(1)

n(n− 1)p(1− c)2b2(ϕ)

which tends to 0 provided that n2pb2(ϕ)→ +∞.

We will see using (7) that the term S2 tends to 0 as well:

S2 ≤ o(1)

n
√
p b(ϕ)

+
O(T 3/4b1/2(ϕ))

n
√
p b(ϕ)

+
o(1)

np b(ϕ)

= o(1) for all α > 1/2, as soon as n2pb2(ϕ)→ +∞.
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Now, if we are close to the separation rate: n2pb2(ϕ) = O(1), we see that whenever

EΣ(D̂n)/b(ϕ) tends to infinity, the bound is trivial (S1 + S2 → 0).

The nontrivial bound is obtained when Σ under the alternative is close to the null hy-

pothesis in the sense that EΣ(D̂n) = O(b(ϕ)) together with the fact that ϕ is close to the

separation rate: n2pb2(ϕ) = O(1). We apply Proposition 2 to get the asymptotic normality

n
√
p(D̂n − EΣ(D̂n))→ N (0, 1).

Thus,

sup
Σ∈Q(α,L,ϕ))

PΣ(D̂n ≤ t) ≤ sup
Σ∈Q(α,L,ϕ))

Φ(n
√
p · (t− EΣ(D̂n))) + o(1)

≤ Φ(n
√
p · (t− inf

Σ∈Q(α,L,ϕ))
EΣ(D̂n))) + o(1).

At this point, choosing optimal weights translates into

inf
wij>0:

∑
i 6=j w

2
ij=1/2

sup
Σ∈Q(α,L,ϕ))

PΣ(D̂n ≤ t)

≤ Φ(n
√
p · (t− sup

wij>0:
∑
i 6=j w

2
ij=1/2

inf
Σ∈Q(α,L,ϕ))

EΣ(D̂n))) + o(1)

≤ Φ(n
√
p · (t− b(ϕ))) + o(1),

after solving the extremal problem in the Appendix, which ends the proof of the Theorem.

3 Asymptotic optimality

The next theorem shows sharp lower bounds for the maximal type II error probability and

deduces the lower bounds for the total error probability.

Theorem 3 Suppose α > 1/2 and, moreover, that n and p tend to infinity and that ϕ→ 0.

Then,

inf
∆:η(∆)≤w

β(∆, Q(α,L, ϕ)) ≥ Φ(z1−w − n
√
pb(ϕ)) + o(1),

where the infimum is taken over all test statistics ∆ with type I error probability less than or

equal to w. Moreover,

γ = inf
∆
γ(∆, Q(α,L, ϕ)) ≥ 2Φ(−n√p b(ϕ)

2
) + o(1).

Theorems 2 and 3 imply that the sharp separation rate for minimax testing is

ϕ̃ =
(
n
√
pC1/2(α,L)

) 2α
4α+1

,
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where the constant C(α,L) is given by (5).

As a corollary, we get that if ϕ is such that ϕ/ϕ̃→ 0, we can not distinguish between the

null and the alternative hypotheses.

Corollary 4 Suppose α > 1/2 and, moreover, that n and p tend to infinity. If ϕ → 0 such

that

n2pb2(ϕ)→ 0

then

γ = inf
∆
γ(∆, Q(α,L, ϕ))→ 1,

where the infimum is taken over all test statistics ∆.

Together with Theorem 1, this Corollary shows that the separation rates are asymptotically

minimax.

The proof of the lower bounds is postponed to Section 5. We construct a family of n

large centered Gaussian vectors with covariance matrices based on Σ∗ given by the extremal

problem in the Appendix and a prior measure on these covariance matrices. We prove that

the likelihood under the null and the average likelihood under the alternative hypothesis tend

to the same limit asymptotically.

The log of the ratio of the likelihoods associated to an arbitrary Σ with respect to I under

the null hypothesis is known to drift away to infinity (see [1], who corrected this ratio to get

a proper limit). However, the log of the Bayesian likelihood ratio with our prior measure

is asymptotically normally distributed. This property is highly surprising and essential in

proving sharp asymptotic lower bounds for testing in our setup.
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4 Testing the inverse of the covariance matrix

Let us consider the same model, but the following test problem

H0 : Σ−1 = I

against the alternative

H1 : Σ ∈ G(α,L, λ) such that
1

2p
‖Σ−1 − I‖2F ≥ ψ2,

where G(α,L, λ) is the class of covariance matrices Σ in F(α,L) with the additional constraint

that the eigenvalues λi(Σ) are bounded from below by some λ ∈ (0, 1) for all i from 1 to p

and all Σ in the set.

We prove here that previous results apply to this setup and we get the same rates, but

not the sharp asymptotics. Note that, the additional hypothesis is the mildest one that does

not change the rates for testing. Indeed, we see this case as a well-posed inverse problem.

The cases of ill-posed inverse problem where the smallest eigenvalue can be allowed to tend

to 0 will most certainly imply a loss in the rate and is beyond the scope of this paper.

Theorem 5 Suppose α > 1/2, L > 0 and λ ∈ (0, 1). If n and p tend to infinity and ψ tends

to 0, such that pψ1/α →∞, then ϕ̃ is the asymptotically minimax rate for the previous test.

Proof. Note that Σ−1 = I if and only if Σ = I. Moreover, if Σ belongs to G(α,L, λ) such

that 1
2p‖Σ

−1 − I‖2F ≥ ψ2, then Σ obviously belongs to F(α,L) and is such that

1

2p
‖Σ− I‖2F ≥

λ2

2p
‖Σ−1 − I‖2F ≥ λ2ψ2.

Thus we can proceed with our former test procedure, with ϕ replaced by λψ and we obtain

the upper bounds in the definition of the separation rates.

The lower bounds in the previous Section will also remain valid. Indeed, this proof is

based on the construction of a subfamily {Σ∗U : u ∈ U} on the set of alternatives. We have

proven in Proposition 3, that

min
i
λi(Σ

∗
U ) ≥ 1−O(ϕ1−1/(2α)),

and we have α > 1/2 and ϕ = λψ → 0 as ψ → 0 and therefore, 1 − O(ϕ1−1/(2α)) ≥ λ for

ψ > 0 small enough. Thus, this family belongs to the set of alternatives we consider here, as

well.

12



5 Proofs

Proof of Theorem 3. Recall that γ = infw∈(0,1)(w + inf∆:η(∆)≤w)β(∆, Q(α,L, ϕ))).

Therefore it is sufficient to deal with the maximal type II error.

The first step of the proof is to reduce the set of parameters to a convenient parametric

family. Let Σ∗ = [σ∗ij ]1≤i,j≤p be the matrix which has 1 on the diagonal and off-diagonal

entries σ∗ij where

σ∗ij =
√
λ

(
1− (

|i− j|
T

)2α

) 1
2

+

for i 6= j, (10)

with λ and T are given by (4) and (5).

Let us define Q∗ a subset of Q(α,L, ϕ) as follows

Q∗ = {Σ∗U : [Σ∗U ]ij = [I(i = j) + uijσ
∗
ijI(i 6= j)]1≤i,j≤p , U ∈ U},

where

U = {U = [uij ]1≤i, j≤p : uii = 0, ∀i and uij = uj i = ±1 · I(|i− j| ≤ T ), for i 6= j}.

The cardinality of U is p(T − 1)/2.

Using Proposition 3 hereafter we have that for all Σ∗U ∈ Q∗, Σ∗U is non-negative definite,

for ϕ > 0 small enough.

Assume that X1, . . . , Xn ∼ N(0, I) under the null hypothesis and denote by PI the

likelihood of these random variables. We assume that X1, . . . , Xn ∼ N(0,Σ∗U ), under the

alternative, and we denote PU the associated likelihood. In addition let

Pπ =
1

2p(T−1)/2

∑
U∈U

PU

be the average likelihood over Q∗.

The problem can be reduced to the test H0 : X1, ..., Xn ∼ PI against the averaged

distribution H1 : X1, ..., Xn ∼ Pπ, in the sense that

inf
∆:η(∆)≤w

β(∆(t), Q(α,L, ϕ)) ≥ inf
∆:η(∆)≤w

β(∆(t), Pπ) + o(1)

and that

inf
∆
γ(∆, Q(α,L, ϕ)) ≥ inf

∆
γ(∆, Pπ) + o(1).

It is, therefore, sufficient to show that

inf
∆:η(∆)≤w

β(∆(t), Pπ) ≥ Φ(n
√
p · (t− b(ϕ))) + o(1) (11)

and that

inf
∆
γ(∆, Pπ) ≥ 2Φ(−n√p b(ϕ)

2
) + o(1). (12)
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In order to obtain (11) and (12), we apply results in Section 4.3.1 of [14] giving the sufficient

condition that, in PI probability:

log
fπ
fI

(X1, ..., Xn) = unZn −
u2
n

2
(1 + oP (1)), (13)

where un = n
√
pb(ϕ) and Zn is asymptotically distributed as a standard Gaussian distribu-

tion. Let us finish by proving (13).

Proposition 3 For α > 1/2, the symmetric matrix Σ∗U = [uijσ
∗
ij ]1≤i,j≤p, with σ∗ii = 1, for

all i from 1 to p, and σ∗ij defined in (10) is non-negative definite, for ϕ > 0 small enough,

and for all U ∈ U .

Moreover, denote by λ1,U , ..., λp,U the eigenvalues of Σ∗U , then |λi,U − 1| ≤ O(1)ϕ1−1/(2α),

for all i from 1 to p.

We deduce that

‖Σ∗U‖ ≤ 1 +O(ϕ1− 1
2α ) and ‖Σ∗U − I‖ ≤ O(ϕ1− 1

2α ). (14)

Indeed, ‖Σ∗U‖ = maxi=1,...,p λi,U ≤ 1 +O(ϕ1+ 1
2α ) and Σ∗U − I has eigenvalues λi,U − 1.

Proof of Proposition 3 . Let us check the case where uij = 1 for all i, j such that

|i− j| ≤ T and the generalization to all U in U will be obvious. Using Gershgorin’s Theorem

we get that each eigenvalue of Σ∗U = [uijσ
∗
ij ]1≤i,j≤p lies in one of the disks centered in σii = 1

and radius Ri =

p∑
j=1
j 6=i

|uijσ∗ij | =
p∑
j=1
j 6=i

σ∗ij . We have,

p∑
j=1
j 6=i

σ∗ij =
√
λ

p∑
j=1
j 6=i

(
1− (

|i− j|
T

)2α

) 1
2

+

≤ 2
√
λ

T∑
k=1

(
1− (

k

T
)2α
) 1

2

≤ 2
√
λ
( T∑
k=1

(1− (
k

T
)2α)

) 1
2
T

1
2 = O(1)T

√
λ

≤ O(1)ϕ1− 1
2α → 0 provided that α > 1/2.

We deduce that the smallest eigenvalue is bounded from below by

min
i=1,...,p

λi,U ≥ min
i
{σ∗ii −

p∑
j=1
j 6=i

σ∗ij} = 1−max
i

p∑
j=1
j 6=i

σ∗ij ≥ 1−O(1)ϕ1− 1
2α

which is strictly positive for ϕ > 0 small enough.

Let us continue the proof of (13). More explicitly,

log
fπ
fI

(X1, ..., Xn) = logEU exp

(
−1

2

n∑
k=1

X>k ((Σ∗U )−1 − I)Xk −
n

2
log det(Σ∗U )

)
,

14



where U is seen as a randomly chosen matrix with uniform distribution over the set U . Let us

denote ∆U = Σ∗U − I and write the following approximations obtained by Taylor expansion:

(Σ∗U )−1 − I = −∆U + ∆2
U (1 + o(1))

log det(Σ∗U ) = tr(∆U −
1

2
∆2
U (1 + o(1))) = −1

2
tr(Σ∗ − I)2(1 + o(1)).

Indeed, tr(∆U ) = 0 and tr(∆2
U ) does not depend on U and equals the Frobenius norm of

Σ∗ − I. This gives

log
fπ
fI

(X1, ..., Xn)

= logEU exp

(
1

2

n∑
k=1

X>k (∆U −∆2
U (1 + o(1)))Xk +

n

4
tr(Σ∗ − I)2(1 + o(1))

)

= log

EU exp
∑

1≤i<j≤p

uijσ∗ij n∑
k=1

Xk,iXk,j − (1 + o(1))
∑

h6∈{i,j}

uihuhjσ
∗
ihσ
∗
hj

n∑
k=1

Xk,iXk,j


· exp

−1 + o(1)

2

n∑
k=1

p∑
i=1

X2
k,i

∑
j:j 6=i

(σ∗ij)
2 +

n

4

∑
1≤i 6=j≤p

(σ∗ij)
2(1 + o(1))

 .

Now, we compute the expected value with respect to the i.i.d. Rademacher variables ui1,j1 ,

ui2,huh,j2 for all i1 < j1, i2 < j2 and h different from i2 and j2. Denote Wij =
∑n

k=1Xk,iXk,j

and get

log
fπ
fI

(X1, ..., Xn) = log
∏

1≤i<j≤p

cosh(σ∗ijWij)
∏

h6∈{i,j}

cosh(σ∗ihσ
∗
hjWij(1 + o(1)))


−1 + o(1)

2

n∑
k=1

p∑
i=1

X2
k,i

∑
j:j 6=i

(σ∗ij)
2 +

n

4

∑
1≤i 6=j≤p

(σ∗ij)
2(1 + o(1))

=
1

2

∑
1≤i 6=j≤p

log cosh(σ∗ijWij) +
∑

h6∈{i,j}

log cosh(σ∗ihσ
∗
hjWij(1 + o(1)))


−1 + o(1)

2

n∑
k=1

p∑
i=1

X2
k,i

∑
j:j 6=i

(σ∗ij)
2 +

n

4

∑
1≤i 6=j≤p

(σ∗ij)
2(1 + o(1)).

Now, we study the last expression as a random variable under the null hypothesis. Recall

the Taylor expansion of log cosh(u) = u2/2− u4/12 +O(u6) for small u. See also that, under

the null hypothesis, |σ∗ijWij | = OP (
√
λn). Or,

√
λn = ϕ1+1/(2α)√n = o(1)n−

2α+1
4α+1

+ 1
2 p−

2α+1
4α+1 =

o(1). We use the expansion for

log cosh(σ∗ijWij) =
1

2
(σ∗ijWij)

2 − 1

12
(σ∗ijWij)

4 +O((σ∗ijWij)
6)

and, similarly, for log cosh(σ∗ihσ
∗
hjWij(1+o(1))).We can check that, for all i 6= j,

∑
h6∈{i,j} σ

∗
ihσ
∗
hj =

o(σ∗ij). Indeed, on the one hand, |j − i| is at most T − 1 and we have

(σ∗ij)
2 ≥ λ(1− (1− 1/T )2α) = O(λ/T ) = O(ϕ2−2/α).
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On the other hand, ∑
h6∈{i,j}

σ∗ihσ
∗
hj ≤

∑
h6∈{i,j}

(σ∗ih)2 = O(ϕ2)

and ϕ2 = o(ϕ1−1/α) for all α > 0 and ϕ→ 0.

Thus, we get

log
fπ
fI

(X1, ..., Xn) =
1

2

∑
1≤i 6=j≤p

(
1

2
(σ∗ij)

2W 2
ij −

1

12
(σ∗ij)

4W 4
ij +O((σ∗ij)

6W 6
ij)

)

−1 + o(1)

2

n∑
k=1

p∑
i=1

X2
k,i

∑
j:j 6=i

(σ∗ij)
2 +

n

4

∑
1≤i 6=j≤p

(σ∗ij)
2(1 + o(1))

=
1

4

n∑
k=1

∑
1≤i 6=j≤p

(σ∗ij)
2X2

k,iX
2
k,j +

1

2

∑
1≤k 6=l≤n

∑
1≤i<j≤p

(σ∗ij)
2Xk,iXk,jXl,iXl,j

−
∑

1≤i<j≤p

(
1

12
(σ∗ij)

4W 4
ij +O((σ∗ij)

6W 6
ij)

)

−1 + o(1)

2

n∑
k=1

p∑
i=1

X2
k,i

∑
j:j 6=i

(σ∗ij)
2 +

n

4

∑
1≤i 6=j≤p

(σ∗ij)
2(1 + o(1)). (15)

With our definition: σ∗ij = w∗ij
√

2b(ϕ) and we see that

1

2

∑
1≤k 6=l≤n

∑
1≤i<j≤p

(σ∗ij)
2Xk,iXk,jXl,iXl,j = n

√
pb(ϕ) · n√pD̂n

and we can put Zn = n
√
pD̂n which is asymptotically standard Gaussian under the null

hypothesis, by Proposition 1.

Note also that Wij are non correlated, identically distributed for all i < j and that Wij/
√
n

is asymptotically standard Gaussian. Therefore, E(W 4
ij/n

2) = 3(1 + o(1)) and E(W 4
ij/n

2 −
3)2 = o(1), for all given i < j and n large. We deduce that,

∑
1≤i<j≤p

1

12
(σ∗ij)

4W 4
ij =

1 + oP (1)

12
· 3n2

∑
1≤i<j≤p

(σ∗ij)
4 =

1 + oP (1)

2
n2pb2(ϕ) =

u2
n

2
(1 + oP (1)).

Moreover,
∑

1≤i<j≤p(σ
∗
ij)

6W 6
ij = oP (u2

n) since∑
1≤i<j≤p

(σ∗ij)
6W 6

ij = OP (sup
i<j

(σ∗ijWij)
2)

∑
1≤i<j≤p

(σ∗ij)
4W 4

ij = oP (u2
n).

Remaining terms in (15) can be grouped as follows:

1 + o(1)

4

n∑
k=1

∑
1≤i 6=j≤p

(σ∗ij)
2(X2

k,i − 1)(X2
k,j − 1) = OP (1)

√
n(

∑
1≤i<j≤p

(σ∗ij)
4)1/2

= OP (1)(npb2(ϕ))1/2 = oP (un),
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which concludes the proof of (13).

Proof of Proposition 1. We recall that under the null hypothesis the coordinates of

the vector Xk are independent, so using this fact we have :

VarI(D̂n) =
2

n2(n− 1)2p2
Var(

p∑
i=1

p∑
j=1

i<j

n∑
l=1

n∑
k=1

k 6=l

w∗ijXk,iXk,jXl,iXl,j)

=
2

n(n− 1)p2

p∑
i=1

p∑
j=1

i<j

w∗2ij E4(X2
1,i) =

2

n(n− 1)p2

p∑
i=1

p∑
j=1

i<j

w∗2ij =
1

n(n− 1)p

For Σ ∈ Q(α,L, ϕ),

EΣ(D̂n) =
1

n(n− 1)p

p∑
i=1

p∑
j=1

i<j

n∑
l=1

n∑
k=1

k 6=l

w∗ijE(Xk,iXk,jXl,iXl,j)

=
1

p

p∑
i=1

p∑
j=1

i<j

w∗ijE(X1,iX1,j)E(X2,iX2,j) =
1

p

p∑
i=1

p∑
j=1

i<j

w∗ijσ
2
ij

Remark that D̂n − EΣ(D̂n) can be written as the following form

D̂n − EΣ(D̂n) =
1

n(n− 1)p

n∑
l=1

n∑
k=1

k 6=l

p∑
i=1

p∑
j=1

i<j

w∗ij(Xk,iXk,j − σij)(Xl,iXl,j − σij)

+
2

np

n∑
k=1

p∑
i=1

p∑
j=1

i<j

w∗ij(Xk,iXk,j − σij)σij (16)

Then the variance of the estimator D̂n is a sum of two uncorrelated terms

VarΣ(D̂n) =
2

n(n− 1)p2
EΣ{

p∑
i=1

p∑
j=1

i<j

w∗ij(X1,iX1,j − σij)(X2,iX2,j − σij)}2

+
4

np2
EΣ{

p∑
i=1

p∑
j=1

i<j

w∗ij(Xk,iXk,j − σij)σij}2
(17)
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Now we will give an upper bound for the first term on the right-hand side of (17). Denote by

T1 = 2EΣ{
p∑
i=1

p∑
j=1

i<j

w∗ij(X1,iX1,j − σij)(X2,iX2,j − σij)}2

=
1

2

p∑
i=1

p∑
j=1

i 6=j

p∑
i′=1

p∑
j′=1

i′ 6=j′

w∗ijw
∗
i′j′E

2
Σ{(X1,iX1,j − σij)(X1,i′X1,j′ − σi′j′)}

=
1

2

p∑
i=1

p∑
j=1

i 6=j

p∑
i′=1

p∑
j′=1

i′ 6=j′

w∗ijw
∗
i′j′(σii′σjj′ + σij′σi′j)

2

We shall distinguish three terms in the previous sum, that is (i, j, i′, j′) ∈ A1 ∪ A2 ∪ A3,

where A1, A2, A3 form a partition of the set{(i, j, i′, j′) ∈ {1, . . . , p}4 such that i 6= j, i′ 6= j′}.
More precisely in A1 we have (i, j) = (i′, j′) or (i, j) = (j′, i′), in A2 we have three different

indices (i = i′ and j 6= j′) or (j = j′ and i 6= i′) or (i = j′ and j 6= i′) or (j = i′ and i 6= j′)

and finally in A3 the indices are pairewise distinct. First, when (i, j, i′, j′) ∈ A1, we use that

VarΣ(X1,iX1,j) = (1 + σ2
ij)

2, to get

T1,1 =

p∑
i=1

p∑
j=1

i 6=j

w∗2ij (1 + σ2
ij)

2 =

p∑
i=1

p∑
j=1

i 6=j

w∗2ij +

p∑
i=1

p∑
j=1

i 6=j

w∗2ij (2σ2
ij + σ4

ij)

≤ p+ 3

p∑
i=1

p∑
j=1

i 6=j

w∗2ij σ
2
ij ≤ p+ 6 · p · L · sup

i,j
w∗2ij (18)

and this is p(1 + o(1)) since sup
i,j

w∗2ij � (1/T )→ 0. When the indices are in A2, we have three

indices out of four which are equal. We assume i = i′, therefore it is sufficient to check that,

T1,2 = 2

p∑
i=1

p∑
j=1
j 6=i

p∑
j′=1
j′ 6=i

j 6=j′

w∗ijw
∗
ij′(σjj′ + σijσij′)

2

≤ 4

p∑
i=1

p∑
j=1
j 6=i

p∑
j′=1
j′ 6=i

j 6=j′

w∗ijw
∗
ij′σ

2
jj′ + 4

p∑
i=1

p∑
j=1
j 6=i

p∑
j′=1
j′ 6=i

j 6=j′

w∗ijw
∗
ij′σ

2
ijσ

2
ij′

Now let us bound from above the first term of T1,2,

T1,2,1 :=

p∑
i=1

p∑
j=1
j 6=i

p∑
j′=1
j′ 6=i

j 6=j′

w∗ijw
∗
ij′σ

2
jj′ ≤

p∑
i=1

p∑
j=1
j 6=i

p∑
j′=1
j′ 6=i

|j−j′|<T

w∗ijw
∗
ij′σ

2
jj′ +

p∑
j=1
j 6=i

p∑
j′=1
j′ 6=i

|j−j′|≥T

|j − j′|2α

T 2α
σ2
jj′

p∑
i=1

w∗ijw
∗
ij′

(19)

18



Again we will treat each term of T1,2,1 separately. We recall that the weights w∗ij verify the

following properties

(w∗ij ≥ w∗i′j′ for |i− j| ≤ |i′ − j′|) and

p∑
i=1

w∗ij �
√
T .

In the rest of the proof we denote by k0(α,L), k1(α,L), . . . different constants that dependent

only on α and/or on L. We have for α > 1/2,

T1,2,1,1 :=

p∑
i=1

p∑
j=1
j 6=i

p∑
j′=1
j′ 6=i

|j−j′|<T

w∗ijw
∗
ij′σ

2
jj′ =

p∑
i=1

p∑
j=1
j 6=i

p∑
j′=1
j′ 6=i

|j−j′|≤|i−j|<T

w∗ijw
∗
ij′σ

2
jj′ +

p∑
i=1

p∑
j=1
j 6=i

p∑
j′=1
j′ 6=i

|i−j|<|j−j′|<T

w∗ijw
∗
ij′σ

2
jj′

≤
p∑
j=1
j 6=i

p∑
j′=1
j′ 6=i

|j−j′|<|i−j|<T

w∗jj′σ
2
jj′

p∑
i=1

w∗ij′ +

p∑
i=1

p∑
j=1
j 6=i

p∑
j′=1
j′ 6=i

|i−j|<|j−j′|<T

w∗ijw
∗
ij′ |j − j′|2α

|i− j|2α
σ2
jj′

≤ k0(α,L) ·
√
T · p · EΣ(D̂n) + (sup

i,j
w∗ij)

2
p∑
j=1

p∑
j′=1
j 6=j′

|j − j′|2ασ2
jj′(

p∑
i=1

1

|i− j|2α
)

≤ k0(α,L) ·
√
T · p · EΣ(D̂n) + k1(α,L) · L · p · (sup

i,j
w∗ij)

2

≤ p · EΣ(D̂n)
(
O(
√
T +O(

1

T
)
)

(20)

For the second term in (19), where |j − j′| ≥ T , we use the following bound:

p∑
i=1
i 6=j,j′

w∗ijw
∗
ij′ ≤

p∑
i=1
i 6=j,j′

(w∗ij)
2 ≤ 1

2
,

then we prove that,

T1,2,1,2 :=

p∑
j=1
j 6=i

p∑
j′=1
j′ 6=i

|j−j′|≥T

|j − j′|2α

T 2α
σ2
jj′

p∑
i=1

w∗ijw
∗
ij′ ≤

L · p
T 2α

= O(
p

2T 2α
) = o(p). (21)

Note that sup
i,j

σij ≤ 1. The second term of T1,2, is bounded as follows:

T1,2,2 :=

p∑
i=1

p∑
j=1
j 6=i

p∑
j′=1
j′ 6=i

j 6=j′

w∗ijw
∗
ij′σ

2
ijσ

2
ij′ =

p∑
i=1

( p∑
j=1
j 6=i

w∗ijσ
2
ij

)( p∑
j′=1
j′ 6=i

w∗ij′σ
2
ij′

)

≤ (sup
i,j

w∗ij) sup
i

( p∑
j=1

1≤|j−i|<T

σ2
ij

)( p∑
i=1

p∑
j′=1
j′ 6=i

w∗ij′σ
2
ij′

)

≤ 2L · (sup
i,j

w∗ij) · T · p · EΣ(D̂n) ≤ p · EΣ(D̂n) ·O(
√
T ) (22)
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As a consequence of (20) to (22),

T1,2 ≤ p · EΣ(D̂n) ·O(
√
T ) + o(p) (23)

The last case, where (i, j, i′, j′) vary in A3, the indices are pairwise distinct,

T1,3 =
∑

(i,j,i′,j′)∈A3

w∗ijw
∗
i′j′(σii′σjj′ + σij′σi′j)

2

≤ 2
∑

(i,j,i′,j′)∈A3

w∗ijw
∗
i′j′σ

2
ii′σ

2
jj′ + 2

∑
(i,j,i′,j′)∈A3

w∗ijw
∗
i′j′σ

2
ij′σ

2
i′j

As the two previous terms have the same upper bound, let us deal with the first one say T1,3,1.

We should distinguish two cases, the first when |i− i′| < T and the second when |i− i′| ≥ T .

We begin by the first case, which in turn will be decomposed into three terms. First,

T1,3,1,1 :=
∑

(i,j,i′,j′)∈A3
|i−j|≥|i−i′|,|i′−j′|≥|i−i′|

w∗ijw
∗
i′j′σ

2
ii′σ

2
jj′ ≤

∑
(i,j,i′,j′)∈A3

|i−j|≥|i−i′|,|i′−j′|≥|i−i′|

w∗2ii′σ
2
ii′σ

2
jj′

≤ (sup
ij
w∗ij)

∑
1≤i,i′≤p

w∗ii′σ
2
ii′

∑
1≤j,j′≤p

1<|i−j|,|i′−j′|<T

σ2
jj′ ≤ (sup

ij
w∗ij) · T 2 · p · EΣ(D̂n) (24)

Then,

T1,3,1,2 :=
∑

(i,j,i′,j′)∈A3
|i−j|<|i−i′|<T,|i′−j′|≥|i−i′|

w∗ijw
∗
i′j′σ

2
ii′σ

2
jj′ ≤

∑
(i,j,i′,j′)∈A3

|i−j|<|i−i′|<T,|i′−j′|≥|j−j′|

w∗ijw
∗
ii′σ

2
ii′σ

2
jj′

≤ (sup
ij
w∗ij) · T 2 · p · EΣ(D̂n) ≤ k2(α,L) · T

√
T · p · EΣ(D̂n) (25)

Finally, using Cauchy-Schwarz inequality, we have,

T1,3,1,3 :=
∑

(i,j,i′,j′)∈A3
|i−j|<|i−i′|<T,|i′−j′|<|i−i′|<T

w∗ijw
∗
i′j′σ

2
ii′σ

2
jj′

=
∑

(i,j,i′,j′)∈A3
|i−j|<|i−i′|<T,|i′−j′|<|j−j′|<T

w∗ijw
∗
i′j′ ·

|i− i′|2α

|i− j|α|i′ − j′|α
· σ2

ii′σ
2
jj′

≤ (sup
i,j

w∗ij)
2

p∑
i=1

p∑
i′=1
i′ 6=i′

|i− i′|2ασ2
ii′

∑
1≤ j,j′ ≤p

1≤|i−j|,|i′−j′|<T

σ2
jj′

|i− j|α|i′ − j′|α

≤ k3(α,L) · T−1 · 2pL ·max{1, T−2α+2} = o(p) for α >
1

2
. (26)
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Now we suppose that we have |i− i′| > T , then,

T1,3,2 :=
∑

(i,j,i′,j′)∈A3
|i−i′|>T

w∗ijw
∗
i′j′σ

2
ii′σ

2
jj′ =

∑
(i,j,i′,j′)∈A3
|i−i′|>T

w∗ijw
∗
i′j′
|i− i′|2α

T 2α
σ2
ii′σ

2
jj′

≤
(sup
i,j

w∗ij)
2

T 2α

∑
1≤i,i′≤p

|i− i′|2ασ2
ii′

∑
1≤j,j′≤p

1≤|i−j|,|i′−j′|<T

σ2
jj′

≤
(sup
i,j

w∗ij)
2

T 2α
· 2pL · T 2 ≤ k4(α,L) · p

T 2α−1
= o(p) for α >

1

2
. (27)

Finally we obtain, from (24) to (27) :

T1,3 ≤ p · EΣ(D̂n) ·O(T
√
T ) + o(p). (28)

Put together (18), (23) and (28) to obtain (6). Let us give an upper bound for the second

term of (17),

T2 = 4EΣ{
p∑
i=1

p∑
j=1

i<j

w∗ij(Xk,iXk,j − σij)σij}2

=

p∑
i=1

p∑
j=1

i 6=j

p∑
i′=1

p∑
j′=1

i′ 6=j′

w∗ijw
∗
i′j′σijσi′j′EΣ(X1,iX1,j − σij)(X1,i′X1,j′ − σi′j′)

=

p∑
i=1

p∑
j=1

i 6=j

p∑
i′=1

p∑
j′=1

i′ 6=j′

w∗ijw
∗
i′j′σijσi′j′(σ

∗
ii′σ
∗
jj′ + σ∗ij′σ

∗
i′j)

Proceeding similarly, we shall distinguish three kind of terms. Let us begin by the case when

the indices belong to A1,

T2,1 = 2

p∑
i=1

p∑
j=1

i 6=j

w∗2ij σ
2
ijEΣ[(X1,iX1,j − σij)2] = 2

p∑
i=1

p∑
j=1

i 6=j

w∗2ij σ
2
ij(1 + σ2

ij)

≤ 4(sup
i,j

w∗ij)

p∑
i=1

p∑
j=1

i 6=j

w∗ijσ
2
ij = 8(sup

i,j
w∗ij) · p · EΣ(D̂n) = o(1) · p · EΣ(D̂n). (29)

Next, when (i, j, i′, j′) ∈ A2,

T2,2 = 4

p∑
i=1

p∑
j=1
j 6=i

p∑
j′=1
j′ 6=i

w∗ijw
∗
ij′σijσij′(σjj′ + σijσij′)

= 4

p∑
i=1

p∑
j=1
j 6=i

p∑
j′=1
j′ 6=i

w∗ijw
∗
ij′σijσij′σjj′ + 4

p∑
i=1

p∑
j=1
j 6=i

p∑
j′=1
j′ 6=i

w∗ijw
∗
ij′σ

2
ijσ

2
ij′
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We bound from each term of T2,2 separately. Using Cauchy-Schwarz inequality two times we

obtain,

T2,2,1 :=

p∑
i=1

p∑
j=1
j 6=i

p∑
j′=1
j′ 6=i

w∗ijw
∗
ij′σijσij′σjj′ ≤

p∑
i=1

p∑
j=1
j 6=i

w∗ijσij

( p∑
j′=1
j′ 6=i

w∗2ij′σ
2
ij′

)1/2( p∑
j′=1
j′ 6=i

σ2
jj′

)1/2

≤
( p∑
i=1

p∑
j=1
j 6=i

w∗2ij σ
2
ij

)1/2( p∑
i=1

p∑
j=1
j 6=i

(

p∑
j′=1
j′ 6=i

w∗2ij′σ
2
ij′)(

p∑
j′=1
j′ 6=i

σ2
jj′)
)1/2

≤ (sup
i,j

w∗ij) · p · EΣ(D̂n) ·O(
√
T ) = O(1) · p · EΣ(D̂n).

The second term in T2,2 is T1,2,2 and therefore,

T2,2 = o(1) · p3/2 · EΣ(D̂n). (30)

Finally, when (i, j, i′, j′) ∈ A3, we have to bound from above

T2,3 =
∑

(i,j,i′,j′)∈A3

w∗ijw
∗
i′j′σijσi′j′σ

∗
ii′σ
∗
jj′ +

∑∑
(i,j,i′,j′)∈A3

w∗ijw
∗
i′j′σijσi′j′σ

∗
ij′σ
∗
i′j .

These last two terms, in T2,3, are treated similarly, so let us deal with :∑
(i,j,i′,j′)∈A3

w∗ijw
∗
i′j′σijσi′j′σ

∗
ii′σ
∗
jj′

≤
∑
j

∑
i′

(∑
i

w∗ijσ
2
ii′

)1/2(∑
i

w∗ijσ
2
ij

)1/2(∑
j′

w∗i′j′σ
2
i′j′

)1/2(∑
j′

w∗i′j′σ
2
jj′

)1/2

≤
(∑

j

∑
i′

(
∑
i

w∗ijσ
2
ij)(
∑
j′

w∗i′j′σ
2
i′j′)
)1/2( ∑

(i,j,i′,j′)∈A3

w∗ijw
∗
i′j′σ

2
jj′σ

2
ii′

)1/2

≤ p · EΣ(D̂n) ·
( ∑

(i,j,i′,j′)∈A3

w∗ijw
∗
i′j′σ

2
jj′σ

2
ii′

)1/2

Using the upper bound of T1,3 obtained previously, we have

T2,3 ≤ p
√
p ·
(
E3/2

Σ (D̂n) ·O(T 3/4) + EΣ(D̂n) · o(1)
)

(31)

Put together (29), (30) and (31) to get (7).

The asymptotic normality under the null hypothesis is obvious.

Proof of Proposition 2. We use the decomposition (16) in the proof of the Proposi-

tion 1 and we treat each term separately. Recall that, by our assumptions, n
√
p · EΣ(D̂n) =

O(1). Use (7) to get

VarΣ

( 2
√
p

n∑
l=1

∑
1≤i<j≤p

w∗ij(Xl,iXl,j − σij)σij
)

≤ n

p

(
p3/2

(
o(1) · EΣ(D̂n) +O(T 3/4)E3/2

Σ (D̂n)
)

+ p · EΣ(D̂n)O(
√
T )
)

= o(1)n
√
p · EΣ(D̂n) + (n

√
p · EΣ(D̂n))3/2 · O(T 3/4)

n1/2p1/4
+ n
√
p · EΣ(D̂n) · o(1) (32)
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This tends to 0, since T 3/n2p = (n2pb2(ϕ))−1 · ϕ4−2/α = o(1), which is true for all α > 1/2.

It follows that, for proving the asymptotic normality, it is sufficient to prove the asymptotic

normality of

n
√
p · 1

n(n− 1)p

∑
1≤k 6=l≤n

∑
1≤i<j≤p

w∗ij(Xk,iXk,j − σij)(Xl,iXl,j − σij).

We study Vn centered, 1-degenerate U-statistic, with symmetric kernel Hn(X1, X2) defined

as follows

Vn =
∑

1≤k 6=l≤n
Hn(Xk, Xl),

Hn(X1, X2) =
1

n
√
p

∑
1≤i<j≤p

w∗ij(Xk,iXk,j − σij)(Xl,iXl,j − σij).

We apply Theorem 1 of [13]. Therefore we check that EΣ(H2
n(X1, X2)) < +∞ and that

EΣ(G2
n(X1, X2)) + n−1EΣ(H4

n(X1, X2))

E2
Σ(H2

n(X1, X2))
−→ 0,

where Gn(x, y) := EΣ(Hn(X1, x)Hn(X1, y)), for x, y ∈ Rp. We compute

Gn(x, y) =
1

n2p

∑
1≤i<j≤p

∑
1≤i′<j′≤p

w∗ijw
∗
i′j′(xixj − σij)(yiyj − σij)(σii′σjj′ + σi′jσij′).

Since n
√
p · EΣ(D̂n) = O(1), and from the inequality (6), we have

EΣ(H2
n(X1, X2)) =

1

2n2
(1 + o(1)) .

In order to prove that EΣ(G2
n(X1, X2))/E2

Σ(H2
n(X1, X2)) = o(1), it is sufficient to show that

EΣ

( ∑
1≤i<j≤p

∑
1≤i′<j′≤p

w∗ijw
∗
i′j′(X1,iX1,j − σij)(X2,i′X2,j′ − σi′j′)(σii′σjj′ + σi′jσij′)

)2
= o(p2).

In fact,

EΣ

( ∑
1≤i<j≤p

∑
1≤i′<j′≤p

w∗ijw
∗
i′j′(X1,iX1,j − σij)(X2,i′X2,j′ − σi′j′)(σii′σjj′ + σi′jσij′)

)2

=
∑

1≤i1<j1≤p

∑
1≤i′1<j′1≤p

∑
1≤i2<j2≤p

∑
1≤i′2<j′2≤p

w∗i1j1w
∗
i′1j
′
1
w∗i2j2w

∗
i′2j
′
2
(σi1i′1σj1j′1 + σi′1j1σi1j′1)(σi2i′2σj2j′2

+σi′2j2σi2j′2) · E[(X1,i1X1,j1 − σi1j1)(X1,i2X1,j2 − σi2j2)]E[(X2,i′1
X2,j′1

− σi′1j′1)(X2,i′2
X2,j′2

− σi′2j′2)]

=
∑

1≤i1<j1≤p

∑
1≤i′1<j′1≤p

∑
1≤i2<j2≤p

∑
1≤i′2<j′2≤p

w∗i1j1w
∗
i′1j
′
1
w∗i2j2w

∗
i′2j
′
2
(σi1i′1σj1j′1 + σi′1j1σi1j′1)

·(σi2i′2σj2j′2 + σi′2j2σi2j′2)(σi1i2σj2j1 + σi1j2σi2j1)(σi′1i′2σj′2j′1 + σi′1j′2σi′2j′1) (33)
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To bound from above (33), we shall distinguish four cases. The first one is when all couples

of indices are equal,

G1 :=
∑

1≤i1<j1≤p
w∗4i1j1(1 + σ2

i1j1
)4 ≤ (sup

i1,j1

w∗
2

i1j1
) · (sup

i1,j1

(1 + σ2
i1j1

)4) ·
∑

1≤i1<j1≤p
w∗2i1j1

≤ 8 · (sup
i1,j1

w∗
2

i1j1
) · p = o(p) = o(p2).

The second one is when we have two different pairs of couples of indices, which can be

obtained by two different combinations of the couples of indices. When we have equal pairs

of couples of indices, as for example (i1, j1) = (i2, j2), (i′1, j
′
1) = (i′2, j

′
2) and (i1, j1) 6= (i′1, j

′
1),

we get

G2,1 :=
∑

1≤i1<j1≤p

∑
1≤i′1<j′1≤p

w∗2i1j1w
∗2
i′1j
′
1
(σi1i′1σj1j′1 + σi′1j1σi1j′1)2(1 + σ2

i1j1
)(1 + σ2

i′1j
′
1
)

≤ (sup
i1,j1

w∗
2

i1j1
) · (sup

i1,j1

(1 + σ2
i1j1

)2) ·
∑

1≤i1<j1≤p

∑
1≤i′1<j′1≤p

w∗i1j1w
∗
i′1j
′
1
(σi1i′1σj1j′1 + σi′1j1σi1j′1)2

≤ 4 · (sup
i1,j1

w∗
2

i1j1
) · n2(n− 1)2p2 · EΣ(H2

n(X1, X2)) = 4 · (sup
i1,j1

w∗
2

i1j1
) · p = o(p2).

When we have three couples of indices equal, for example (i1, j1) = (i2, j2) = (i′2, j
′
2) and

(i1, j1) 6= (i′1, j
′
1), we get

G2,2 :=
∑

1≤i1<j1≤p

∑
1≤i′1<j′1≤p

w∗3i1j1w
∗
i′1j
′
1
(σi1i′1σj1j′1 + σi′1j1σi1j′1)2(1 + σ2

i1j1
)(1 + σ2

i′1j
′
1
)

≤ 4 · (sup
i1,j1

w∗
2

i1j1
) · n2(n− 1)2p2 · EΣ(H2

n(X1, X2)) = o(p2).

For the third case, there are three different couples of pairs of indices, for example, (i1, j1) =

(i′2, j
′
2) and (i1, j1) 6= (i′1, j

′
1) 6= (i2, j2). Using Cauchy-Schwarz inequality several times we
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obtain,

G3 :=
∑

1≤i1<j1≤p

∑
1≤i′1<j′1≤p

∑
1≤i2<j2≤p

w∗i1j1w
∗
i′1j
′
1
w∗2i2j2(σi1i′1σj1j′1 + σi′1j1σi1j′1)

·(σi1i2σj2j1 + σi1j2σi2j1)(σi′1i2σj2j′1 + σi′1j2σi2j′1)(1 + σ2
i2,j2

)

≤
∑

1≤i′1<j′1≤p

∑
1≤i2<j2≤p

w∗i′1j′1
w∗2i2j2(σi′1i2σj2j′1 + σi′1j2σi2j′1)(1 + σ2

i2,j2
)

·
( ∑

1≤i1<j1≤p
w∗i1j1(σi1i′1σj1j′1 + σi′1j1σi1j′1)2

)1/2

·
( ∑

1≤i1<j1≤p
w∗i1j1(σi1i2σj2j1 + σi1j2σi2j1)2

)1/2

≤
∑

1≤i2<j2≤p
w∗2i2j2(1 + σi2,j2)2

( ∑
1≤i′1<j′1≤p

w∗i′1j′1
(σi′1i2σj2j′1 + σi′1j2σi2j′1)2

)1/2

·
( ∑

1≤i′1<j′1≤p

∑
1≤i1<j1≤p

w∗i′1j′1
w∗i1j1(σi1i′1σj′1j1 + σi1j′1σi′1j1)2

)1/2

·
( ∑

1≤i1<j1≤p
w∗i1j1(σi1i2σj2j1 + σi1j2σi2j1)2

)1/2
.

Moreover, we recognize in these bounds∑
i′1<j

′
1

∑
i1<j1

w∗i′1j′1
w∗i1j1(σi1i′1σj′1j1 + σi1j′1σi′1j1)2 = n2p · EΣ(H2

n(X1, X2))

which is O(p). Thus,

G3 ≤ sup
i2,j2

(1 + σ2
i2j2

) ·
( ∑

1≤i2<j2≤p

∑
1≤i′1<j′1≤p

w∗2i2j2w
∗
i′1j
′
1
(σi′1i2σj2j′1 + σi′1j2σi2j′1)2

)1/2

·
(
n2p · EΣ(H2

n(X1, X2)) ·
∑

1≤i2<j2≤p

∑
1≤i1<j1≤p

w∗2i2j2w
∗
i1j1

(σi1i2σj2j1 + σi1j2σi2j1)2
)1/2

≤ 2(sup
i1,j1

w∗i1j1) · n3p3/2 · E3/2
Σ (H2

n(X1, X2)) ≤ (sup
i1,j1

w∗i1j1) · p3/2 = o(p3/2) = o(p2).

Now we will treat the last case, when the pairs of indices are pairwise distinct, in this case,

we have 16 terms to handle. As all terms are treated the same way, let us deal with:

G4 :=
∑

1≤i1<j1≤p

∑
1≤i′1<j′1≤p

∑
1≤i2<j2≤p

∑
1≤i′2<j′2≤p

w∗i1j1w
∗
i′1j
′
1
w∗i2j2w

∗
i′2j
′
2

·σi1i′1σi2i′2σj2j′2σj1j′1σi1i2σj2j1σi′1i′2σj′2j′1

In order to find an upper bound for G4, we decompose the previous sums, into several sums,

similarly to the upper bound of (28). That is (i1, j1, i
′
1, j
′
1, i2, j2, i

′
2, j
′
2) ∈ J1 ∪ J2 ∪ · · · ∪ J16,

where J1, . . . , J16, form a partition of the set {(i1, j1, i′1, j′1, i2, j2, i′2, j′2) ∈ {1, . . . , p}8}. Let us

define,

J1 := {(i1, j1, i′1, j′1, i2, j2, i′2, j′2) ∈ {1, . . . , p}8; 1 < |i1 − i′1|, |i1 − i2|, |i2 − i′2|, |i′1 − i′2| < T )},
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J2 := {(i1, j1, i′1, j′1, i2, j2, i′2, j′2) ∈ {1, . . . , p}8; 1 < |i1−i′1|, |i1−i2|, |i2−i′2| < T, and |i′1−i′2| > T )},

and so on, for all Jr , r = 3, . . . , 16. To bound from above the sum over J1, we partition again

J1, J1 = J1,1 ∪ · · · ∪ J1,16 such that,

J1,1 := {(i1, j1, i′1, j′1, i2, j2, i′2, j′2) ∈ {1, . . . , p}8; |i1 − i′1| ≤ |i1 − j1|, |i′1 − i′2| ≤ |i′1 − j′1|,
|i1 − i2| ≤ |i2 − j2| and |i2 − i′2| ≤ |i′2 − j′2|},

and so on, until we get the partition of J1.

G4,1 :=
∑

1≤i1<j1≤p

∑
1≤i′1<j′1≤p

∑
1≤i2<j2≤p

∑
1≤i′2<j′2≤p

(i1,j1,i′1,j
′
1,i2,j2,i

′
2,j
′
2)∈J1,1

w∗i1j1w
∗
i′1j
′
1
w∗i2j2w

∗
i′2j
′
2

·σi1i′1σj1j′1σi2i′2σj2j′2σi1i2σj2j1σi′1i′2σj′2j′1

≤
∑

1≤i1,i′1≤p

∑
1≤i2,i′2≤p

w∗i1i′1
w∗i1i2w

∗
i′1i
′
2
w∗i2i′2

σi1i′1σi2i′2σi1i2σi′1i′2

·
∑

1≤j1,j′1≤p

∑
1≤j2,j′2≤p

1<|i1−j1|,|i′1−j′1|,|i2−j2|,|i′2−j′2|<T

σj2j′2σj1j′1σj2j1σj′2j′1

≤ T 4 · (sup
i1,j1

w∗i1j1)2 ·
∑

1≤i1,i′1≤p

∑
1≤i2,i′2≤p

√
w∗
i1i′1

w∗i1i2w
∗
i′1i
′
2
w∗
i2i′2

σi1i′1σi2i′2σi1i2σi′1i′2

≤ T 4 · (sup
i1,j1

w∗i1j1)2
( ∑

1≤i1,i′1≤p

∑
1≤i2,i′2≤p

w∗i1i′1
w∗i2i′2

σ2
i1i′1

σ2
i2i′2

)1/2

·
( ∑

1≤i1,i′1≤p

∑
1≤i2,i′2≤p

w∗i1i2w
∗
i′1i
′
2
σ2
i1i2σ

2
i′1i
′
2

)1/2

≤ T 4 · (sup
i1,j1

w∗i1j1)2 · p2 · E2
Σ(D̂n)

Again, by our assumption that n2p · E2
Σ(D̂n) = O(1), we can see that :

G4,1 ≤ κ0(α,L) · T 3 · p2 · E2
Σ(D̂n) = p2 ·O(

T 3

n2p
) = p2 · o(1)

where, from now on, κ0(α,L), κ1(α,L), . . . , denote constants that depend on α and L. Now,

we define J1,2 := {(i1, j1, i′1, j′1, i2, j2, i′2, j′2) ∈ {1, . . . , p}8, such that |i− i′| ≤ |i− j|, |i′− i′1| ≤
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|i′ − j′|, |i− i1| ≤ |i1 − j1| and |i1 − i′1| > |i′1 − j′1|}, thus we have,

G4,2 :=
∑ ∑ ∑ ∑

(i1,j1,i′1,j
′
1,i2,j2,i

′
2,j
′
2)∈J1,2

w∗i1j1w
∗
i′1j
′
1
w∗i2j2w

∗
i′2j
′
2
σi1i′1σi2i′2σj1j′1σj2j′2σi1i2σj2j1σi′1i′2σj′2j′1

≤ (sup
i1,j1

w∗i1j1)5/2 ·
∑

1≤i1,i′1≤p

∑
1≤i2,i′2≤p

√
w∗
i1i′1

w∗i1i2w
∗
i′1i
′
2
· |i2 − i′2|α · σi1i′1σi2i′2σi1i2σi′1i′2

·
∑

1≤j1,j′1≤p

∑
1≤j2,j′2≤p

1<|i1−j1|,|i′1−j′1|,|i2−j2|,|i′2−j′2|<T

1

|i′2 − j′2|α
· σj2j′2σj1j′1σj2j1σj′2j′1

≤ (sup
i1,j1

w∗i1j1)5/2 ·
( ∑

1≤i1,i′1≤p

∑
1≤i2,i′2≤p

w∗i1i′1
|i2 − i′2|2ασ2

i1i′1
σ2
i2i′2

)1/2

·
( ∑

1≤i1,i′1≤p

∑
1≤i2,i′2≤p

w∗i1i2w
∗
i′1i
′
2
σ2
i1i2σ

2
i′1i
′
2

)1/2
· T 3 ·max{1, T−α+1}

≤
√

2L · (sup
i1,j1

w∗i1j1)5/2 · T 3 ·max{1, T−α+1} · p2 · E3/2
Σ (D̂n)

Therefore,

G4,2 ≤ κ1(α,L) ·max{T 7/4, T 11/4−α} · E3/2
Σ (D̂n)

≤ κ1(α,L) ·max{T 7/4, T 11/4−α} ·O(
1

n3/2p3/4
)

= o(1) since T 3/n2p −→ 0 (34)

Using similar arguments, we can prove that all remaining terms tend to zero. In consequence,

EΣ(G2
n(X1, X2))

E2
Σ(H2

n(X1, X2))
−→ 0.

Now let us prove that, EΣ(H4
n(X1, X2))/E2

Σ(H2
n(X1, X2)) = o(n),

EΣ(H4
n(X1, X2)) =

1

n4p2

∑
i1<j1

∑
i2<j2

∑
i3<j3

∑
i4<j4

w∗i1j1w
∗
i2j2w

∗
i3j3w

∗
i4j4

·E2
Σ[(X1,i1X1,j1 − σi1j1)(X1,i2X1,j2 − σi2j2)(X1,i3X1,j3 − σi3j3)(X1,i4X1,j4 − σi4j4)]

The above squared expected value is a sum of a large number of terms that are all treated

similarly. Let us consider examples of terms containing squared terms and products of terms,
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respectively. For α > 1/2,

H1 :=
∑
i1<j1

∑
i2<j2

∑
i3<j3

∑
i4<j4

w∗i1j1w
∗
i2j2w

∗
i3j3w

∗
i4j4σ

2
i1i2σ

2
j1j2σ

2
i3i4σ

2
j3j4

≤ 4(sup
i,j

w∗ij)
4

p∑
i1=1

p∑
i2=1

|i1 − i2|2ασ2
i1i2

p∑
j1=1

|i1−j1|<T

sup
j2

σ2
j1j2

p∑
j2=1

|i2−j2|<T

1

|j1 − j2|2α

·
p∑

i3=1

p∑
i4=1

|i3 − i4|2ασ2
i3i4

p∑
j3=1

|i3−j3|<T

sup
j4

σ2
j3j4

p∑
j4=1

|i4−j4|<T

1

|j3 − j4|2α

≤ 16L2 · (2α− 1)−2 · (sup
i,j

w∗ij)
4 · p2T 2 ≤ κ2(α,L) · p2

The terms containing no squared values are treated as, e.g.,

H2 :=
∑
i1<j1

∑
i2<j2

∑
i3<j3

∑
i4<j4

w∗i1j1w
∗
i2j2w

∗
i3j3w

∗
i4j4σi1i2σj1j2σi3i4σj3j4σi1i3σj1j3σi2i4σj2j4

We can see that H2 coincides with G4,2. Then we can deduce that ,

EΣ(H4
n(X1, X2))

E2
Σ(H2

n(X1, X2))
= O(1) = o(n).

Finally we can apply [13], and we obtain:

Vn =
1

n
√
p

∑
1≤k 6=l≤n

∑
1≤i<j≤p

w∗ij(Xk,iXk,j − σij)(Xl,iXl,j − σij)
L−→ N(0, 1). (35)

Combining (32) and (35), we have by Slutsky theorem that:

n
√
p · (D̂n − EΣ(D̂n))

L−→ N(0, 1).

6 Appendix - Optimal weights and covariance matrix

We solve the following extremal problem that appears in both sharp upper and lower bounds.

Indeed, the solution of this problem defines the weights (w∗ij)1≤i,j≤p that appear in the opti-

mal test procedure and the covariance matrix Σ∗ that we use to construct the subfamily of

covariance matrices in the proof of the lower bounds.

Recall that Q(α,L, ϕ) is the class of covariance matrices in (2). We define the sequences

(w∗ij)ij and (σ∗ij)ij as solutions of the following optimization problem :

1

p

p∑
i,j=1
i<j

w∗ijσ
∗2
ij = sup

(wij)ij : wij≥0;

1
p

∑p

i,j=1
i<j

w2
ij=

1
2


inf{

Σ : Σ=(σij)i,j ;

Σ∈Q(α,L,ϕ)

} 1

p

p∑
i,j=1
i<j

wijσ
2
ij (36)
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We denote by b2(ϕ) =
1

2p

p∑
i,j=1
i<j

σ∗4ij .

By defining vij = σ2
ij , the problem (36) is equivalent to

sup
(wij)ij : wij≥0;

1
p

∑p

i,j=1
i<j

w2
ij=

1
2


inf

(vij)ij : vij≥0; 1
p

∑p

i,j=1
i<j

|i−j|2αvij≤L,

1
p

∑p

i,j=1
i<j

vij≥ϕ2



1

p

p∑
i,j=1
i<j

wijvij

= sup
(wij)ij : wij≥0;

1
p

∑p

i,j=1
i<j

w2
ij≤

1
2


inf

(vij)ij : vij≥0; 1
p

∑p

i,j=1
i<j

|i−j|2αvij≤L,

1
p

∑p

i,j=1
i<j

vij≥ϕ2



1

p

p∑
i,j=1
i<j

wijvij

= inf
(vij)ij : vij≥0; 1

p

∑p

i,j=1
i<j

|i−j|2αvij≤L,

1
p

∑p

i,j=1
i<j

vij≥ϕ2



sup
(wij)ij : wij≥0;

1
p

∑p

i,j=1
i<j

w2
ij≤

1
2



1

p

p∑
i,j=1
i<j

wijvij ,

where we used Proposition 4.1 in [14]. Indeed, the set of parameters over which we take the

infimum is convex. Now using Cauchy-Schwarz inequality we obtain,

sup
{(wij)ij : wij≥0; 1

p

∑p

i,j=1
i<j

w2
ij≤

1
2
}

1

p

p∑
i,j=1
i<j

wijvij ≤ (
1

p

p∑
i,j=1
i<j

w2
ij)

1/2(
1

p

p∑
i,j=1
i<j

v2
ij)

1/2 ≤ (
1

2p

p∑
i,j=1
i<j

v2
ij)

1/2

Or the sup is reached for wij = vij(2
∑

ij v
2
ij/p)

−1/2. As we denote by b2(ϕ) =
∑

ij v
2
ij/2p, we

get w∗ij = v∗ij/2b(ϕ), for all i, j = 1, . . . , p.

It follows that solving the problem (36) reduces to solve the optimization program

inf
{(vij)i,j :vij≥0}

1

p

p∑
i,j=1
i<j

v2
ij + λ1(

1

p

p∑
i,j=1
i<j

|i− j|2αvij − L)− λ2(
1

p

p∑
i,j=1
i<j

vij − ϕ2)

By the Lagrangian multipliers rules, one gets for λ1, λ2 ∈ R+ the following system of equations

2vij + λ1|i− j|2α − λ2 = 0, ∀i, j
1

p

p∑
i=1

∑
i<j

|i− j|2αvij = L

1

p

p∑
i=1

∑
i<j

vij = ϕ2
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The first equation above gives for all i, j = 1, . . . , p

vij = λ

(
1−

(
|i− j|
T

)2α
)

+

where T =

(
λ2

λ1

) 1
2α

, λ =
λ2

2
and (x)+ = max(0, x)

The two other equations become
1

p

p∧T∑
k=1

(p− k)k2α

(
1− (

k

T
)2α

)
=
L

λ

1

p

p∧T∑
k=1

(p− k)

(
1− (

k

T
)2α

)
=
ϕ2

λ

We evaluate the solution of the previous system as T tends to infinity, T < p,

2α

2α+ 1
T 2α+1

(
1

4α+ 1
− 1

4(α+ 1)

T

p

)
∼ L

λ

2αT

(
1

2α+ 1
− 1

4(α+ 1)

T

p

)
∼ ϕ2

λ
.

Under the assumption that T/p→ 0, that gives

T ∼ (L(4α+ 1))
1
2α · ϕ−

1
α and

λ ∼ 2α+ 1

2α

(
1

L(4α+ 1)

) 1
2α

· ϕ2+ 1
α .

Note that the sequences (w∗ij)i,j and (v∗ij)ij have a finite number T of non null elements, but

T →∞ as ϕ→ 0. It further gives

1

2p

p∑
i,j=1
i<j

v2
ij =

p∑
i,j=1
i<j

λ2

2p

(
1−

(
|i− j|
T

)2α
)2

=
λ2

2p

T∑
k=1

(p− k)

(
1− (

k

T
)2α)

)2

∼ C(α,L) · ϕ4+ 1
α ,

where

C(α,L) =
2α+ 1

2α(4α+ 1)1+1/(2α)
L−

1
2α .

Note that

sup
i,j

wij =
1

2b(ϕ)
sup

i,j;|i−j|<T
λ

(
1−

(
|i− j|
T

)2α
)

+

≤ λ

2b(ϕ)
� ϕ

2α+1
α
− 4α+1

2α = ϕ
1
2α =

1√
T
.
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