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Abstract. This paper is devoted to the study of the traditional estima-
tor of the fourth-order cumulants matrix of a high-dimensional multi-
variate Gaussian white noise. If M represents the dimension of the noise
and N the number of available observations, it is first established that
this M2 × M2 matrix converges towards 0 in the spectral norm sens

provided M2 logN
N

→ 0. The behaviour of the estimated fourth-order cu-
mulants matrix is then evaluated in the asymptotic regime where M and

N converge towards +∞ in such a way that M2

N
converges towards a

constant. In this context, it is proved that the matrix does not converge
towards 0 in the spectral norm sense, and that its empirical eigenvalue
distribution converges towards a shifted Marcenko-Pastur distribution.
It is finally claimed that the largest and the smallest eigenvalue of the
cumulant matrix converges almost surely towards the rightend and the
leftend points of the support of the Marcenko-Pastur distribution.

Keywords: Estimated joint fourth-order cumulants matrices, large ran-
dom matrices, blind source separation in the high-dimensional context.

1 Introduction

It is now well understood that the statistical signal processing of high-dimensional
signals poses a number of new problems which stimulated the developement of
appropriate new tools, e.g. large random matrices or approaches exploiting spar-
sity. Statistical methods based on the use of the empirical covariance matrix of
a M -dimensional time series (yn)n∈Z (e.g. detection of noisy low rank signals,
estimation of direction of arrival using subspace methods,...) provide a num-
ber of convincing examples illustrating this point. In effect, when the dimension
M of the observation is large, it is very often difficult to collect a number N
of observations much larger than M , so that in practice M and N appear to
be of the same order of magnitude. In this context, it is well established that
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the empirical covariance matrix R̂N = 1
N

∑N
n=1 yny

∗
n is a poor estimator of

R = E(yny
∗
n). When no a priori information on R (e.g. various kinds of spar-

sity, see e.g. [3]) is available, it appears that large random matrix theory provides

useful informations on the behaviour of R̂N in the asymptotic regime where M
and N converge towards +∞ at the same rate. This allows to analyse the be-
haviour of the standard statistical inference algorithms based on the assumption
that R̂N ' R, and more importantly to propose modifications which allow to
improve the performance (see e.g. [2] [6], [7], [8], [14]).

The present paper is motivated by the blind source separation of an in-
stantaneous mixture of K independent sources in the case where the observed
signal (yn)n∈Z is high-dimensional and where the additive noise is Gaussian with
unknown statistics. Popular approaches developed and evaluated in the low di-
mensional observation context use the particular structure of the fourth-order
cumulants tensor of the observed signal which appears as the sum of K rank 1
tensors generated by the columns of the mixing matrix. Under mild assumptions,
the column vectors of the mixing matrix can be identified from the eigenvalue /
eigenvector decomposition of the M2 ×M2 fourth-order cumulants matrix (see
e.g. the algorithm ICAR in [1]). In pratice, the fourth-order cumulants matrix has
to be estimated from the N available M–dimensional observations y1, . . . ,yN ,
and the presence of the additive Gaussian noise has of course an influence on the
eigenstructure of the estimated fourth-order cumulants matrix and thus on the
statistical performance of the estimator of the mixing matrix. When the dimen-
sion of the observation M is much smaller than the sample size N , standard large
sample analysis conducted in the regime M fixed and N → +∞ can be used
in order to prove that the estimated fourth-order cumulants matrix converges
towards the true cumulants matrix in the spectral norm sense, a property that
immediately implies the consistency of the mixing matrix estimates. When M is
large, the above regime may not be relevant, and asymptotic regimes for which
both M and N converge towards +∞ at possibly different rates may produce
more reliable results. In this context, a crucial issue is to determine the rates
of convergence of M and N towards +∞ for which the estimated fourth-order
cumulants matrix still converges towards the true cumulant matrix in the spec-
tral norm sense. When these conditions are not met, the traditional estimates
of the mixing matrix are non consistant, but it may be useful to characterize
the properties of the estimated fourth-order cumulants matrix in order to be
able to derive improved performance estimates. This research program appears
highly non trivial, and needs to develop a number of new large random matrix
tools. In this paper, we thus consider the preliminary problem of characterizing
the behaviour of the estimated fourth-order cumulants matrix in the absence of
source when both M and N converge towards +∞. We do not claim that the
results of this paper can be used as is in order to analyse the behaviour of blind
source separation algorithms in the high-dimensional case. However, the study
of this simpler problem will provide a number of useful insights to address the
more complicated scenario in which sources are present.
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This paper is organized as follows. In section 2, we present more precisely
the addressed problem. In section 3, we study the conditions on M and N under
which the estimated fourth-order cumulants matrix of the M -dimensional white
Gaussian noise sequence (yn)n∈Z converges towards 0 in the spectral norm sense.

We show that this is the case as soon as M2 logN
N → 0, a condition which is close

from M2

N → 0. In section 4, we consider the regime in which M2

N converges to-
wards a non zero constant, and prove that the estimated fourth-order cumulants
matrix does not converge towards 0 in the spectral norm sense. In particular, we
establish that its empirical eigenvalue distribution converges towards a shifted
Marcenko-Pastur (MP) distribution, and that its smallest and largest eigenval-
ues converge towards the leftend and rightend points of the support of the MP

distribution. This result shows that parameter M2

N controls the spreading of the
eigenvalues, thus confirming the evaluations of section 3. Some numerical exper-
iments illustrating these results are also provided.

General notations. (ei)i=1,...,M represents the canonical basis of CM . If x

is an element of CM
2

, and if (k, i) ∈ {1, 2, . . . ,M}, we denote its k+ i(M −1)-th
component as xi,k. If A and B are 2 matrices, A⊗B represents the block matrix
whose blocks are the Ai,jB. If A is a M2 ×M2 matrix, we denote by Ai,k,j,l

the element k + i(M − 1), l +M(j − 1) of matrix A. In other words, matrix A
can be written as

A =
∑

i,j,k,l=1,...,M

Ai,k,j,l (ei ⊗ ek) (ej ⊗ el)
∗

In the following, we denote by Π the M2×M2 matrix defined by (Πx)i,j = xj,i

for each element x of CM
2

and for each pair (i, j). It is clear that for each pair
(x1,x2) of CM , then it holds that Π (x1 ⊗ x2) = x2 ⊗ x1. It is easily seen that
matrix 1

2 (I +Π) can be expressed as

1

2
(I +Π) = ΓΓ ∗

where Γ is the M2 ×M(M + 1)/2 matrix whose columns Γ i,j , 1 ≤ i ≤ j ≤ M
are Γ i,i = ei ⊗ ei and, for i < j,

Γ i,j =
1√
2

(ei ⊗ ej + ei ⊗ ej)

Matrix Γ verifies Γ ∗Γ = IM(M+1)/2. Therefore, for each pair (x1,x2) of CM , it
holds that

ΓΓ ∗(x1 ⊗ x2) =
1

2
(x1 ⊗ x2 + x2 ⊗ x1) (1)

2 Presentation of the problem.

We consider a sequence (yn)n=1,...,N of complex Gaussian i.i.d. Nc(0, σ2IM )
random vectors. The fourth order joint cumulants of vectors yn are of course
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identically 0, and we study in this paper the behaviour of M2 ×M2 matrix ĈN

whose entries (Ĉi,k,j,l)1≤i,k,j,l≤M coincide with the traditional empirical estimate
of the joint cumulant c4(yi,n,yk,n,y

∗
j,n,y

∗
l,n), i.e.

Ĉi,k,j,l =
1

N

N∑
n=1

yi,nyk,ny
∗
j,ny

∗
l,n − R̂i,jR̂k,l − R̂i,lR̂k,j

where we recall that M × M matrix R̂N represents the empirical covariance
matrix R̂N = 1

N

∑N
n=1 yny

∗
n. Using Eq. (1), it is easily seen that

R̂i,jR̂k,l + R̂i,lR̂k,j =
(

2ΓΓ ∗
(
R̂N ⊗ R̂N

)
ΓΓ ∗

)
i,k,j,l

Therefore, matrix ĈN can be written as

ĈN = D̂N − 2ΓΓ ∗
(
R̂N ⊗ R̂N

)
ΓΓ ∗ (2)

where matrix D̂N is defined by

D̂N =
1

N

N∑
n=1

(yn ⊗ yn)(yn ⊗ yn)∗ (3)

We remark that for each n, ΓΓ ∗(yn ⊗ yn) coincides with yn ⊗ yn so that the

range of D̂N is included in the column space of ΓΓ ∗. Therefore, matrix ĈN is
rank deficient, and its range is included into the M(M +1)/2–dimensional space
generated by the columns of Γ . This point will be used in section 4 below.

It is clear that if N → +∞ while M remains fixed, the law of large number
implies that each element of ĈN converges towards 0. This implies ‖ĈN‖ → 0

because the size of matrix ĈN does not scale with N . When both M and N
converge towards +∞, the convergence of the individual entries of ĈN towards
0 no longer implies the convergence of ‖ĈN‖ towards 0. In the two following

sections, we provide some results concerning the asymptotic behaviour of ĈN

and ‖ĈN‖ when M and N converge to +∞.

3 Conditions under which ‖ĈN‖ → 0.

In this section, we derive conditions on M and N under which ‖ĈN‖ → 0. For
this, we prove the following proposition.

Proposition 1. Assume that M and N both converge towards +∞ in such a
way that

M2 logN

N
→ 0 (4)

Then it holds that ∥∥∥D̂N − 2σ4ΓΓ ∗
∥∥∥→ 0 a.s. (5)
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and that

‖ĈN‖ → 0 (6)

Moreover, almost surely, for N large enough,
∥∥∥D̂N − 2σ4ΓΓ ∗

∥∥∥ and ‖ĈN‖ are

less that µ
(

logN
N

)1/2
(M + logN) for some positive constant µ.

We just provide a sketch of the proof of Proposition 1. We first mention that

E ((yn ⊗ yn)(yn ⊗ yn)∗) = E
(
D̂N

)
= 2σ4ΓΓ ∗. We now provide some insights

on (5). For this, we recall the matrix Bernstein inequality (see Theorem 6.6.1 in
[13]).

Theorem 1. Let (Sn)n=1,...,N be a sequence of Hermitian zero mean i.i.d. m×
m random matrices satisfying supn=1,...,N ‖Sn‖ ≤ κN for some deterministic

constant κN . If SN denotes matrix
∑N
n=1 Sn, and if vN = E

(
SN
)2
, then, for

each ε > 0, it holds that

P
(
‖SN‖ > ε

)
≤ m exp

(
−ε2

2vN + κN ε/3

)
(7)

We denote by Rn matrix

Rn =
1

N
((yn ⊗ yn)(yn ⊗ yn)∗ − E(yn ⊗ yn)(yn ⊗ yn)∗) (8)

We have thus to establish that if RN =
∑N
n=1 Rn, then ‖RN‖ → 0 almost surely.

For this, we prove that if ε = µ
(

logN
N

)1/2
(M + logN), it exists a constant µ

for which
+∞∑
N=1

P(‖RN‖ > εN ) < +∞ (9)

If (9) holds, Borel-Cantelli’s lemma implies that almost surely, for N large
enough, ‖RN‖ ≤ εN , which leads to the conclusion that ‖RN‖ converges to-
wards 0 at rate εN . Bernstein inequality could be used to evaluate an upper
bound of P(‖RN‖ > εN ) if the norms of matrices (Rn)n=1,...,N were bounded
everywhere by a constant κN . As this property does not hold, it is possible to use
a classical truncation argument (see e.g. [12]), and consider matrices (Sn)n=1,...,N

(resp. (Tn)n=1,...,N ) defined in the same way than (Rn)n=1,...,N in (8), but when
yn is replaced by yn1(‖yn‖2≤αN ) (resp. by yn1(‖yn‖2>αN )) where αN is a well
chosen deterministic constant. Due to the lack of space, we do not provide more
details.

It remains to justify that (5) implies (6). For this, we recall that Γ ∗Γ = I,

and express ĈN as

ĈN = D̂N − 2σ4ΓΓ ∗ + 2ΓΓ ∗
(
σ4I− R̂N ⊗ R̂N

)
ΓΓ ∗ (10)
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We remark that (4) implies that M logN
N → 0. Using the same approach as above,

it is easily seen that M logN
N → 0 implies that ‖R̂N−σ2IM‖ → 0, and that, almost

surely, for N large enough, ‖R̂N −σ2IM‖ is less µ
(

logN
N

)1/2
(M + logN)

1/2
for

some positive constant µ. Using this, it is easy to check that ‖R̂N ⊗ R̂N − σ4I‖
converges towards 0 at the same rate that ‖R̂N−σ2IM‖. (10) and the triangular
inequality completes the proof.

We now comment Proposition (1). We first remark that, up to the term

logN , condition (4) is optimal because, as shown below in section 4, if M2

N con-
verges towards a non zero constant, then (6) does not hold. Next, it is easy to
verify that Proposition 1 holds if (yn)n=1,...,N is a temporally white, but spa-
tially correlated Gaussian noise: in this case, yn can be written as yn = R1/2vn
where R represents the covariance matrix of vectors (yn)n=1,...,N , and where
(vn)n=1,...,N is a temporally and spatially white Gaussian noise. Using Propo-
sition 1 to sequence (vn)n=1,...,N leads immediately to the conclusion that the
estimated fourth-order cumulants matrix of (yn)n=1,...,N converges towards 0
provided the spectral norm of R remains bounded when N → +∞. It would of
course be useful to evaluate the behaviour of the estimated fourth-order cumu-
lants matrix in the presence of a linear mixing of K independent signals. We feel
that the use of similar tools should lead to the conclusion that ĈN converges

towards the true fourth-order cumulants matrix provided M2 logN
N → 0. This con-

dition has to be compared with the condition M logN
N → 0 which ensures that the

empirical covariance matrix converges towards the true covariance matrix in the
spectral norm sense: estimating the true fourth-order cumulants matrix necessi-
tates a much larger number of samples. We also conjecture that the consistent

estimation of the 2p-order cumulant matrix would need that Mp/2 logN
N → 0.

4 Study of the case where N and M2 are of the same
order of magnitude.

We now consider the asymptotic regime M,N converge towards +∞ in such a

way that M2

N converges towards a constant. In the following, we denote by L

the integer L = M(M+1)
2 , and define cN as cN = L

N . In the present asymptotic
regime, cN converges towards c∗ > 0. In order to simplify the presentation of
the following results, we assume that c∗ ≤ 1.

We first recall that the empirical eigenvalue distribution of an hermitian
m × m random matrix B is the random probability distribution 1

m

∑m
k=1 δλk

where (λk)k=1,...,m are the eigenvalues of B, and where δλ represents the Dirac
distribution at point λ. It is well known that under certain assumptions on B,
its empirical eigenvalue distribution converges weakly almost surely towards a
deterministic probability distribution when m → +∞. Unformally, this means
that the histogram of the eigenvalues of a realization of B tends to accumulate
around the graph of a deterministic probability distribution when m increases.
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For example, if B = 1
pAA∗ where A is a m× p random matrix with zero mean

and variance σ2 i.i.d. entries, when m and p both converge towards +∞ in a
such a way that dm = m

p converges towards d∗ > 0, the empirical eigenvalue
distribution of B converges towards the so-called Marcenko-Pastur distribution
with parameter (σ2, d∗) denoted MP(σ2, d∗) in the following (see e.g. [10] or the
tutorial [4]). If d∗ ≤ 1, distribution MP(σ2, d∗) is absolutely continuous, and is
supported by interval [σ2(1−

√
d∗)

2, σ2(1+
√
d∗)

2]. It is important to remark that
in the context of this particular random matrix model, the asymptotic behaviour
of the measure 1

m

∑m
k=1 δλk

does not depend on the probability distribution of
the entries of A.

In the regime considered in this section, we will see that the norm of ĈN does
not converge towards 0. Therefore, the eigenvalues of ĈN do not concentrate
around 0, and we propose to evaluate the behaviour of the empirical eigenvalue
distribution of ĈN to understand how ĈN deviates from the null matrix. For
this, we notice that in the present asymptotic regime, it holds that M logN

N →
0. Therefore, matrix R̂N converges towards σ2IM in the spectral norm sense.
Consequently, matrix ĈN has the same behaviour than matrix D̂N − 2σ4ΓΓ ∗

in the sense that ∥∥∥ĈN − (D̂N − 2σ4ΓΓ ∗)
∥∥∥→ 0 a.s. (11)

Therefore, the eigenvalues of ĈN behave like the eigenvalues of D̂N − 2σ4ΓΓ ∗.
We thus study the empirical eigenvalue distribution of the latter matrix. For
this, we recall that the range of D̂N coincides with the range of Γ . Hence, it
holds that

ΓΓ ∗D̂NΓΓ
∗ = D̂N

and matrix D̂N − 2σ4ΓΓ ∗ can be written as

D̂N − 2σ4ΓΓ ∗ = Γ
(
ΣNΣ

∗
N − 2σ4IL

)
Γ ∗ (12)

where ΣN is the L×N random matrix defined by

ΣN =
1√
N
Γ ∗ (y1 ⊗ y1, . . . ,yN ⊗ yN )

The eigenvalues of ĈN are thus 0 with multiplicity M2 − L = M(M − 1)/2
as well as the eigenvalues of matrix ΣNΣ

∗
N − 2σ4IL. In order to evaluate the

asymptotic behaviour of the eigenvalue distribution of ĈN , it is thus sufficient
to study the empirical eigenvalue distribution of matrix ΣNΣ

∗
N . We denote by

ξ1, . . . , ξN the columns of ΣN . It is clear that vectors (ξn)n=1,...,N are indepen-

dent and identically distributed, that E(ξnξ
∗
n) = 2σ4

N IL, but that for each n, the
entries of vector ξn are of course not independent. However, the behaviour of the
eigenvalues of ΣNΣ

∗
N behave as if the entries of ΣN were i.i.d. More precisely,

the following result holds.

Theorem 2. The empirical eigenvalue distribution of ΣNΣ
∗
N converges almost

surely towards MP(2σ4, c∗). Moreover, the largest eigenvalue and the smallest
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eigenvalue of ΣNΣ
∗
N converge almost surely towards 2σ4(1+

√
c∗)

2 and 2σ4(1−√
c∗)

2 respectively, and this implies that for each ε > 0, almost surely, all the
eigenvalues of ΣNΣ

∗
N lie in the interval [2σ4(1−√cN )2− ε, 2σ4(1 +

√
cN )2 + ε]

for N large enough. Finally, 0 is eigenvalue of ĈN with multiplicity M2 − L =
M(M − 1)/2. For each ε > 0, almost surely, the L remaining eigenvalues of ĈN

are located in the interval [−2σ4(2
√
cN−cN )−ε, 2σ4(2

√
cN +cN )+ε] for N large

enough, and the distribution of these remaining eigenvalues converge towards a
translated version of MP(2σ4, c∗) .

The convergence of the eigenvalue distribution ofΣNΣ
∗
N towards MP(2σ4, c∗)

follows immediately from the general results of [9]. The convergence of the ex-
treme eigenvalues of ΣNΣ

∗
N is more demanding, and follows an approach de-

veloped in a different context in [5] and [11]. The behaviour of the eigenvalues

of ĈN is a direct consequence of (11) and (12).

Theorem 2 implies that the non zero eigenvalues of ĈN lie in the neigh-
bourhood of an interval whose lenght δN is equal to δN = 8σ4√cN . δN is
thus proportional to 2σ4 which corresponds to the fourth-order moment of the
components of vectors (yn)n=1,...,N . δN also depends on M and N through
√
cN =

(
M(M+1)

2N

)1/2
which is nearly equal to 1√

2

(
M2

N

)1/2
. The spreading of

the eigenvalues thus depends on the ratio M2

N , which, in order to be a small
factor, needs N to be very large. We notice that the spreading of the eigenvalues

of the empirical matrix R̂N is equal to 4σ2
(
M
N

)1/2
. This tends to indicate that

to estimate CN with the same accuracy than the covariance matrix RN , the
sample size should be increased by a factor M .

We finally illustrate Theorem 2. In our numerical experiments, σ2 = 4, N =
6000 and M = 50 so that cN = 0.21. In Figure 1, we represent the histogram of
the eigenvalues of a realization of matrix ΣNΣ

∗
N . It appears that the histogram

fits quite well with the graph of the probability density of MP (32, 0.21), and that
all the eigenvalues lie in the support of the MP distribution, thus confirming the
practical reliability of the first statements of Theorem 2. In Figure 2, we represent
the histogram of the non zero eigenvalues of ĈN . This time, we can observe a
larger gap between the histogram and the limit distribution. This extra gap
follows from the errors due to the approximation R̂N ' σ2IM .

5 Concluding remarks.

In this paper, we have shown that the estimated fourth-order cumulant matrix
ĈN of a temporally and spatially white Gaussian noise converges towards 0 in

the spectral norm sense if M
2

N logN converges towards 0. When M2

N converges to-

wards a non zero constant, the empirical eigenvalue distribution of ĈN converges
towards a translated Marcenko-Pastur distribution, and all the eigenvalues of ĈN

lie for N large enough in an interval whose lenght is a O
(
σ4(M

2

N )1/2
)

term. In

the presence of sources, this suggests that in order to estimate accurately ĈN



Behaviour of estimated fourth-order cumulants matrices 9

Fig. 1. Histogram of the eigenvalues of ΣNΣ∗
N

Fig. 2. Histogram of the non zero eigenvalues of ĈN

when M is large, the number of observations N should be much larger than M2.
In the next future, we will study the behaviour of the largest eigenvalues and

corresponding eigenvectors of ĈN in the presence of sources when M2

N does not
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converge towards 0. Hopefully, this will allow to propose improved performance

estimation algorithms of the mixing matrix when M2

N is not small enough.
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