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Abstract This paper studies the almost sure location of the eigenvalues of matrices
WNW∗

N , whereWN = (W(1)T
N , . . . ,W(M)T

N )T is a ML × N block-line matrix whose

block-lines (W(m)
N )m=1,...,M are independent identically distributed L × N Hankel

matrices built from i.i.d. standard complex Gaussian sequences. It is shown that if
M → +∞ and ML

N → c∗(c∗ ∈ (0,∞)), then the empirical eigenvalue distribution
ofWNW∗

N converges almost surely towards the Marcenko–Pastur distribution. More
importantly, it is established using the Haagerup–Schultz–Thorbjornsen ideas that if
L = O(Nα) with α < 2/3, then, almost surely, for N large enough, the eigenvalues
of WNW∗

N are located in the neighbourhood of the Marcenko–Pastur distribution. It
is conjectured that the condition α < 2/3 is optimal.
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1 Introduction

1.1 The Addressed Problem and the Results

In this paper, we consider independent identically distributed zero-mean complex-
valuedGaussian randomvariables (wm,n)m=1,...,M,n=1,...,N+L−1 such thatE|wm,n|2 =
σ 2

N and E(w2
m,n) = 0, where M, N , L are integers. We define the L × N matrices

(W(m)
N )m=1,...,M as the Hankel matrices whose entries are given by

(
W(m)

N

)
i, j

= wm,i+ j−1, 1 ≤ i ≤ L , 1 ≤ j ≤ N (1.1)

and WN represents the ML × N matrix

WN =

⎛
⎜⎜⎜⎜⎝

W(1)
N

W(2)
N
...

W(M)
N

⎞
⎟⎟⎟⎟⎠

(1.2)

In this paper, we establish that:

– the eigenvalue distribution of ML × ML matrix WNW∗
N converges towards the

Marcenko–Pastur distribution when M → +∞ and whenML and N both converge
towards +∞ in such a way that cN = ML

N satisfies cN → c∗, where 0 < c∗ < +∞
– more importantly that if L = O(Nα)with α < 2/3, then, almost surely, for N large
enough, the eigenvalues WNW∗

N are located in the neighbourhood of the support
of the Marcenko–Pastur distribution.

1.2 Motivation

Thiswork ismainlymotivated bydetection/estimation problemsof certainmultivariate
time series. Consider a M-variate time series (yn)n∈Z given by

yn =
P−1∑
p=0

apsn−p + vn = xn + vn (1.3)

where (sn)n∈Z represents a deterministic non-observable scalar signal, (ap)p=0,...,P−1
are deterministic unknown M-dimensional vectors and (vn)n∈Z represent i.i.d. zero-
mean complex Gaussian M-variate random vectors such that E(vnv∗

n) = σ 2IM and
E(vnvT

n ) = 0 for each n. The first term of the right-hand side of (1.3), which we denote
by xn , represents a “useful” non-observable signal on which various kinds of informa-
tion have to be inferred from the observation of N consecutive samples (yn)n=1,...,N .
Useful information on (xn) may include:

– Presence versus absence of (xn), which is equivalent to a detection problem,
– Estimation of vectors (ap)P=0,...,P−1,
– Estimation of sequence (sn) from the observations.
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The reader may refer, e.g. to [1,25,30,31] for more information. A number of existing
detection/estimation schemes are based on the eigenvalues and eigenvectors of matrix
YLY∗

L
N where YL is the block-Hankel ML × (N − L + 1) matrix defined by

YL =

⎛
⎜⎜⎜⎜⎝

y1 y2 . . . . . . yN−L+1

y2 y3
. . .

. . . yN−L+2
...

. . .
. . .

. . .
...

yL yL+1 . . . . . . yN

⎞
⎟⎟⎟⎟⎠

and where L is an integer usually chosen greater than P . We notice that matrix
YL is the sum of deterministic matrix XL and random matrix VL both defined as
YL . The behaviour of the above-mentioned detection/estimation schemes is easy to
analyse when ML is fixed and N →+∞ because, in this asymptotic regime, it holds
that

∥∥∥∥
YLY∗

L

N
−
(
XLX∗

L

N
+ σ 2IML

)∥∥∥∥ → 0

where ‖A‖ represents the spectral norm of matrixA. However, this asymptotic regime
maybe unrealistic becauseML and N appear sometimes to be of the sameorder ofmag-
nitude. It is therefore of crucial interest to evaluate the behaviour of the eigenvalues of

matrix
YLY∗

L
N whenML and N converge to+∞ at the same rate.MatrixYL = XL +VL

can be interpreted as an Information plus Noise model (see [13]), but in which the
noise and the information components are block-Hankel matrices. We believe that in

order to understand the behaviour of the eigenvalues of
YLY∗

L
N , it is first quite useful to

evaluate the eigenvalue distribution of the noise contribution, i.e.
VLV∗

L
N , and to check

whether its eigenvalues tend to be located in a compact interval. Hopefully, the behav-

iour of the greatest eigenvalues of
YLY∗

L
N may be obtained by adapting the approach of

[7], at least if the rank of the “Information” component XL is small enough w.r.t. ML.
It is clear that if we replace N by N + L − 1 in the definition of matrix VL ,

matrixWN is obtained from VL√
N
by row permutations. Therefore, matrices

VLV∗
L

N and

WNW∗
N have the same eigenvalues. The problem we study in the paper is thus equiv-

alent to the characterization of the eigenvalue distribution of the noise part of model
YL .

1.3 On the Literature

Matrix WN can be interpreted as a block-line matrix with i.i.d. L × N blocks
(Wm

N )m=1...,M . Such randomblockmatrices have been studied in the past, e.g. byGirko
([15], Chapter 16) as well as in [14] in the Gaussian case. Using these results, it is easy
to check that the eigenvalue distribution ofWNW∗

N converges towards theMarcenko–
Pastur distribution when L is fixed. However, the case L → +∞ and the almost sure
location of the eigenvalues of WNW∗

N around the support of the Marcenko–Pastur
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distribution cannot be addressed using the results of [15] and [14]. We note that the
L ×N blocks (Wm)m=1...,M are Hankel matrices.We therefore alsomention the works
[21] and [6] that are equivalent to the study of the eigenvalue distribution of symmetric
ML × ML block matrices, each block being a Toeplitz or a Hankel L × L matrix built
from i.i.d. (possibly non-Gaussian) entries.When L → +∞while M remains fixed, it
has been shownusing themomentsmethod that the eigenvalue distribution of the above
matrices converges towards a non-bounded limit distribution. This behaviour general-
izes the results of [9] obtainedwhen M = 1.When M and L both converge on+∞, it is
shown in [6] that the eigenvalue distribution converges towards the semicircle law.We,
however, note that the almost sure location of the eigenvalues in the neighbourhood of
the support of the semicircle law is not addressed in [6]. The behaviour of the singu-
lar value distribution of random block-Hankel matrix (1.2) was addressed in [5] when
M = 1 and L

N → c∗ butwhen thew1,n for N < n < N+L are forced to 0. The random
variables w1,n are also non-Gaussian and are possibly dependent in [5]. It is shown
using the moments method that the singular value distribution converges towards a
non-bounded limit distribution. The case of block-Hankel matrices where both M and
L converge towards∞ considered in this paper thus appears simpler because we show
that the eigenvalue distribution of WNW∗

N converges towards the Marcenko–Pastur
distribution. This behaviour is not surprising in view of the convergence towards the
semicircle law proved in [6] when both the number and the size of the blocks converge
to ∞. As mentioned above, the main result of the present paper concerns the almost
sure location of the eigenvalues ofWNW∗

N around the support of theMarcenko–Pastur
distribution under the extra assumption that L = O(Nα) with α < 2/3. This kind of
result is known for a long time for L = 1 in more general conditions (correlated non-
Gaussian entries, see, e.g. [4] and the references therein). Haagerup and Thorbjornsen
introduced in [17] an efficient approach to addressing these issues in the context of
random matrices built on non-commutative polynomials of complex Gaussian matri-
ces. The approach of [17] has been generalized to the real Gaussian case in [29] and
used in [11,12,22] to address certain nonzero-mean random matrix models. We also
mention that the results of [17] have been recently generalized in [24] to polynomials
of complex Gaussian random matrices and deterministic matrices.

To our best knowledge, the existing literature does not allow to prove that the eigen-
values ofWNW∗

N are located in the neighbourhood of the bulk of theMarcenko–Pastur
distribution. We finally notice that the proof of our main result would have been quite
standard if L was assumed fixed, and rather easy if it was assumed that L → +∞ and
L
M → 0, a condition very close from L = O(Nα) for α < 1/2. However, the case
1/2 ≤ α < 2/3 needs much more efforts. As explained below, we feel that 2/3 is the
optimal limit.

1.4 Overview of the Paper

We first state the main result of this paper.

Theorem 1.1 When M → +∞ and ML and N converge towards ∞ in such a way that
cN = ML

N converges towards c∗ ∈ (0,+∞), the eigenvalue distribution of WNW∗
N

converges weakly almost surely towards the Marcenko–Pastur distribution with para-
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meters σ 2, c∗. If, moreover,
L = O(Nα) (1.4)

where α < 2/3, then, for each ε > 0, almost surely for N large enough, all the
eigenvalues ofWNW∗

N are located in the interval [σ 2(1−√
c∗)2−ε, σ 2(1+√

c∗)2+ε]
if c∗ ≤ 1. If c∗ > 1, almost surely for N large enough, 0 is eigenvalue of WNW∗

N
with multiplicity ML − N, and the N nonzero eigenvalues of WNW∗

N are located in
the interval [σ 2(1 − √

c∗)2 − ε, σ 2(1 + √
c∗)2 + ε]

In order to prove the almost sure location of the eigenvalues of WNW∗
N , we follow

the approach of [17] and [29]. We denote by tN (z) the Stieltjes transform associated
with the Marcenko–Pastur distribution μσ 2,cN

with parameters σ 2, cN , i.e. the unique
Stieltjes transform solution of the equation

tN (z) = 1

−z + σ 2

1+σ 2cN tN (z)

(1.5)

or equivalently of the system

tN (z) = −1

z
(
1 + σ 2 t̃N (z)

) (1.6)

t̃N (z) = −1

z
(
1 + σ 2cN tN (z)

) (1.7)

where t̃N (z) coincides with the Stieltjes transform of μσ 2cN ,1/cN
= cN μσ 2,cN

+ (1−
cN )δ0 where δ0 represents the Dirac distribution at point 0. We denote by S(0)

N the
interval

S(0)
N =

[
σ 2 (1 − √

cN
)2

, σ 2 (1 + √
cN
)2]

(1.8)

and by SN the support of μσ 2,cN
. It is well known that SN is given by

SN = S(0)
N if cN ≤ 1 (1.9)

SN = S(0)
N ∪ {0} if cN > 1 (1.10)

Theorem 1.1 appears to be a consequence of the following identity:

E

[
1

ML
Tr
((
WNW∗

N − z IML
)−1
)]

− tN (z) = L

MN

(
ŝN (z) + L3/2

MN
r̂N (z)

)

(1.11)
where ŝN (z) coincides with the Stieltjes transform of a distribution whose support is
included in S(0

N and where r̂N (z) is a function holomorphic in C
+ satisfying

|r̂N (z)| ≤ P1(|z|) P2 (1/Im(z)) (1.12)
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for z ∈ F (2)
N where F (2)

N is a subset of C+ defined by

F (2)
N =

{
z ∈ C

+,
L2

MN
Q1(|z|)Q2(1/Im(z)) ≤ 1

}
(1.13)

where P1, P2, Q1, Q2 are polynomials independent of the dimensions L , M, N with
positive coefficients. We note that (1.4) is nearly equivalent to L2

M N → 0 or L
M2 → 0

(in the sense that if α ≥ 2/3, then L2

MN does not converge towards 0) and that F (2)
N

appears arbitrary close from C
+ when N increases. The present paper is essentially

devoted to the proof of (1.11) under the assumption (1.4). For this, we study in the
various sections the behaviour of the resolvent QN (z) of matrix WNW∗

N defined by

QN (z) = (
WNW∗

N − z IML
)−1 (1.14)

when z ∈ C
+.We useGaussian tools (integration by parts formula and Poincaré–Nash

inequality) as in [27] and [28] for that purpose.
In Sect. 2, we present some properties of certain useful operators which map matri-

ces A into band Toeplitz matrices whose elements depend on the sum of the elements
ofA on each diagonal. Using Poincaré–Nash inequality, we evaluate in Sect. 3 the vari-
ance of certain functional ofQN (z) (normalized trace, quadratic forms, and quadratic
forms of the L × L matrix Q̂N (z) obtained as the mean of the M L × L diagonal
blocks of QN (z)). In Sect. 4, we use the integration by parts formula in order to
express E (QN (z)) as

E (QN (z)) = IM ⊗ RN (z) + ΔN (z)

whereRN (z) is a certain holomorphicCL×L valued function depending on a Toeplitz-
ified version of E (QN (z)), and where ΔN (z) is an error term. The goal of Sect. 5 is
to control functionals of the error term ΔN (z). We prove that for each z ∈ C

+,
∣∣∣∣
1

ML
Tr (ΔN (z))

∣∣∣∣ ≤ L

MN
P1(|z|) P2 (1/Im(z)) (1.15)

for some polynomials P1 and P2 independent of L , M, N and that if Δ̂N (z) represents
the L × L matrix Δ̂N (z) = 1

M

∑M
m=1 Δ

m,m
N (z), then it holds that

∣∣∣b∗
1 Δ̂N (z)b2

∣∣∣ ≤ L3/2

MN
P1(|z|) P2 (1/Im(z)) (1.16)

for deterministic unit norm L-dimensional vectors b1 and b2. In Sect. 6, we prove that

E

[
1

ML
Tr (QN (z))

]
− tN (z) → 0 (1.17)
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for each z ∈ C
+, a property which implies that the eigenvalue distribution ofWNW∗

N
converges towards the Marcenko–Pastur distribution. We note that (1.17) holds as
soon as M → +∞. At this stage, however, the convergence rate of the left-hand side
of (1.17) is not precise. Under the condition L3/2

MN → 0 (which implies that quadratic

forms of Δ̂N (z) converge towards 0, see (1.16)), we prove in Sect. 8 that

E

[
1

ML
Tr
((
WNW∗

N − z IML
)−1
)]

− tN (z) = L

MN
r̃N (z) (1.18)

where r̃N (z) is holomorphic in C+ and satisfies

|r̃N (z)| ≤ P1(|z|)P2(1/Imz)

for each z ∈ F (3/2)
N , where F (3/2)

N is defined as F (2)
N (see (1.13)), but when L2

MN is

replaced by L3/2

MN . In order to establish (1.18), it is proved in Sect. 7 that the spectral
norm of a Toeplitzified version of matrix RN (z) − tN (z) IL is upperbounded by a
term such as L3/2

MN P1(|z|) P2 (1/Im(z)). (1.18) and Lemma 5.5.5 of [2] would allow to
establish quite easily the almost sure location of the eigenvalues ofWNW∗

N under the
hypothesis L

M → 0. However, this condition is very restrictive, and, at least intuitively,
somewhat similar to L fixed. In Sect. 9, we establish that under condition (1.4), which
is very close from the condition L2

MN → 0, or L
M2 → 0, function r̃N (z) can be written

as r̃N (z) = ŝN (z)+ L3/2

MN r̂N (z), where ŝN (z) and r̂N (z) verify the conditions of (1.11).
We first prove that

E

[
1

ML
Tr (QN (z) − IM ⊗ RN (z))

]
= L

MN

(
sN (z) + L

MN
rN (z)

)
(1.19)

where sN (z) and rN (z) satisfy the same properties than ŝN (z) and r̂N (z). For this, we
compute explicitely sN (z) and verify that it coincides with the Stieltjes transform of a
distribution whose support is included into S(0)

N . The most technical part of the paper
is to establish that

E

[
1

ML
Tr (QN (z) − IM ⊗ RN (z))

]
− L

MN
sN (z) (1.20)

converges towards 0 at rate
( L

MN

)2
. For this, the condition L2

MN → 0 appears to be fun-
damental because it allows, among others, to control the behaviour of the solutions of
L-dimensional linear systems obtained by inverting the sum of a diagonal matrix with
a matrix with O( L

MN ) entries. Using the results of Sect. 7 concerning the spectral norm
of aToeplitzified version ofRN (z)−tN (z) IL , we obtain easily (1.11) from (1.19). The-
orem 1.1 is finally established in Sect. 10. For this, we follow [17,29] and [2] (Lemma
5-5-5). We consider a smooth approximation φ of 1[σ 2(1−√

c∗)2−ε,σ 2(1+√
c∗)2+ε](c) that

vanishes on S(0)
N for each N large enough and establish that almost surely,
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Tr
(
φ
(
WNW∗

N

)) = N O

(
L5/2

(MN)2

)
+[ML − N ]+ = O

((
L

M2

)3/2
)

+[ML − N ]+
(1.21)

(1.4) implies that L
M2 → 0 and that the right-hand side of (1.21) converges towards

[ML − N ]+ almost surely. This, in turn, establishes that the number of nonzero eigen-
values of WNW∗

N that are located outside [σ 2(1 − √
c∗)2 − ε, σ 2(1 + √

c∗)2 + ε]
converges towards zero almost surely and is thus equal to 0 for N large enough as
expected. We have not proved that this property does not hold if L = O(Nα) with
α ≥ 2/3. We, however, mention that the hypothesis α < 2/3 is used at various crucial
independent steps:

– it is used extensively to establish that (1.20) converges towards 0 at rate
( L

MN

)2
– it is nearly equivalent to the condition L2

MN → 0 or L
M2 → 0 which implies

– that the set F (2)
N defined by (1.13)) is arbitrarily close fromC

+, a property that
appears necessary to generalize Lemma 5-5-5 of [2]

– that the right-hand side of (1.21) converges towards [ML − N ]+
We therefore suspect that the almost sure location of the eigenvalues of WNW∗

N
cannot be established using the approach of [17] and [29] if α ≥ 2/3. It would
be interesting to study the potential of combinatorial methods in order to be fully
convinced that the almost sure location of the eigenvalues ofWNW∗

N does not hold if
α ≥ 2/3. We finally mention that we have performed numerical simulations to check
whether it is reasonable to conjecture that the almost sure location property of the
eigenvalues of WNW∗

N holds if and only if α < 2/3. For this, we have generated
10.000 independent realizations of the largest eigenvalue λ1,N of WNW∗

N for σ 2 =
1, N = 214, cN = ML/N = 1/2 and for the following values of (M, L) that seem
to be in accordance with the asymptotic regime considered in this paper: (M, L) =
(28, 25), (M, L) = (27, 26), (M, L) = (26, 27), (M, L) = (25, 28), corresponding to
ratios L

M2 equal, respectively, to 2−11, 2−8, 2−5, and 1/4. As condition α < 2/3 is

nearly equivalent to L
M2 → 0, the first 3 values of (M, L) are in accordance with the

asymptotic regime L = O(Nα) with α < 2/3 while it is of course not the case for the
last configuration. The almost sure location property of course implies that the largest
eigenvalue converges towards (1 + √

c∗)2. In order to check this property, we have
evaluated the empirical mean λ1,N of the 10.000 realizations of λ1,N and compared
λ1,N with (1 + √

1/2)2 � 2.91.
The values of λ1,N in terms of L

M2 are presented in Table 1. It is seen that the

difference between λ1,N and (1+√
1/2)2 � 2.91 increases significantly with the ratio

L
M2 , thus suggesting that λ1,N does not converge almost surely towards (1 + √

c∗)2

when L
M2 does not converge towards 0.

Table 1 Empirical mean of the
largest eigenvalue versus L/M2 L/M2 2−11 2−8 2−5 1/4

λ1,N 2.91 2.92 2.94 3
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1.5 General Notations and Definitions

Assumptions on L , M, N

Assumption 1.1 – All along the paper, we assume that L , M, N satisfy M →
+∞, N → +∞ in such a way that cN = ML

N → c∗, where 0 < c∗ < +∞.
In order to short the notations, N → +∞ should be understood as the above
asymptotic regime.

– In Sects. 7 and 8, L , M, N also satisfy L3/2

MN → 0 or equivalently L
M4 → 0.

– In Sects. 9 and 10, the extra condition L = O(Nα) with α < 2/3 holds.

In the following, we will often drop the index N and will denoteWN , tN ,QN , . . .

byW, t,Q, . . . in order to short the notations. The N columns ofmatrixW are denoted
(w j ) j=1,...,N . For 1 ≤ l ≤ L , 1 ≤ m ≤ M , and 1 ≤ j ≤ N ,Wm

i, j represents the entry
(i + (m − 1)L , j) of matrix W.

C∞(R) (resp.C∞
b (R), C∞

c (R)) denotes the space of all real-valued smooth functions
(resp. bounded smooth functions, smooth functions with compact support) defined on
R.

If A is a ML × ML matrix, we denote by Am1,m2
i1,i2

the entry (i1 + (m1 − 1)L , i2 +
(m2−1)L) ofmatrixA, whileAm1,m2 represents the L×L matrix (Am1,m2

i1,i2
)1≤(i1,i2)≤L .

We also denote by Â the L × L matrix defined by

Â = 1

M

M∑
m=1

Am,m (1.22)

For each 1 ≤ i ≤ L and 1 ≤ m ≤ M, fm
i represents the vector of the canonical basis

of CML whose nonzero component is located at index i + (m − 1)L . If 1 ≤ j ≤ N , e j

is the j th-vector of the canonical basis of CN .
If A and B are 2 matrices, A ⊗ B represents the Kronecker product of A and B,

i.e. the block matrix whose block (i, j) is Ai, j B.‖A‖ represents the spectral norm of
matrix A.

If x ∈ R, [x]+ represents max(x, 0).C+ denotes the set of complex numbers with
strictly positive imaginary parts. The conjuguate of a complex number z is denoted
z∗ or z depending on the context. Unless otherwise stated, z represents an element
of C+. If A is a square matrix, Re(A) and Im(A) represent the Hermitian matrices
Re(A) = A+A∗

2 and Im(A) = A−A∗
2i , respectively.

If (AN )N≥1 (resp. (bN )N≥1) is a sequence of matrices (resp. vectors) whose dimen-
sions increase with N , (AN )N≥1 (resp. (bN )N≥1) is said to be uniformly bounded if
supN≥1 ‖AN ‖ < +∞ (resp. supN≥1 ‖bN ‖ < +∞).

If x is a complex-valued random variable, the variance of x , denoted by Var(x), is
defined by

Var(x) = E

(
|x |2

)
− |E(x)|2

The zero-mean random variable x − E(x) is denoted x◦.
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Nice constants and nice polynomials A nice constant is a positive constant inde-
pendent of the dimensions L , M, N and complex variable z. A nice polynomial is a
polynomial whose degree is independent from L , M, N and whose coefficients are
nice constants. In the following, P1 and P2 will represent generic nice polynomials
whose values may change from one line to another, and C(z) is a generic term of the
form C(z) = P1(|z|)P2(1/Imz).

Properties of matrix Q(z). We recall that Q(z) verifies the so-called resolvent
identity

Q(z) = − IML

z
+ 1

z
Q(z)WW∗ (1.23)

and that it holds that

Q(z)Q∗(z) ≤ IML

(Imz)2
(1.24)

and that

‖Q(z)‖ ≤ 1

Im(z)
(1.25)

for z ∈ C
+. We also mention that

Im(Q(z)) > 0, Im(z Q(z)) > 0, ifz ∈ C
+ (1.26)

Gaussian tools We present the versions of the integration by parts formula (see Eq.
(2.1.42) p. 40 in [28] for the real case and Eq. (17) in [19] for the present complex
case) and of the Poincaré–Nash (see Proposition 2.1.6 in [28] for the real case and Eq.
(18) in [19] for the complex case) that we use in this paper.

Proposition 1.1 (Integration by parts formula) Let ξ = [ξ1, . . . , ξK ]T be a complex
Gaussian random vector such that E[ξ ] = 0,E[ξξT ] = 0 and E[ξξ∗] = Ω . If
Γ : (ξ) �→ Γ (ξ , ξ) is a C1 complex function polynomially bounded together with its
derivatives, then

E[ξpΓ (ξ)] =
K∑

m=1

Ω pmE

[
∂Γ (ξ)

∂ξm

]
. (1.27)

Proposition 1.2 (Poincaré–Nash inequality) Let ξ = [ξ1, . . . , ξK ]T be a complex
Gaussian random vector such that E[ξ ] = 0,E[ξξT ] = 0 and E[ξξ∗] = Ω . If
Γ : (ξ) �→ Γ (ξ , ξ) is a C1 complex function polynomially bounded together with its
derivatives, then, noting ∇ξΓ = [ ∂Γ

∂ξ1
, . . . , ∂Γ

∂ξK
]T and ∇ξΓ = [ ∂Γ

∂ξ1
, . . . , ∂Γ

∂ξ K
]T ,

Var(Γ (ξ)) ≤ E

[
∇ξΓ (ξ)T Ω ∇ξΓ (ξ)

]
+ E

[
∇ξΓ (ξ)∗ Ω ∇ξΓ (ξ)

]
(1.28)

The above two propositions are used below in the case where ξ coincides with
the L M N -dimensional vector vec(WN ). In the following, the particular structure
Wm

i, j = wm,i+ j−1 ofWN is encoded by the correlation structure of the entries ofWN :

E

(
Wm1

i1, j1
W

m2
i2, j2

)
= σ 2

N
δ(i1 − i2 = j2 − j1) δ(m1 = m2) (1.29)
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A useful property of the Stieltjes transform tN (z) of the Marcenko–Pastur μσ 2,cN
.

The following lemma is more or less known. A proof is provided in the Appendix
of [23] for the reader’s convenience.

Lemma 1.1 It holds that
σ 4cN |ztN (z)t̃N (z)|2 < 1 (1.30)

for each z ∈ C
+. Moreover, for each N and for each z ∈ C

+, it holds that

1 − σ 4cN |ztN (z)t̃N (z)|2 > C
(Imz)4

(η2 + |z|2)2 (1.31)

for some nice constants C and η. Finally, for each N, it holds that

(
1 − σ 4cN |zt (z)t̃(z)|2

)−1 ≤ C max

⎛
⎜⎝1, 1(

dist
(

z,S(0)
N

))2

⎞
⎟⎠ (1.32)

for some nice constant C and for each z ∈ C − S(0)
N .

2 Preliminaries

In this section, we introduce certain Toeplitzification operators and establish some
useful related properties.

Definition 2.1 – IfA is a K × K Toeplitz matrix, we denote by (A(k))k=−(K−1),...,K−1
the sequence such that Ak,l = A(k − l).

– For any integer K , JK is the K ×K “shift”matrix defined by (JK )i, j = δ( j−i = 1).
In order to short the notations, matrix J ∗

K is denoted J−1
K , although JK is of course

not invertible.
– For any P K × P K block matrix A with K × K blocks (Ap1,p2)1≤(p1,p2)≤P , we
define (τ (P)(A)(k))k=−(K−1),...,K−1 as the sequence

τ (P)(A)(k) = 1

P K
Tr
[
A(IP ⊗ Jk

K )
]

= 1

P K

∑
i− j=k

P∑
p=1

A(p,p)
i, j

= 1

P K

P∑
p=1

K∑
u=1

Ap,p
k+u,u 11≤k+u≤K (2.1)

– For any P K × P K block matrix A and for 2 integers R and Q such that R ≥ Q
and Q ≤ K , matrix T (P)

R,Q(A) represents the R × R Toeplitz matrix given by

T (P)
R,Q(A) =

Q−1∑
q=−(Q−1)

τ (P)(A)(q) J∗q
R (2.2)
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In other words, for (i, j) ∈ {1, 2, . . . , R}, it holds that
(
T (P)

R,Q(A)
)

i, j
= τ (P)(A)(i − j)1|i− j |≤Q−1 (2.3)

When P = 1, sequence (τ (1)(A)(k))k=−(K−1),...,K−1 and matrix T (1)
R,Q(A) are

denoted (τ (A)(k))k=−(K−1),...,K−1 and matrix TR,Q(A) in order to simplify the
notations. We note that if A is a P K × P K block matrix, then sequence
(τ (P)(A)(k))k=−(K−1),...,K−1 coincides with sequence(
τ
(
Â
)

(k)
)

k=−(K−1),...,K−1
where we recall that Â = 1

P

∑P
p=1 A

p,p; matrix

T (P)
R,Q(A) is equal to TR,Q(Â).

The reader may check that the following straightforward identities hold:

– If A is a R × R Toeplitz matrix, for any R × R matrix B, it holds that

1

R
Tr(AB) =

R−1∑
k=−(R−1)

A(−k)τ (B)(k) = 1

R
Tr
(
ATR,R(B)

)
(2.4)

– If A and B are both R × R matrices, and if Q ≤ R, then

1

R
Tr
(
TR,Q(A)B

) =
Q−1∑

q=−(Q−1)

τ (A)(−q) τ (B)(q) = 1

R
Tr
(
ATR,Q(B)

)
(2.5)

– If A is a P K × P K matrix, if B is a R × R matrix, and if R ≥ Q and Q ≤ K , then
it holds that

1

R
Tr
(
BT (P)

R,Q(A)
)

=
Q−1∑

k=−(Q−1)

τ (B)(k) τ (P)(A)(−k)

= 1

P K
Tr
((
IM ⊗ TK ,Q(B)

)
A
)

(2.6)

– If C is a P K × P K matrix, B is a K × K matrix and D,E R × R matrices with
K ≤ R, then it holds that

1

K
Tr
[
BTK ,K

(
DT (P)

R,K (C)E
)]

= 1

P K
Tr
[
C
(
IP ⊗ TK ,K [ETR,K (B)D])] (2.7)

We now establish useful properties of matrix T (P)
R,Q(A).

Proposition 2.1 If A is a P K × P K matrix, then, for each integer R ≥ K , it holds
that

∥∥∥T (P)
R,K (A)

∥∥∥ ≤ sup
ν∈[0,1]

∣∣∣∣∣∣
aK (ν)∗

⎛
⎝ 1

P

P∑
p=1

Ap,p

⎞
⎠ aK (ν)

∣∣∣∣∣∣
≤ ‖A‖ (2.8)
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where aK (ν) represents the K -dimensional vector defined by

aK (ν) = 1√
K

(
1, e2iπν, . . . , e2iπ(K−1)ν

)T
(2.9)

If A is a K × K matrix and if R ≤ K , then it holds that

∥∥TR,R(A)
∥∥ ≤ sup

ν∈[0,1]
∣∣aK (ν)∗AaK (ν)

∣∣ ≤ ‖A‖ (2.10)

Proof Wefirst establish (2.8). As R ≥ K , matrix T (P)
R,K (A) is a submatrix of the infinite

band Toeplitz matrix with (i, j) elements τ (P)(A)(i − j)1|i− j |≤K−1. The norm of this
matrix is known to be equal to the L∞ norm of the corresponding symbol (see [8],
Eq. (1-14), p. 10). Therefore, it holds that

‖T (P)
R,K (A)‖ ≤ sup

ν∈[0,1]

∣∣∣∣∣∣
K−1∑

k=−(K−1)

τ (P)(A)(k)e−2iπkν

∣∣∣∣∣∣

We now verify the following useful identity:

K−1∑
k=−(K−1)

τ (P)(A)(k)e−2iπkν = aK (ν)∗
⎛
⎝ 1

P

P∑
p=1

A(p,p)

⎞
⎠ aK (ν) (2.11)

Using the definition (2.1) of τ (P)(A)(k), the term
∑K−1

k=−(K−1) τ (P)(A)(k)e−2iπkν can
also be written as

K−1∑
k=−(K−1)

τ (P)(A)(k)e−2iπkν = 1

K

K−1∑
k=−(K−1)

Tr

⎛
⎝
⎛
⎝ 1

P

P∑
p=1

A(p,p)

⎞
⎠ e−2iπkνJk

K

⎞
⎠

or equivalently as

Tr

⎛
⎝
⎛
⎝ 1

P

P∑
p=1

A(p,p)

⎞
⎠ 1

K

⎛
⎝

K−1∑
k=−(K−1)

e−2iπkνJk
K

⎞
⎠
⎞
⎠

It is easily seen that

1

K

⎛
⎝

K−1∑
k=−(K−1)

e−2iπkνJk
K

⎞
⎠ = aK (ν)aK (ν)∗

from which (2.11) and (2.8) follow immediately.
In order to justify (2.10), we remark that R ≤ K implies that TR,R(A) is a submatrix

of TK ,K (A) whose norm is bounded by supν |aK (ν)∗AaK (ν)| by (2.8). ��
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We also prove that the operators T preserve the positivity of matrices.

Proposition 2.2 If A is a P K × P K positive definite matrix, then, for each integer
R ≥ K , it holds that

T (P)
R,K (A) > 0 (2.12)

If A is a K × K positive definite matrix and if R ≤ K , then it holds that

TR,R(A) > 0 (2.13)

Proof We first prove (2.12). (2.11) implies that

K−1∑
k=−(K−1)

τ (P)(A)(k)e−2iπkν > 0

for each ν.(τ (P)(A)(k))k=−(K−1),...,K−1, thus coinciding the Fourier coefficients of a
positive function. Elementary results related the trigonometric moment problem (see,
e.g. [18], 1.11 (a)) imply that for each R ≥ K , matrix T (P)

R,K (A) is positive definite. We
finally justify (2.13). As R ≤ K , matrix TR,R(A) is a submatrix of TK ,K (A) which is
positive definite by (2.12). ��
We finally give the following useful result proved in the “Appendix”.

Proposition 2.3 If A is a K × K matrix and if R ≥ K , then it holds that

TR,K (A)
(
TR,K (A)

)∗ ≤ TR,K (AA∗) (2.14)

If A is a K × K matrix and if R ≤ K , then

TR,R(A)
(
TR,R(A)

)∗ ≤ TR,R(AA∗) (2.15)

3 Poincaré–Nash Variance Evaluations

In this section, we take benefit of the Poincaré–Nash inequality to evaluate the variance
of certain important terms. In particular, we prove the following useful result.

Proposition 3.1 Let A be a deterministic ML × ML matrix for which supN ‖A‖ ≤ κ ,
and consider 2 ML-dimensional deterministic vectors a1, a2 such that supN ‖ai‖ ≤
κ for i = 1, 2 as well as 2 L-dimensional deterministic vectors b1,b2 such that
supN ‖bi‖ ≤ κ for i = 1, 2. Then, for each z ∈ C

+, it holds that

Var

(
1

ML
Tr (AQ(z))

)
≤ C(z) κ2 1

MN
(3.1)

Var
(
a∗
1Q(z)a2

) ≤ C(z) κ4 L

N
(3.2)
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Var

(
b∗
1

[
1

M

M∑
m=1

(Q(z))m,m

]
b2

)
≤ C(z) κ4 L

MN
(3.3)

where C(z) can be written as C(z) = P1(|z|)P2

(
1

Im(z)

)
for some nice polynomials

P1 and P2. Moreover, if G is a N × N deterministic matrix verifying supN ‖G‖ ≤ κ ,
the following evaluations hold:

Var

(
1

ML
Tr
(
AQ(z)WGW∗)

)
≤ C(z) κ4 1

MN
(3.4)

Var
(
a∗
1Q(z)WGW∗a2

) ≤ C(z) κ6 L

N
(3.5)

Var

(
b∗
1

[
1

M

M∑
m=1

(
Q(z)WGW∗)m,m

]
b2

)
≤ C(z) κ6 L

MN
(3.6)

where C(z) can be written as above.

Proof Wefirst establish (3.1) and denote by ξ the randomvariable ξ = 1
MLTr (AQ(z)).

As the various entries of 2 different blocksWm1 ,Wm2 are independent, the Poincaré–
Nash inequality can be written as

Var ξ ≤
∑

m,i1,i2, j1, j2

E

[(
∂ξ

∂W
m
i1, j1

)∗
E

(
Wm

i1, j1W
m
i2, j2

) ∂ξ

∂W
m
i2, j2

]
(3.7)

+
∑

m,i1,i2, j1, j2

E

[
∂ξ

∂Wm
i1, j1

E

(
Wm

i1, j1W
m
i2, j2

)( ∂ξ

∂Wm
i2, j2

)∗]
(3.8)

In the following, we just evaluate the right-hand side of (3.7), denoted by β, because
the behaviour of the term defined by (3.8) can be established similarly. It is easy to
check that

∂Q

∂W
m
i, j

= −QWe j (fm
i )TQ

so that

∂ξ

∂W
m
i, j

= − 1

ML
Tr
(
AQWe j (fm

i )TQ
)

which can also be written − 1
ML (fm

i )TQAQWe j . We recall that E
(
Wm

i1, j1
W

m
i2, j2

)
=

σ 2

N δ(i1 − i2 = j2 − j1) (see (1.29)). Therefore, β is equal to the mathematical expec-
tation of the term
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1

(ML)2

σ 2

N

∑
m,i1,i2, j1, j2

δ( j2 − j1 = i1 − i2)eT
j1W

∗Q∗A∗Q∗fm
i1 (fm

i2 )TQAQWe j2

We put u = i1 − i2 and remark that
∑

m,i1−i2=u f
m
i1

(fm
i2

)T = IM ⊗ J∗u
L . We thus obtain

that

β = 1

(ML)2

σ 2

N
E

⎡
⎣

L−1∑
u=−(L−1)

∑
j2− j1=u

eT
j1W

∗Q∗A∗Q∗(IM ⊗ J∗u
L )QAQWe j2

⎤
⎦

Using that
∑

j2− j1=u e j2e
T
j1

= J∗u
N , we get that

β = 1

ML

σ 2

N
E

⎡
⎣

L−1∑
u=−(L−1)

1

ML
Tr
(
QAQWJ∗u

N W∗Q∗A∗Q∗(IM ⊗ J∗u
L )
)
⎤
⎦

If B is a ML × N matrix, the Schwartz inequality as well as the inequality (xy)1/2 ≤
1/2(x + y) leads to

∣∣∣∣
1

ML
Tr
(
BJ∗u

N B∗(IM ⊗ J∗u
L )
)∣∣∣∣ ≤ 1

2ML
Tr
(
BJ∗u

N Ju
NB

∗)

+ 1

2ML
Tr
(
B∗(IM ⊗ J∗u

L Ju
L)B

)

It is clear that matrices J∗u
N Ju

N and J∗u
L Ju

L are less than IN and IL , respectively. There-
fore, ∣∣∣∣

1

ML
Tr
(
BJ∗u

N B∗(IM ⊗ J∗u
L )
)∣∣∣∣ ≤ 1

ML
Tr
(
BB∗) (3.9)

Using (3.9) for B = QAQW for each u leads to

β ≤ σ 2

MN
E

[
1

ML
Tr
(
QAQWW∗Q∗A∗Q∗)

]

The resolvent identity (1.23) can also be written as QWW∗ = I + zQ. This implies
that the greatest eigenvalue of QWW∗Q∗ coincides with the greatest eigenvalue of
(I + zQ)Q∗ which is itself less than ‖Q‖ + |z|‖Q‖2. As ‖Q‖ ≤ 1

Imz , we obtain that

QWW∗Q∗ ≤ 1

Imz

(
1 + |z|

Imz

)
I. (3.10)

Therefore, it holds that

β ≤ 1

Imz

(
1 + |z|

Imz

)
1

MN
E

[
1

ML
Tr
(
QAA∗Q∗)

]
(3.11)
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We eventually obtain that

β ≤ κ2 1

MN
C(z)

1

(Imz)3

(
1 + |z|

Imz

)

The conclusion follows from the observation that

1

(Imz)3

(
1 + |z|

Imz

)
≤
[

1

(Imz)3
+ 1

(Imz)4

]
(|z| + 1)

In order to prove (3.2) and (3.3), we remark that

a∗
1 Qa2 = ML

1

ML
Tr
(
Qa2a∗

1

)

b∗
1

[
1

M

M∑
m=1

(Q(z))m,m

]
b2 = L

1

ML
Tr
(
Q(IM ⊗ b2b∗

1)
)

(3.2) and (3.3) follow immediately from this and inequality (3.11) used in the case
A = a2a∗

1 and A = IM ⊗ b2b∗
1, respectively. ��

We finally provide a sketch of proof of (3.4) and omit the proof of (3.6) and
(3.5) which can be obtained as above. We still denote by ξ the random variable
ξ = 1

MLTr (Q(z)WGW∗) and only evaluate the behaviour of the right-hand side
β of (3.7). After easy calculations using tricks similar to those used in the course of
the proof of (3.1), we obtain that

β ≤ 2σ 2

MN
E

[
1

ML
Tr
(
QWGW∗AQWW∗Q∗A∗WG∗W∗Q∗)

]
(3.12)

+ 2σ 2

MN
E

[
1

ML
Tr
(
G∗W∗Q∗A∗AQWG

)]
(3.13)

The term defined by (3.13) is easy to handle becauseQ∗A∗AQ ≤ κ2

(Im(z))2
I. Therefore,

(3.13) is less than 2σ 2κ2

(Im(z))2
1

MN E
[ 1

MLTr (WGG∗W∗)
]
which is itself lower bounded

by 1
MN

2σ 4κ4

(Im(z))2
because E

( 1
MLTr(WW∗)

) = σ 2. To evaluate the right-hand side of

(3.12), we use (3.10) twice and obtain immediately that is less than C(z)κ4

MN .

4 Expression of Matrix E(Q) Obtained Using the Integration by Parts
Formula

In this section, we use the integration by parts formula in order to express E (Q(z)) as
a term which will appear to be close from t (z)IML where we recall that t (z) represents
the Stieltjes transform of the Marcenko–Pastur distribution μσ 2,cN

. For this, we have
first to introduce useful matrix-valued functions of the complex variable z and to study
their properties.
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Lemma 4.1 For each z ∈ C
+, matrix IN + σ 2cNT (M)

N ,L (E(Q(z))) is invertible. We
denote by H(z) its inverse, i.e.

H(z) =
[
IN + σ 2cNT (M)

N ,L (E(Q(z)))
]−1

(4.1)

Then, function z → H(z) is holomorphic in C
+ and verifies

H(z)H(z)∗ ≤
( |z|
Imz

)2

IN (4.2)

Moreover, for each z ∈ C
+, matrix −z I+ σ 2 TL ,L (H(z)) is invertible. We denote by

R(z) its inverse, i.e.

R(z) =
[
−zIL + σ 2TL ,L(H(z))

]−1
(4.3)

Then, function z → R(z) is holomorphic in C
+, and it exists a positive matrix-valued

measure μR carried by R
+, satisfying μR(R+) = IL , and for which

R(z) =
∫

R+
d μR(λ)

λ − z

Finally, it holds that

R(z)R(z)∗ ≤
(

1

Imz

)2

IL (4.4)

Proof The proof is sketched in the “Appendix”. ��
In order to be able to perform the integration by parts formula, we use the identity

(1.23) which implies that

E

[
Qm1,m2

i1,i2

]
= −1

z
δ(i1 − i2)δ(m1 − m2) + 1

z
E

[(
QWW∗)m1,m2

i1,i2

]
(4.5)

We express (QWW∗)m1,m2
i1,i2

as

(
QWW∗)m1,m2

i1,i2
=

N∑
j=1

(
Qw jw∗

j

)m1,m2

i1,i2
=

N∑
j=1

(
Qw j

)m1
i1

W
m2
i2, j

where we recall that (w j ) j=1,...,N represent the columns of W. In order to be able

to evaluate E

[(
Qw jw∗

j

)m1,m2

i1,i2

]
, it is necessary to express E

[(
Qwkw∗

j

)m1,m2

i1,i2

]
=

E

[
(Qwk)

m1
i1

(
w∗

j

)m2

i2

]
for each pair (k, j). For this, we use the identity

E

[
(Qwk)

m1
i1

(
w∗

j

)m2

i2

]
=
∑
i3,m3

E

(
Qm1,m3

i1,i3
Wm3

i3,k
W

m2
i2, j

)
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and use the integration by parts formula

E

(
Qm1,m3

i1,i3
Wm3

i3,k
W

m2
i2, j

)
=
∑

i ′ , j ′
E

(
Wm3

i3,k
W

m3

i ′ , j ′
)
E

⎡
⎣∂

(
Qm1,m3

i1,i3
W

m2
i2, j

)

∂W
m3

i ′ , j ′

⎤
⎦

It is easy to check that

∂
(
Qm1,m3

i1,i3
W

m2
i2, j

)

∂W
m3

i ′ , j ′
= Qm1,m3

i1,i3
δ(m2 = m3)δ(i

′ = i2)δ( j = j
′
)

−
(
Qw j ′

)m1

i1
Qm3,m3

i ′ ,i3
W

m2
i2, j

(1.1) implies that E
(
Wm3

i3,k
W

m3

i ′ , j ′
)

= σ 2

N δ(i3 − i
′ = j

′ −k). Therefore, we obtain that

E

(
Qm1,m3

i1,i3
Wm3

i3,k
W

m2
i2, j

)
= σ 2

N
δ(i3 − i2 = j − k)δ(m2 = m3)E

(
Qm1,m3

i1,i3

)

− σ 2

N

∑

i ′ , j ′
δ(i3−i

′ = j
′ −k)E

[(
Qw j ′

)m1

i1

(
w∗

j

)m2

i2
Qm3,m3

i ′ ,i3

]

and that

E

[
(Qwk)

m1
i1

(
w∗

j

)m2

i2

]
= σ 2

N

∑
i3,m3

δ(i3 − i2 = j − k)δ(m2 = m3)E
(
Qm1,m3

i1,i3

)

− σ 2

N

∑
i3,m3

∑

i ′ , j ′
δ(i3 − i

′ = j
′ − k)E

[(
Qw j ′

)m1

i1

(
w∗

j

)m2

i2
Qm3,m3

i ′ ,i3

]

We put i = i
′ − i3 in the above sum and get that

E

[
(Qwk)

m1
i1

(
w∗

j

)m2

i2

]
= σ 2

N
E

(
Qm1,m2

i1,i2−(k− j)

)
11≤i2−(k− j)≤L

− σ 2cN

L−1∑
i=−(L−1)

11≤k−i≤N E

⎡
⎣(Qwk−i )

m1
i1

(
w∗

j

)m2

i2

1

ML

∑

i ′−i3=i

∑
m3

Qm3,m3

i ′ ,i3

⎤
⎦

or, using the definition (2.1),

E

[
(Qwk)

m1
i1

(
w∗

j

)m2

i2

]
= σ 2

N
E

(
Qm1,m2

i1,i2−(k− j)

)
11≤i2−(k− j)≤L

− σ 2cN

L−1∑
i=−(L−1)

11≤k−i≤N E

[
τ (M)(Q)(i) (Qwk−i )

m1
i1

(
w∗

j

)m2

i2

]
(4.6)
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Setting u = k − i , the second term of the right-hand side of the above equation can
also be written as

− σ 2cNE

[
N∑

u=1

τ (M)(Q)(k − u)1−(L−1)≤k−u≤L−1 (Qwu)
m1
i1

(
w∗

j

)m2

i2

]

or, using the observation that τ (M)(Q)(k − u)1−(L−1)≤k−u≤L−1 =
(
T (M)

N ,L (Q)
)

k,u
(see Eq. (2.3)), as

− σ 2cN E

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
eT

k T (M)
N ,L (Q)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(Qw1)
m1
i1

(
w∗

j

)m2

i2

(Qw2)
m1
i1

(
w∗

j

)m2

i2
...

(QwN )
m1
i1

(
w∗

j

)m2

i2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

We express matrix Q as Q = E(Q) + Q◦ and define the following N × N matrices
Am1,m2

i1,i2
,Bm1,m2

i1,i2
,ϒ

m1,m2
i1,i2

(
Am1,m2

i1,i2

)
k, j

= E

[
(Qwk)

m1
i1

(
w∗

j

)m2

i2

]

(
Bm1,m2

i1,i2

)
k, j

= E

[
Qm1,m2

i1,i2−(k− j)11≤i2−(k− j)≤L

]

ϒ
m1,m2
i1,i2

= −σ 2cN E

⎡
⎢⎢⎢⎣T

(M)
N ,L (Q◦)

⎛
⎜⎜⎜⎝

(Qw1)
m1
i1

(Qw2)
m1
i1

...

(QwN )
m1
i1

⎞
⎟⎟⎟⎠
((

w∗
1

)m2
i2

(
w∗
2

)m2
i2

. . .
(
w∗

N

)m2
i2

)
⎤
⎥⎥⎥⎦

We notice that matrix

⎡
⎢⎢⎢⎣

⎛
⎜⎜⎜⎝

(Qw1)
m1
i1

(Qw2)
m1
i1

...

(QwN )
m1
i1

⎞
⎟⎟⎟⎠
((

wH
1

)m2

i2

(
wH
2

)m2

i2
. . .

(
wH

N

)m2

i2

)
⎤
⎥⎥⎥⎦

can also be written as

⎛
⎜⎝
wT
1 Q

T

...

wT
NQ

T

⎞
⎟⎠
(
fm1
i1

) (
fm2
i2

)T
(w1, . . . ,wN )
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or as

WTQT
(
fm1
i1

) (
fm2
i2

)T
W

Therefore,

ϒ
m1,m2
i1,i2

= −σ 2cN E

[
T (M)

N ,L (Q◦) WTQT
(
fm1
i1

) (
fm2
i2

)T
W
]

(4.7)

It is useful to notice that matrix Bm1,m2
i1,i2

is a band Toeplitz matrix whose (k, l) element
is zero if |k − l| ≥ L . It is clear that Eq. (4.6) is equivalent to

[
IN + σ 2cNT (M)

N ,L (E(Q))
]
Am1,m2

i1,i2
= σ 2

N
Bm1,m2

i1,i2
+ ϒ

m1,m2
i1,i2

Lemma 4.1 implies that matrix
[
IN + σ 2cNT (M)

N ,L (E(Q(z)))
]
is invertible for each

z ∈ C
+, and we recall that its inverse is denoted H(z). We obtain that

Am1,m2
i1,i2

= σ 2

N
H Bm1,m2

i1,i2
+ Hϒ

m1,m2
i1,i2

(4.8)

The term E (QWW∗)m1,m2
i1,i2

coincides with Tr
(
Am1,m2

i1,i2

)
, so that

E
(
QWW∗)m1,m2

i1,i2
= σ 2 1

N
Tr
(
H Bm1,m2

i1,i2

)
+ Tr

(
H ϒ

m1,m2
i1,i2

)
(4.9)

As matrix Bm1,m2
i1,i2

is Toeplitz, it holds that (see Eq. 2.4)

1

N
Tr
(
H Bm1,m2

i1,i2

)
=

N−1∑
u=−(N−1)

τ (H)(u)E
(
Qm1,m2

i1,i2+u

)
11≤i2+u≤L

which also coincides with

1

N
Tr
(
H Bm1,m2

i1,i2

)
=

L−1∑
u=−(L−1)

τ (H)(u)E
(
Qm1,m2

i1,i2+u

)
11≤i2+u≤L

because 11≤i2+u≤L = 0 if |u| ≥ L . Setting v = i2 + u, this term can be written as

1

N
Tr
(
H Bm1,m2

i1,i2

)
=

L∑
v=1

E

(
Qm1,m2

i1,v

)
τ(H)(v − i2)
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or, using definition (2.3), as

1

N
Tr
(
H Bm1,m2

i1,i2

)
=

L∑
v=1

E

(
Qm1,m2

i1,v

) (
TL ,L(H)

)
v,i2

= (
E(Qm1,m2)TL ,L(H)

)
i1,i2

Equation (4.9) eventually leads to

E
[(
QWW∗)m1,m2

] = σ 2
E(Qm1,m2)TL ,L(H) + ϒ(H)m1,m2 (4.10)

where, for each N × N matrix F,ϒ(F) represents the ML × ML matrix defined by

ϒ(F)
m1,m2
i1,i2

= Tr
(
F ϒ

m1,m2
i1,i2

)
(4.11)

(4.7) implies that matrix ϒ(F) can be written as

ϒ(F) = −σ 2cNE

[
QW

(
T (M)

N ,L (Q◦)
)T

FTW∗
]

(4.12)

By (1.23), it holds that (QWW∗)m1,m2 = δ(m1 = m2) IL + zQm1,m2 . Therefore, we
deduce from (4.10) that

E(Qm1,m2)
(
−zIL + σ 2TL ,L(H)

)
= ILδ(m1 = m2) − ϒ(H)m1,m2 (4.13)

By Lemma 4.1, −zIL + σ 2TL ,L(H(z)) is invertible for z ∈ C
+ and we recall that its

inverse is denoted by R. We thus obtain that

E(Q) = IM ⊗ R + Δ (4.14)

where Δ is the ML × ML matrix defined by

Δ = −ϒ(H) (IM ⊗ R) (4.15)

The above evaluations also allow to obtain a similar expression ofmatrixE(QWGW∗)
where G is a N × N matrix. For this, we express E

[
(QWGW∗)m1,m2

i1,i2

]
as

E

[
(QWGW∗)m1,m2

i1,i2

]
=

N∑
(k, j)=1

Gk, jE

[
(Qwk)

m1
i1

(w∗
j )

m2
i2

]

or equivalently as

E

[
(QWGW∗)m1,m2

i1,i2

]
= Tr

(
GTAm1,m2

i1,i2

)
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Therefore, using (4.8), it holds that

E

[(
QWGW∗)m1,m2

i1,i2

]
= σ 2

N
Tr
(
GTHBm1,m2

i1,i2

)
+ Tr

(
GTHϒ

m1,m2
i1,i2

)

Replacing matrix H by matrix GTH in the above calculations, we obtain that

E
[
QWGW∗] = σ 2

E(Q)
(
IM ⊗ TL ,L(GTH)

)
+ ϒ(GTH)

Using (4.14), we eventually get that

E
(
QWGW∗) = σ 2

(
IM ⊗ R TL ,L(GTH)

)
+σ 2Δ

(
IM ⊗ TL ,L(GTH)

)
+ ϒ(GTH)

(4.16)

5 Controls of the Error Term Δ

In this section, we evaluate the behaviour of various terms depending on Δ, i.e.
normalized traces 1

MLTrΔA, quadratic forms a∗
1Δa2, and quadratic forms of matrix

Δ̂ = 1
M

∑M
m=1 Δm,m . Using rough estimates based on the results of Sect. 3 and the

Schwartz inequality, we establish that the normalized traces are O( L
MN ) and that two

other terms are O(

√
L
M

L
N ) and O( L3/2

MN ), respectively. We first establish the following
proposition.

Proposition 5.1 Let A be a ML×ML matrix satisfying supN ‖A‖ ≤ κ . Then, it holds
that ∣∣∣∣

1

ML
TrΔA

∣∣∣∣ ≤ κ
L

MN
C(z) (5.1)

where C(z) can be written as C(z) = P1(|z|) P2
(
(Imz)−1

)
for some nice polynomials

P1 and P2.

Proof As matrix R verifies ‖R‖ ≤ (Imz)−1, it is sufficient to establish (5.1) when Δ

is replaced by ϒ(H). In order to simplify the notations, matrix ϒ(H) is denoted by ϒ

in this section. We denote by γ the term γ = 1
MLTrϒA which is given by

γ = 1

M

∑
m1,m2

1

L

∑
i1,i2

ϒ
m1,m2
i1,i2

Am2,m1
i2,i1

Using the expression (4.12) of matrix ϒ , we obtain that γ can be written as

γ = −σ 2
E

[
1

N
Tr

((
T (M)

N ,L (Q◦)
)T

HTW∗AQW
)]
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Using Eq. (2.6) and the identity τ (M)
(
(Q◦)T

)
(−u) = τ (M) (Q◦) (u), we get that

γ = −σ 2cNE

⎡
⎣

L−1∑
u=−(L−1)

τ (M)(Q◦)(u)
1

ML
Tr
(
QWJu

NH
TW∗A

)⎤⎦ (5.2)

(3.1, 3.4) imply that E
∣∣τ (M)(Q◦)(−u)

∣∣2 and Var ( 1
MLTr

(
QWJu

NH
TWA

))
are upper-

bounded by terms of the form C(z)
MN and κ2 C(z)

MN , respectively. The Cauchy–Schwartz
inequality thus implies immediately (5.1). ��

We now evaluate the behaviour of quadratic forms of matrix Δ and of matrix Δ̂.

Proposition 5.2 Let a1 and a2 2 ML-dimensional vectors such that supN ‖ai‖ ≤ κ

for i = 1, 2. Then, it holds that

a∗
1Δa2 ≤ κ2 C(z)

√
L

M

L

N
(5.3)

for each z ∈ C
+, where C(z) is as in Proposition 5.1. Letbi , i = 1, 2 be 2 deterministic

L-dimensional vectors such that supN ‖bi‖ < κ . Then, it holds that

∣∣∣∣∣b
∗
1

(
1

M

M∑
m=1

Δm,m

)
b2

∣∣∣∣∣ ≤ κ2 C(z)
L3/2

MN
(5.4)

Proof As above, it is sufficient to establish the proposition when Δ is replaced by ϒ.
We first establish (5.3). We remark that a∗

1ϒa2 = ML 1
MLTr(ϒa2a∗

1). Using Eq. (5.2)
in the case A = a2a∗

1, we obtain that

a∗
1ϒa2 = −σ 2

E

⎡
⎣

L−1∑
u=−(L−1)

τ (M)(Q◦)(u) a∗
1QWJu

NH
TW∗a2

⎤
⎦

(3.5, 3.1) and the Schwartz inequality lead immediately to

∣∣a∗
1ϒa2

∣∣ ≤ κ2 C(z)L
1√
MN

√
L

N
= κ2 C(z)

√
L

M

L

N
.

We now establish (5.4). We remark that

b∗
1

(
1

M

M∑
m=1

ϒm,m

)
b2 = L

1

ML
Tr
(
ϒ(IM ⊗ b2b∗

1)
)
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Using Eq. (5.2) in the case A = IM ⊗ b2b∗
1, we obtain immediately that

b∗
1

(
1

M

M∑
m=1

ϒm,m

)
b2

=
L−1∑

u=−(L−1)

E

[
τ (M)(Q◦)(u)b1∗

(
1

M

M∑
m=1

(QWJu
NH

TW∗)m,m

)
b2

]
(5.5)

(5.4) thus appears as a direct consequence of (3.1), 3.6) and the Schwartz inequality.
��

We finally mention a useful corollary of (5.4).

Corollary 5.1 It holds that

∥∥∥T (M)
N ,L (E(Q) − (IM ⊗ R))

∥∥∥ ≤ C(z)
L3/2

MN
(5.6)

for each z ∈ C
+ where C(z) can be written as C(z) = P1(|z|) P2

(
(Imz)−1

)
for some

nice polynomials P1 and P2.

Taking into account Proposition 2.1, (5.6) follows immediately from (5.4) by consid-
ering the unit norm vector b = aL(ν).

6 Convergence Towards the Marcenko–Pastur Distribution

In the following, we establish that

1

ML
Tr (E(Q(z)) − t (z)IML) → 0 (6.1)

for each z ∈ C
+. (3.1) does not imply in general that 1

MLTr (Q(z) − E(Q(z))) con-
verges towards 0 almost surely (this would be the case if M was of the same order
of magnitude than N κ for some κ > 0). However, the reader may check using the

Poincaré–Nash inequality that the variance of
[ 1

MLTr(Q
◦(z))

]2
is a O( 1

(MN)2
) term.

As

E

∣∣∣∣
1

ML
Tr(Q◦(z))

∣∣∣∣
4

=
∣∣∣∣∣E
[

1

ML
Tr(Q◦(z))

]2∣∣∣∣∣
2

+ Var

[
1

ML
Tr(Q◦(z))

]2

(3.1) implies that the fourth-order moment of 1
MLTr (Q

◦(z)) is also a O( 1
(MN)2

) term

and that 1
MLTr (Q(z) − E(Q(z))) converges towards 0 almost surely. Consequently,

(6.1) allowsus to prove that the eigenvalue value distributionofWW∗ has almost surely
the same behaviour than the Marcenko–Pastur distribution μσ 2,cN

. As cN → c∗, this
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of course establishes the almost sure convergence of the eigenvalue distribution of
WNW∗

N towards the Marcenko–Pastur μσ 2,c∗ .
In the following, we thus prove (6.1). (4.14) and Proposition 5.1 imply that for each

uniformly bounded L × L matrix A, then it holds that

1

ML
Tr [(E(Q(z)) − IM ⊗ R(z)) (IM ⊗ A)] = O

(
L

MN

)
(6.2)

for each z ∈ C
+. We now establish that

1

ML
Tr [(IM ⊗ R(z) − t (z)IML) (IM ⊗ A)] → 0

or equivalently that
1

L
Tr [(R(z) − t (z)IL)A] → 0 (6.3)

for each z ∈ C
+. For this, we first mention that straightforward computations lead to

R − tI = −σ 4cN zt (z)t̃(z) R TL ,L

(
HT (M)

N ,L [E(Q) − tIML]
)

(6.4)

Therefore,

1

L
Tr [(R − tIL)A] = −σ 4cN zt (z)t̃(z)

1

L
TrARTL ,L

(
HT (M)

N ,L [E(Q) − tIML]
)

Direct application of (2.7) to the case P = M, K = L , R = L ,C = E(Q)−tIML,B =
AR, and D = H implies that

1

L
Tr ((R − tIL)A)

= −σ 4cN zt (z)t̃(z)
1

ML
Tr
[
(E(Q) − tIML)

(
IM ⊗ TL ,L(TN ,L(AR)H

)]

In the following, we denote by G(A) the L × L matrix defined by

G(A) = TL ,L
(
TN ,L(AR)H

)
(6.5)

Writing that E(Q) − tIML = E(Q) − IM ⊗ R + IM ⊗ R − tIML, we obtain that

1

L
Tr [(R − tIL)A] = −σ 4cN zt (z)t̃(z)

1

ML
Tr [(E(Q) − IM ⊗ R) (IM ⊗ G(A))]

−σ 4cN zt (z)t̃(z)
1

L
Tr [(R − tIL)G(A)] (6.6)

We now prove that

sup
‖B‖≤1

∣∣∣∣
1

L
Tr ((R − tIL)B)

∣∣∣∣ = O

(
L

MN

)
(6.7)
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when z belongs to a certain domain. For this, we first remark that (2.8) implies that
‖G(A)‖ ≤ ‖H‖‖R‖‖A‖. By Lemma 4.1, it holds that ‖H‖‖R‖ ≤ |z|

(Im(z))2
. Conse-

quently, we obtain that

‖G(A)‖ <
|z|

(Im(z))2
‖A‖ (6.8)

This implies that for each L × L matrix A such that ‖A‖ ≤ 1, then it holds that

∣∣∣∣
1

ML
Tr [(E(Q) − IM ⊗ R) (IM ⊗ G(A))]

∣∣∣∣

≤ |z|
(Im(z))2

sup
‖B‖≤1

∣∣∣∣
1

ML
Tr [(E(Q) − IM ⊗ R))B]

∣∣∣∣ ,

∣∣∣∣
1

L
Tr [(R − tIL)G(A)]

∣∣∣∣ ≤ |z|
(Im(z))2

sup
‖B‖≤1

∣∣∣∣
1

L
Tr [(R − tIL)B]

∣∣∣∣

Proposition 5.1 implies that

sup
‖B‖≤1

∣∣∣∣
1

ML
Tr [(E(Q) − IM ⊗ R))B]

∣∣∣∣ = O

(
L

MN

)

This and Eq. (6.6) eventually imply that

sup
‖B‖≤1

∣∣∣∣
1

L
Tr ((R − tIL)B)

∣∣∣∣ ≤ O

(
L

MN

)

+ σ 4cN |zt (z)t̃(z)| |z|
(Im(z))2

sup
‖B‖≤1

∣∣∣∣
1

L
Tr ((R − tIL)B)

∣∣∣∣

It also holds that |zt (z)t̃(z)| ≤ |z|
(Im(z))2

. Therefore, if z belongs to the domain

σ 4cN
|z|2

(Im(z))4
< 1

2 , we obtain that

sup
‖B‖≤1

∣∣∣∣
1

L
Tr [(R − tIL)B]

∣∣∣∣ = O

(
L

MN

)
(6.9)

This establishes (6.3) for each uniformly bounded L × L matrix A whenever
z is well chosen. Moreover, for these values of z, 1

L Tr ((R − t I)A), and thus
1

MLTr (E(Q(z) − t (z) IML)A) are O( L
MN ) terms. A standard application of Montel’s

theorem implies that (6.3) holds on C
+. This, in turn, establishes (6.1).

Remark 6.1 We have proved that for each uniformly bounded L × L matrix A, then
it holds that

1

ML
Tr [(E(Q(z) − t (z)IML)) (IM ⊗ A)] → 0
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for each z ∈ C
+. It is easy to verify that matrix IM ⊗ A can be replaced by any

uniformly bounded ML × ML matrix B. In effect, Proposition 5.1 implies that it is
sufficient to establish that

1

ML
Tr [(IM ⊗ R(z) − t (z)IML)B] → 0

The above term can also be written as

1

L
Tr

[
(R(z) − t (z) IL)

(
1

M

M∑
m=1

Bm,m

)]

and converges towards 0 because matrix 1
M

∑M
m=1 B

m,m is uniformly bounded.

7 Convergence of the Spectral Norm of TN,L(R(z) − t(z)IN)

From now on, we assume that L , M, N satisfy the following extra assumption:

Assumption 7.1 L3/2

MN → 0 or equivalently, L
M4 → 0.

The goal of this section is to prove Theorem 7.1 which will be used extensively in the
following.

Theorem 7.1 Under assumption 7.1, it exists 2 nice polynomials P1 and P2 for which

‖TN ,L(R(z) − t (z)IN )‖ ≤ sup
ν∈[0,1]

∣∣aL(ν)∗ (R(z) − t (z)IL) aL(ν)
∣∣

≤ L3/2

MN
P1(|z|)P2

(
1

Im(z)

)
(7.1)

for each z ∈ C
+.

Proof First step The first step consists in showing that

sup
ν∈[0,1]

∣∣aL(ν)∗ (R(z) − t (z)IL) aL(ν)
∣∣ → 0 (7.2)

for each z ∈ C
+, which implies that ‖TN ,L (R − tIL) ‖ → 0 for each z ∈ C

+ (see
(2.8)). We first establish that (7.2) holds for certain values of z and extend the property
toC+ usingMontel’s theorem.We take (6.4) as a starting point and writeE(Q− t IML)

as

E(Q − t IML) = E(Q) − IM ⊗ R + (IM ⊗ R − t IML)

(6.4) can thus be rewritten as

R − t IL = −σ 4cN z t (z) t̃(z)RTL ,L

(
H T (M)

N ,L [E(Q) − RM ]
)
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−σ 4cN z t (z) t̃(z)RTL ,L
(
H TN ,L [R − t IL ]

)
(7.3)

Therefore, for each deterministic uniformly bounded L-dimensional vector b, then it
holds that

b∗ (R − t I)b = −zt (z)t̃(z)σ 4cNb∗RTL ,L

(
H T (M)

N ,L [E(Q) − IM ⊗ R]
)
b

(7.4)

−zt (z)t̃(z)σ 4cNb∗RTL ,L
(
H TN ,L [R − t I]

)
b (7.5)

Proposition 2.1 implies that

‖TL ,L
(
TN ,L [R − t I] H

) ‖ ≤ ‖H‖ ‖TN ,L [R − t I] ‖
≤ ‖H‖ sup

ν

∣∣aL(ν)∗ (R − t I) aL(ν)
∣∣

and that

‖TL ,L

(
H T (M)

N ,L [E(Q) − IM ⊗ R]
)

‖ ≤ ‖H‖ ‖T (M)
N ,L [E(Q) − IM ⊗ R] ‖

≤ ‖H‖ sup
ν

∣∣∣aL(ν)∗ Δ̂aL(ν)

∣∣∣

wherewe recall thatΔ = E(Q)−IM ⊗R and that Δ̂ = 1
M

∑M
m=1 Δ(m,m).Wedenote by

β and δ the terms β = supν |aL(ν)∗ (R − t I) aL(ν)| and δ = supν

∣∣∣aL(ν)∗ Δ̂aL(ν)

∣∣∣.
We remark that δ = O

(
L3/2

MN

)
(see (5.4)). We choose b = aL(μ) in (7.4), evaluate the

modulus of the left-hand side of (7.4), and take the supremumoverμ. This immediately
leads to

β ≤ |zt (z)t̃(z)|σ 4cN ‖R‖‖H‖δ + |zt (z)t̃(z)|σ 4cN ‖R‖‖H‖β (7.6)

Moreover, (see Lemma (4.1)), it holds that

|zt (z)t̃(z)|σ 4cN ‖R‖‖H‖ ≤ σ 4cN
|z|2

(Im(z))4

(7.6) implies that if z satisfies

σ 4cN
|z|2

(Im(z))4
≤ 1

2
, (7.7)

then β = O
(

L3/2

MN

)
and therefore converges towards 0. We now extend this property

on C
+ using Montel’s theorem. For this, we consider an integer sequence K (N )

for which L(N )
K (N )

→ 0 and denote for each N and 0 ≤ k ≤ K (N ) by ν
(N )
k the

element of [0, 1] defined by ν
(N )
k = k

K (N )
. We denote by φ(k, N ) the one-to-one

correspondence between the set of integer couples (k, N ), k ≤ K (N ) and the set of
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integers N defined by φ(0, 0) = 0, φ(k + 1, N ) = φ(k, N ) + 1 for k < K (N ) and
φ(0, N + 1) = φ(K (N ), N ) + 1. Each integer n can therefore be written in a unique
way as n = φ(k, N ) for a certain couple (k, N ), 0 ≤ k ≤ K (N ).We define a sequence
of analytic functions (gn(z))n∈N defined on C+ by

gφ(k,N )(z) = aL

(
ν

(N )
k

)∗
(R(z) − t (z) IL) aL

(
ν

(N )
k

)
(7.8)

If z satisfies (7.7), the sequence gn(z) converges towards 0. Moreover, (gn(z))n∈N is
a normal family of C+. Consider a subsequence extracted from (gn)n∈Z converging
uniformly on compact subsets of C+ towards an analytic function g∗. As g∗(z) = 0
if z satisfies (7.7), function g∗ is zero. This shows that all convergent subsequences
extracted from (gn)n∈N converges towards 0, so that the whole sequence (gn)n∈N

converges towards 0. This immediately implies that

lim
N→+∞ sup

0≤k≤K (N )

|gφ(k,N )(z)| = 0 (7.9)

for each z ∈ C
+. For each ν ∈ [0, 1], it exists an index k, 0 ≤ k ≤ K (N ) such that

|ν − ν
(N )
k | ≤ 1

2K (N )
. It is easily checked that

∥∥∥aL(ν) − aL(ν
(N )
k )

∥∥∥ = O
(

L(N )|ν − ν
(N )
k |

)
= O

(
L(N )

K (N )

))
= o(1)

and that
∣∣∣aL(ν)∗ (R(z) − t (z) IL) aL(ν) − aL

(
ν

(N )
k

)∗
(R(z) − t (z) IL) aL

(
ν

(N )
k

)∣∣∣ → 0

for each z ∈ C
+. We deduce from (7.9) that (7.2) holds for each z ∈ C

+ as expected.
Second step The most difficult part of the proof consists in evaluating the rate of

convergence of supν |aL(ν)∗(R(z) − t (z)IN )aL(ν)|.
By (2.11), the quadratic form aL(ν)∗(R(z) − t (z)IN )aL(ν) can also be written as

aL(ν)∗(R(z) − t (z)IN )aL(ν) =
L−1∑

l=−(L−1)

τ (R − t I)(l)e−2iπlν

where we recall that τ(R − t I)(l) = 1
L Tr

(
(R − t I)Jl

L

)
. In order to study more

thoroughly supν |aL(ν)∗(R(z) − t (z)IN )aL(ν)|, it is thus possible to evaluate the coef-
ficients (τ (R − t I)(l))l=−(L−1),...,L−1. In the following, for a L × L matrix X, we
denote by τ (X) the 2L − 1-dimensional vector defined by

τ (X) = (τ (X)(−(L − 1)), . . . , τ (X)(L − 1))T

(7.3) can be associated with a linear equation whose unknown is vector τ(R − t I).
Writing TN ,L [R − t I] as

∑L−1
l=−(L−1) τ (R − t I)(l)J∗l

N , multiplying (7.3) from both

sides by Jk
L , and taking the normalized trace, we obtain that
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τ(R − t I) = τ (Γ ) + D(0) τ (R − t I) (7.10)

where D(0) is the (2L − 1) × (2L − 1) matrix whose entries D(0)
k,l , (k, l) ∈ {−(L −

1), . . . , L − 1)} are defined by

D(0)
k,l = −σ 4cN z t (z) t̃(z)

1

L
Tr
[
RTL ,L

(
HJ∗l

N

)
Jk

L

]

and where matrix Γ represents the first term of the right-hand side of (7.3), i.e.

Γ = −σ 4cN z t (z) t̃(z)RTL ,L

(
H T (M)

N ,L [E(Q) − IM ⊗ R]
)

(7.11)

Equation (7.10) should be inverted, and the effect of the inversion on vector τ (Γ )

should be analysed in order to evaluate the behaviour of ‖TN ,L(R(z) − t (z)IN )‖. The
invertibility of matrix I − D(0) and the control of its inverse are, however, non-trivial
and need some efforts.

In the following, we denote by Φ(0) the operator defined on C
L×L by

Φ(0)(X) = −σ 4cN z t (z) t̃(z)RTL ,L
(
H TN ,L [X]

)
(7.12)

for each L × L matrix X. Eq. (7.3) can thus be written as

R − t IL = Γ + Φ(0)(R − t IL)

We also remark that matrix Γ is given by

Γ = Φ(0)
(
E(Q̂) − R

)
(7.13)

Moreover, it is clear that vector τ
(
Φ(0)(X)

)
can be written as

τ
(
Φ(0)(X)

)
= D(0) τ (X) (7.14)

In order to study the properties of operator Φ(0) and of matrix D(0), we introduce the
operatorΦ and the corresponding (2L −1)× (2L −1)matrixD defined, respectively,
by

Φ(X) = σ 4cNRTL ,L
(
H TN ,L [X]H∗)R∗ (7.15)

and

Dk,l = σ 4cN
1

L
Tr
[
RTL ,L

(
HJ∗l

NH
∗)R∗Jk

L

]
(7.16)

for (k, l) ∈ {−(L − 1), . . . , L − 1)}. Matrix D of course satisfies

τ (Φ(X)) = Dτ (X) (7.17)
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Before establishing the relationships between (Φ0,D(0)) and (Φ,D), we prove the
following proposition.

Proposition 7.1 – If X is positive definite, then matrix Φ(X) is also positive definite.
Moreover, if X1 ≥ X2, then Φ(X1) ≥ Φ(X2).

– It exists 2 nice polynomials P1 and P2 and an integer N1 such that the spectral
radius ρ(D) of matrix D verifies ρ(D) < 1 for N ≥ N1 and for each z ∈ EN ,
where EN is the subset of C+ defined by

EN =
{

z ∈ C
+,

L3/2

MN
P1(|z|)P2(1/Imz) ≤ 1

}
. (7.18)

– for N ≥ N1, matrix I − D is invertible for z ∈ EN . If we denote by f =
( f−(L−1), . . . , f0, . . . , fL−1)

T , the (2L − 1)-dimensional vector defined by

f = (I − D)−1τ (I) = (I − D)−1e0 (7.19)

where e0 = (0, . . . , 0, 1, 0, . . . , 0)T , then, for each ν ∈ [0, 1], the term∑L−1
l=−(L−1) fl e−2iπlν is real and positive, and

sup
ν∈[0,1]

L−1∑
l=−(L−1)

fl e−2iπlν ≤ C
(|η1|2 + |z|2)2

(Imz)4
(7.20)

for some nice constants C and η1.

Proof The first item follows immediately from the basic properties of operators
T . The starting point of the proof of item 2 consists in writing matrix E(Q̂) =
1
M

∑M
m=1 E(Qm,m) as E(Q̂) = R + Δ̂, and in expressing the imaginary part of E(Q̂)

as Im
(
E(Q̂)

)
= Im

(
E(Δ̂)

)
+ Im(R). Writing Im(R) as

Im(R) = R − R∗

2i
= 1

2i
R
(
R−∗ − R−1

)
R∗

and expressing R−1 in terms of H, and using the same tricks for H, we eventually
obtain that

Im
(
E(Q̂)

)
= Im

(
E(Δ̂)

)
+Imz RR∗+σ 4cN RTL ,L

[
H TN ,L

(
Im
(
E(Q̂)

))
H∗]R∗

(7.21)

In order to simplify the notations, we denote by X and Y the matrices Im
(
E(Q̂)

)
and

Im
(
E(Δ̂)

)
+ Imz RR∗, respectively. (7.21) implies that for each z ∈ C

+, then the

positive definite matrix X satisfies

X = Y + Φ(X) (7.22)
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Iterating this relation, we obtain that for each n ≥ 1

X = Y +
n∑

k=1

Φk(Y) + Φn+1(X) (7.23)

The general idea of the proof is to recognize that matrix TN ,L(Y) is positive definite if
z belongs to a set EN defined by (7.18). This implies that for z ∈ EN , thenΦk(Y) > 0
for each k ≥ 1. Therefore, (7.23) andΦn+1(X) > 0 imply that for each n, the positive
definite matrix

∑n
k=1 Φk(Y) satisfies

n∑
k=1

Φk(Y) ≤ X − Y (7.24)

so that the series
∑+∞

k=1 Φk(Y) appears to be convergent for z ∈ EN . As shown below,
this implies that ρ(D) < 1. We begin to prove that TN ,L(Y) is positive definite on a
set EN . ��
Lemma 7.1 It exists 2 nice polynomials P1 and P2, a nice constant η1 and an integer
N1 such that

TN ,L(Y) >
(Imz)3

32(η21 + |z|2)2 I (7.25)

for N ≥ N1 and z ∈ EN where EN is defined by (7.18).

Proof We show that it exist a nice constant η1 > 0 and 2 nice polynomials P1 and P2
such that for each ν ∈ [0, 1],

aL(ν)∗ YaL(ν) >
(Imz)3

16(η21 + |z|2)2 − L3/2

MN
P1(|z|) P2(1/Imz) (7.26)

For this, we first note that

aL(ν)∗RR∗aL(ν) ≥ ∣∣aL(ν)∗RaL(ν)
∣∣2 ≥ (

aL(ν)∗Im(R)aL(ν)
)2

AsR(z) is the Stieltjes transform of a positive matrix-valued measureμR (see Lemma
4.1), it holds that

aL(ν)∗Im(R)aL(ν) = Imz
∫

R+
aL(ν)∗ dμR(λ) aL(ν)

|λ − z|2

We claim that it exists η1 > 0 and an integer N0 such that

aL(ν)∗ μR ([0, η1]) aL(ν) >
1

2
(7.27)

for each ν ∈ [0, 1] and for each N > N0. In effect, as cN → c∗, it exists a nice constant
η1 for which μσ 2,cN

([0, η1]) > 3
4 for each N . We consider the sequence of analytic
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functions (gn(z))n∈N defined by (7.8). If n = φ(k, N ), gn(z) is the Stieltjes transform
of measure μn defined by μn = aL(ν

(N )
k )∗ μR aL(ν

(N )
k ) − μσ 2,cN

. Therefore, (7.9)
implies that sequence (μn)n∈N converges weakly towards 0. As the Marcenko–Pastur
distribution is absolutely continuous, this leads to

lim
N→+∞ sup

0≤k≤K (N )

∣∣∣aL

(
ν

(N )
k

)∗
μR ([0, η1]) aL

(
ν

(N )
k

)
− μσ 2,cN

([0, η1])
∣∣∣ = 0

This implies the existence of N
′
0 ∈ N such that

sup
0≤k≤K (N )

aL

(
ν

(N )
k

)∗
μR ([0, η1]) aL

(
ν

(N )
k

)
>

5

8

for each N ≥ N
′
0. As mentioned above, for each ν ∈ [0, 1], it exists an index k, 0 ≤

k ≤ K (N ) such that |ν − ν
(N )
k | ≤ 1

2K (N )
. As

∥∥∥aL(ν) − aL

(
ν

(N )
k

)∥∥∥ = O
(

L(N )|ν − ν
(N )
k |

)
= o(1)

it is easy to check that

aL(ν)∗μR ([0, η1]) aL(ν) − aL

(
ν

(N )
k

)∗
μR ([0, η1]) aL

(
ν

(N )
k

)
→ 0

which implies the existence of an integer N0 ≥ N
′
0 for which

sup
ν∈[0,1]

aL(ν)∗ μR ([0, η1]) aL(ν) >
1

2

for each N ≥ N0, as expected.
It is clear that

aL(ν)∗Im(R)aL(ν) ≥ Imz
∫ η1

0

aL(ν)∗ dμR(λ) aL(ν)

|λ − z|2

As |λ − z|2 ≤ 2(λ2 + |z|2) ≤ 2(η21 + |z|2) if λ ∈ [0, η1], it holds that

aL(ν)∗Im(R)aL(ν) ≥ Imz

4(η21 + |z|2)

and that

aL(ν)∗RR∗aL(ν) ≥ (Imz)2

16(η21 + |z|2)2
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for each ν ∈ [0, 1]. (5.4) implies that for each ν,

∣∣∣aL(ν)∗ ImΔ̂ aL(ν)

∣∣∣ ≤ L3/2

MN
P1(|z|)P2

(
1

Imz

)
(7.28)

for some nice polynomials P1 and P2, which, in turn, leads to (7.26). If we denote

by EN the subset of C+ defined by L3/2

MN P1(|z|)P2(
1

Imz ) < 1
2

(Imz)3

16(η21+|z|2)2 , then Y =
Im(Δ̂) + Imz RR∗ verifies

inf
ν∈[0,1] aL(ν)∗ YaL(ν) >

(Imz)3

32(η21 + |z|2)2 (7.29)

for each z ∈ EN . As

aL(ν)∗ YaL(ν) =
L−1∑

l=−(L−1)

τ (Y)(l)e−2iπlν

we obtain that

inf
ν∈[0,1]

L−1∑
l=−(L−1)

τ (Y)(l)e−2iπlν >
(Imz)3

32(η21 + |z|2)2

for z ∈ EN . If we denote α(z) = (Imz)3

32(η21+|z|2)2 , this implies that (τ (Y)(l)

−α δ(l = 0))L−1
l=−(L−1) coincidewith Fourier coefficients of a positive function. There-

fore, matrix TN ,L(Y) − αI is positive definite (see [18], 1.11 (a)), which implies that
(7.25) holds. Lemma 7.1 follows from the observation that the set EN can be written
as (7.18) for some other pair of nice polynomials P1, P2. ��

We now complete the proof of item 2 of Proposition (7.1). We establish that for N
fixed and large enough and z ∈ EN , then for each L-dimensional vector b,Dnb → 0
when n → +∞, a property equivalent to ρ(D) < 1. We emphasize that in the
forthcoming analysis, N and, therefore, L are assumed to be fixed parameters. As
matrix TN ,L(Y) > α(z)IN > 0 on the set EN for N large enough, (7.24) is valid there.
This implies that the positive definitematrix-valued series

∑+∞
n=1 Φn(Y) is convergent,

in the sense that for each unit norm L-dimensional vector u, then
∑+∞

n=1 u
∗Φn(Y)u <

+∞. Using the polarization identity, we obtain that the series
∑+∞

n=1 u
∗
1Φ

n(Y)u2 is
convergent for each pair of unit norm vectors (u1,u2). This implies that each entry of
Φn(Y) converges towards 0 when n → +∞ and that the same property holds true for
each component of vector τ (Φn(Y)). This vector of course coincides with Dnτ (Y).
We have thus shown that Dnτ (Y) → 0 when n → +∞. We now establish that this
property holds, not only for vector τ (Y), but also for each (2L−1)-dimensional vector.
We consider any positive hermitian L × L matrixZ such that TN ,L(Y)−TN ,L(Z) ≥ 0.
Then, it is clear that for each n ≥ 1, 0 ≤ Φn(Z) ≤ Φn(Y) and that the series
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∑∞
n=1 Φn(Z) is convergent. As above, this implies thatDnτ (Z) → 0 when n → +∞.

If now Z is any positive hermitian matrix, it holds that 0 ≤ TN ,L

(
α(z)
‖Z‖Z

)
≤ TN ,L(Y)

because TN ,L(Z) ≤ ‖TN ,L(Z)‖ I ≤ ‖Z‖ I. This implies that Dn
(

α(z)
‖Z‖ τ (Z)

)
→ 0,

or equivalently that Dnτ (Z) → 0 for each positive hermitian matrix Z. This property
holds in particular for positive rank one matrices hh∗, and thus for linear combination
(with complex coefficients) of such matrices, and in particular for hermitian (non-
necessarily positive) matrices. We now consider any L × L matrix B. It can be written
asB = Re(B)+ i Im(B), i.e. as a linear combination of hermitian matrices. Therefore,
it holds that Dnτ (B) → 0 for any L × L matrix. The conclusion follows from the
obvious observation that any (2L−1)-dimensional vectorb can bewritten asb = τ (B)

for some L × L matrix B. This completes the proof of item 2 of Proposition (7.1).
We finally establish item 3. We assume that z ∈ EN and that N is large enough. We

first remark that as TN ,L(Y) ≥ α(z)IN , then, for each n ≥ 1, it holds that Φn(Y) ≥
α(z)Φn(I). We also note that Φn(I) > 0 for each n which implies that

aL(ν)∗ Φn(Y) aL(ν) ≥ α(z) aL(ν)∗ Φn(I) aL(ν) > 0

for each ν. We also remark that this inequality also holds for n = 0 (see (7.29)). We
recall that for each L × L matrix B, then

aL(ν)∗ BaL(ν) =
L−1∑

l=−(L−1)

τ (B)(l)e−2iπlν (7.30)

Using this identity for B = Φn(Y) and B = Φn(I) and using that τ (I) = e0, we
obtain that

L−1∑
l=−(L−1)

(
Dnτ (Y)

)
(l)e−2iπlν ≥ α(z)

L−1∑
l=−(L−1)

(
Dne0

)
(l)e−2iπlν > 0

As (I − D)−1 = ∑+∞
n=0 D

n , we finally obtain that

0 <

L−1∑
l=−(L−1)

fle−2iπlν ≤ 1

α(z)

L−1∑
l=−(L−1)

(
(I − D)−1τ (Y)

)
(l)e−2iπlν

The conclusion follows from the observation that τ (X) = τ (Y) + D τ (X) and that
τ (X) = (I − D)−1 τ (Y). Therefore,

L−1∑
l=−(L−1)

(
(I − D)−1τ (Y)

)
(l)e−2iπlν

coincides with aL(ν)∗ XaL(ν), a term which is upperbounded by 1
Imz on C+.
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We now make the appropriate connections between (Φ0,D(0)) and (Φ,D) and
establish the following Proposition.

Proposition 7.2 If N is large enough and if z belongs to the set EN defined by (7.18),
matrix I − D(0) is invertible, and for each matrix L × L matrix X, it holds that

sup
ν∈[0,1]

∣∣∣∣∣∣
L−1∑

l=−(L−1)

(
(I − D(0))−1τ (X)

)
(l)e−2iπlν

∣∣∣∣∣∣

≤ ‖TN ,L(X)‖
2

⎛
⎝ 1

1 − σ 4cN |zt (z)t̃(z)|2 +
L−1∑

l=−(L−1)

fl e−2iπlν

⎞
⎠ (7.31)

Proof We first establish by induction that

(
Φ(0)

)n
(X)

(
Φ(0)

)n
(X)

)∗ ≤ ‖TN ,L(X)‖2
(
σ 4cN |zt (z)t̃(z)|2

)n
Φn(I) (7.32)

for each n ≥ 1. We first verify that (7.32) holds for n = 1. Using Proposition (2.3),
we obtain that

TL ,L
(
HTN ,L(X)

) [
TL ,L

(
HTN ,L(X)

)]∗ ≤ TL ,L
(
HTN ,L(X)TN ,L(X)∗H∗)

Remarking that TN ,L(X)TN ,L(X)∗ ≤ ‖TN ,L(X)‖2 I, we get that

TL ,L
(
HTN ,L(X)

) [
TL ,L

(
HTN ,L(X)

)]∗ ≤ ‖TN ,L(X)‖2 TL ,L
(
HH∗)

This and the identity Φ(I) = σ 4cNRTL ,L(HH∗)R∗ imply immediately (7.32) for
n = 1. We assume that (7.32) holds until integer n − 1. By Proposition 2.3, we get
that

(
Φ(0)

)n
(X)

((
Φ(0)

)n
(X)

)∗

≤
∣∣∣σ 4cN zt (z)t̃(z)

∣∣∣
2
RTL ,L

[
HTN ,L

((
Φ(0)

)n−1
(X)

)

×
(
TN ,L

((
Φ(0)

)n−1
(X)

))∗
H∗
]
R∗ (7.33)

Using again Proposition (2.3), we obtain that

TN ,L

((
Φ(0)

)n−1
(X)

)(
TN ,L

((
Φ(0)

)n−1
(X)

))∗

≤ TN ,L

((
Φ(0)

)n−1
(X)

[(
Φ(0)

)n−1
(X)

]∗)
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(7.32) for integer n − 1 yields to

(
Φ(0)

)n
(X)

((
Φ(0)

)n
(X)

)∗

≤ ‖TN ,L(X)‖2 (σ 4cN )n+1 |zt (z)t̃(z)|2nRTN ,L

(
HΦn−1(I)H∗)R∗

(7.32) for integer n directly follows from Φn(I) = σ 4cN RTN ,L
(
HΦn−1(I)H∗)R∗.

��
We now prove that if z ∈ EN defined by (7.18) and if N is large enough, then,

for each (2L − 1)-dimensional vector x, it holds that
(
D(0)

)n
x → 0, a condition

which is equivalent to ρ(D(0)) < 1. For this, we observe that each vector x can
be written as x = τ (X) for some L × L matrix X. The entries of Toeplitz matrix

TL ,L

((
Φ(0)

)n
(X)

)
are the components of vector

(
D(0)

)n
τ (X). Therefore, condition

(
D(0)

)n
x → 0 is equivalent to ‖TL ,L

((
Φ(0)

)n
(X)

)
‖ → 0. We now prove that

sup
ν∈[0,1]

∣∣∣aL(ν)∗
(
Φ(0)

)n
(X)aL(ν)

∣∣∣ → 0

a condition which implies ‖TL ,L

((
Φ(0)

)n
(X)

)
‖ → 0 by Proposition 2.1 and thus

that ρ(D(0)) < 1. It is clear that

∣∣∣aL(ν)∗
(
Φ(0)

)n
(X)aL(ν)

∣∣∣
2 ≤ aL(ν)∗

(
Φ(0)

)n
(X)

((
Φ(0)

)n
(X)

)∗
aL(ν) (7.34)

Inequality (7.32) implies that

aL(ν)∗
(
Φ(0)

)n
(X)

((
Φ(0)

)n
(X)

)∗
aL(ν)

≤ ‖TN ,L(X)‖2
(
σ 4cN |zt (z)t̃(z)|2

)n
aL(ν)∗Φn(I)aL(ν) (7.35)

By (1.31), it exists 2 nice constants C and η > 0 such that

σ 4cN |zt (z)t̃(z)|2 ≤ 1 − C
(η2 + |z|2)2
(Im(z))4

(7.36)

for N large enough. Moreover, it has been shown before that each entry of matrix
Φn(I) converges towards 0, which implies that supν∈[0,1] aL(ν)∗Φn(I)aL(ν) → 0
(we recall that L is assumed fixed in the present analysis). Therefore,

sup
ν∈[0,1]

aL(ν)∗
(
Φ(0)

)n
(X)

((
Φ(0)

)n
(X)

)∗
aL(ν) → 0
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which implies that ‖TL ,L

((
Φ(0)

)n
(X)

)
‖ and

(
D(0)

)n
τ (X) converge towards 0. We

have thus established that ρ(D(0)) < 1 and that matrix I − D(0) is invertible.
We finally establish Eq. (7.31). Using (I − D(0))−1 = ∑+∞

n=0

(
D(0)

)n
and

L−1∑
l=−(L−1)

(
(D(0))nτ (X)

)
(l) e−2iπlν = aL(ν)∗

(
Φ(0)

)n
(X)aL(ν)

we first remark that

∣∣∣∣∣∣
L−1∑

l=−(L−1)

((
I − D(0)

)−1
τ (X)

)
(l) e−2iπlν

∣∣∣∣∣∣
≤

+∞∑
n=0

∣∣∣aL(ν)∗
(
Φ(0)

)n
(X)aL(ν)

∣∣∣

Inequalities (7.34, 7.35) imply that

∣∣∣aL(ν)∗
(
Φ(0)

)n
(X)aL(ν)

∣∣∣ =
∣∣∣∣∣∣

L−1∑
l=−(L−1)

((
D(0)

)n
τ (X)

)
(l) e−2iπlν

∣∣∣∣∣∣

is less than ‖TN ,L(X)‖ (σ 4cN |zt (z)t̃(z)|2)n/2
(aL(ν)∗Φn(I)aL(ν))1/2. Using the

inequality |ab| ≤ (a2+b2)
2 , we obtain that

∣∣∣aL(ν)∗
(
Φ(0)

)n
(X)aL(ν)

∣∣∣

≤ ‖TN ,L(X)‖
2

[(
σ 4cN |zt (z)t̃(z)|2

)n + aL(ν)∗Φn(I)aL(ν)
]

Summing over n eventually leads to (7.32).
We are now in position to establish themain result of this section, which, eventually,

implies (7.1).

Proposition 7.3 It exists 2 nice polynomials P1 and P2 for which

sup
ν∈[0,1]

∣∣aL(ν)∗ (R(z) − t (z) IL) aL(ν)
∣∣ ≤ L3/2

MN
P1(|z|)P2

(
1

Im(z)

)
(7.37)

for N large enough and for each z ∈ C
+

Proof We recall that aL(ν)∗ (R(z) − t (z) IL) aL(ν) coincideswith
∑L−1

l=−(L−1) τ (R−
tI)(l)e−2iπlν (see (2.11)) and recall that by Eq. (7.3), vector τ (R − tI) satisfies the
equation

τ (R − tI) = τ (Γ ) + D(0)τ (R − tI)
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where matrix Γ is defined by (7.11). Proposition 7.1 and Proposition 7.2 used in the
case X = Γ as well as (7.36) imply that for N large and z ∈ EN , it holds that

∣∣∣∣∣∣
L−1∑

l=−(L−1)

τ (R − tI)(l)e−2iπlν

∣∣∣∣∣∣
≤ C

(|z|2 + η22

)2
(Im(z))4

‖TN ,L(Γ )‖ (7.38)

for some nice constant C and for η2 = max(η, η1). It is clear that

‖TN ,L(Γ )‖ ≤ P1(|z|)P2

(
1

Im(z)

) ∥∥∥T (M)
N ,L (E(Q) − RM )

∥∥∥ (7.39)

Corollary 5.1 thus implies that (7.37) holds for N large enough and z ∈ EN . It remains
to establish that (7.37) also holds on the complementary Ec

N of EN . For this, we remark

that on Ec
N , 1< L3/2

MN P1(|z|)P2

(
1

Im(z)

)
. As supν∈[0,1] |aL(ν)∗ (R(z) − t (z) IL) aL(ν)|

≤ 2
Im(z) on C

+, we obtain that

sup
ν∈[0,1]

∣∣aL(ν)∗ (R(z) − t (z) IL) aL(ν)
∣∣ ≤ 1

Im(z)

L3/2

MN
P1(|z|)P2

(
1

Im(z)

)

for z ∈ Ec
N . This, in turn, shows that (7.37) holds for N large enough and for each

z ∈ C
+. ��

Remark 7.1 We note that this property also implies that any quadratic form of R− t I
converges towards 0 at rate L3/2

MN . Using the polarization identity, it is sufficient to prove

that b∗ (R − t I)b is a O( L3/2

MN ) term for each uniformly bounded deterministic vector
b. We consider Eqs. (7.4, 7.5) and note that the right-hand side of (7.4) and (7.5) are
bounded, up to constant terms depending on z (and not on the dimensions L , M, N )
by ‖T (M)

N ,L [E(Q) − RM ] ‖ and ‖TN ,L (R − t I) ‖, respectively.

8 Proof of (1.18)

The purpose of this section is to establish the identity (1.18). For this, we have
essentially to control the term 1

L Tr (R − t I). More precisely, we prove the follow-
ing proposition.

Proposition 8.1 It exists nice polynomials P1 and P2 such that

sup
‖A‖≤1

∣∣∣∣
1

L
Tr [(R − tIL)A]

∣∣∣∣ ≤ L

MN
P1(z)P2(1/Imz) (8.1)

for each z ∈ F (3/2)
N where F (3/2)

N is a subset of C+ defined by

F (3/2)
N =

{
z ∈ C

+,
L3/2

MN
Q1(z)Q2(1/Imz) ≤ 1

}
(8.2)
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for some nice polynomials Q1 and Q2.

Proof In the following, we denote by β(A) the term 1
L Tr [(R − tIL)A].Wewrite (6.6)

as

1

L
Tr [(R − tIL)A] = −σ 4cN zt (z)t̃(z) 1

MLTr [(E(Q) − IM ⊗ R) (IM ⊗ G(A))]

−σ 4cN zt (z)t̃(z) 1
L Tr

(
R − tI)TL ,L

[(
TN ,L(AR)

)
H
])

(8.3)

We denote by ε(A) the first term of the right-hand side of (8.3). (6.8) and Proposition
5.1 imply that sup‖A‖≤1 |ε(A| ≤ L

MN P1(|z|)P2(1/Imz) for some nice polynomials P1
and P2. In order to evaluate the contribution of the second term of the right-hand side
of (8.3), we remark that matrices R(z) and H(z) should be “close” from t (z)IL and
−zt̃(z) IN , respectively. It is thus appropriate to rewrite (8.3) as

1

L
Tr ((R − t I)A) = −zt (z)t̃(z)σ 4cN

1

ML
Tr [(E(Q − IM ⊗ R) IM ⊗ G(A)]

+ (zt (z)t̃(z))2σ 4cN
1

L
Tr
[
(R − t I)TL ,L

(
TN ,L(A)

)]

+ (zt̃(z))2t (z)σ 4cN
1

L
Tr
[
(R − t I)TL ,L

(
TN ,L [A(R − t I)]

) ]

− z(t (z))2 t̃(z)σ 4cN
1

L
Tr
[
(R − t I) TL ,L

(
TN ,L(A)(H + zt̃(z) I)

)]

− zt (z)t̃(z)σ 4cN
1

L
Tr
[
(R − t I) TL ,L

(
TN ,L [A(R − t I)] (H + zt̃(z) I)

)]
(8.4)

We denote by α1(A), α2(A), α3(A), and α4(A) the second, third, fourth, and fifth
terms of the right-hand side of the above equation, respectively. ��

We first study the term α1(A). We first recall that for each z ∈ C
+ and N large

enough, it holds that

σ 4cN |zt (z)t̃(z)|2 < 1 − C
(Imz)4

(η2 + |z|2)2

where C and η are nice constants (see Eq. (1.31)). Moreover, for each A, ‖A‖ ≤ 1, it
is clear that
∣∣∣∣
1

L
Tr
[
(R − t I)TL ,L

(
TN ,L(A)

)]∣∣∣∣ ≤ sup
‖B‖≤1

|β(B)| ‖TL ,L
(
TN ,L(A)

) ‖ ≤ sup
‖B‖≤1

|β(B)|

because ‖TL ,L
(
TN ,L(A)

) ‖ ≤ ‖A‖ ≤ 1 (see Proposition 2.1). This shows that

sup
‖A‖≤1

|α1(A)| ≤
(
1 − C

(Imz)4

(η2 + |z|2)2
)

sup
‖A‖≤1

|β(A|
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We now evaluate the behaviour of α2(A). We first use (2.7) to obtain that

α2(A) = (zt̃(z))2t (z)σ 4cN
1

L
Tr
[
A (R − t I)TL ,L

(
TN ,L(R − t I)

)]

We remark that for each matrix A, ‖A‖ ≤ 1, it holds that

∣∣∣∣
1

L
Tr
[
(R − t I)TL ,L

(
TN ,L(R − t I)

)
A
]∣∣∣∣ ≤ sup

‖B‖≤1
β(B) ‖A‖‖TN ,L(R − t I)‖

(7.1) implies that

sup
‖A‖≤1

|α2(A)| < sup
‖A‖≤1

β(A)
L3/2

MN
P1(|z|)P2(1/Imz)

for each z ∈ C
+. The terms α3(A) and α4(A) can be handled similarly by writing

H + zt̃(z)I as

H + zt̃(z)I = σ 2cN zt̃(z) H T (M)
N ,L (E(Q) − IM ⊗ R) + σ 2cN zt̃(z) H TN ,L (R − t I)

In particular, it can be shown that for i = 3, 4 and N large enough, it holds that

sup
‖A‖≤1

|αi (A)| < sup
‖A‖≤1

β(A)
L3/2

MN
P1(|z|)P2(1/Imz)

Therefore, it holds that

sup
‖A‖≤1

|β(A)| ≤ sup
‖A‖≤1

|ε(A)|

+ sup
‖A‖≤1

β(A)

[(
1 − C

(Imz)4

(η + |z|2)2
)

+ L3/2

MN
P1(|z|)P2(1/Imz)

]

We define the set F (3/2)
N as

F (3/2)
N =

{
z ∈ C

+,
L3/2

MN
P1(|z|)P2(1/Imz) ≤ C/2

(Imz)4

(η2 + |z|2)2
}

which can also be written as

F (3/2)
N =

{
z ∈ C

+,
L3/2

MN
Q1(|z|)Q2(1/Imz) ≤ 1

}
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for some nice polynomials Q1 and Q2. Then, it is clear that for each z ∈ F (3/2)
N , then

it holds that

sup
‖A‖≤1

|β(A)| ≤ 2/C
(η2 + |z|2)2

(Imz)4
sup

‖A‖≤1
|ε(A)| ≤ L

MN
P1(|z|)P2(1/Imz)

for some nice polynomials P1 and P2. This completes the proof of Proposition 8.1.
We conclude this section by the corollary:

Corollary 8.1 The mathematical expectation of the Stieltjes transform 1
MLTr(Q(z))

of the empirical eigenvalue distribution of WW∗ can be written for z ∈ C
+ as

E

[
1

ML
Tr (Q(z))

]
= t (z) + L

MN
r̃(z) (8.5)

where r̃(z) is holomorphic in C
+ and satisfies

|r̃(z)| ≤ P1(|z|)P2

(
1

Im(z)

)
(8.6)

for each z ∈ F (3/2)
N defined by (8.2).

Proof In order to establish (8.5), we have to prove that

∣∣∣∣
1

ML
Tr (E(Q(z))) − t (z)

∣∣∣∣ ≤ P1(|z|)P2

(
1

Im(z)

)
L

MN

for z ∈ F (3/2)
N . E(Q(z)) − t (z)I can be written as

E(Q(z)) − t (z)IML = Δ(z) + IM ⊗ R(z) − t (z) IML

Therefore, Proposition 5.1 implies that we have just to verify that

∣∣∣∣
1

L
Tr(R − t IL)

∣∣∣∣ ≤ P1(|z|)P2

(
1

Im(z)

)
L

MN

for z ∈ F (3/2)
N , a consequence of Proposition 8.1. ��

9 Expansion of 1
MLTr (E(QN(z))) − tN(z)

Notations and definitions used in section 9. In order to simplify the exposition of the
results presented in this section, we define the following simplified notations:
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– Let (βN )N≥1 be a sequence depending on N . A term φN (z) depending on N defined
for z ∈ C

+ will be said to be a O(βN ) term if it exists 2 nice polynomials P1 and
P2 such that

|φN (z)| ≤ βN P1(|z|)P2(1/Imz)

for N large enough and for each z belonging to a set defined as F (2)
N , but possibly

with other nice polynomials.
– CN (z, u1, . . . , uk) will represent a generic term depending on N , z and on indices

u1, . . . , uk ∈ {−(L−1), . . . , L−1}, and satisfying supu1,...,uk
|CN ((z, u1, . . . , uk)|

= O(1) in the sense of the above definition of operator O(.). Very often, wewill not
mention the dependency of CN (z, u1, . . . , uk) w.r.t. N and z and use the notation
C(u1, . . . , uk).

– By a real distribution, we mean a real-valued continuous (in an appropriate sense)
linear form D defined on the space C∞

c (R) of all real-valued compactly supported
smooth functions defined on R. Such a distribution can of course be extended
to complex-valued smooth functions defined on R by setting 〈D, φ1 + iφ2〉 =
〈D, φ1〉+ i〈D, φ2〉 for φ1, φ2 ∈ C∞

c (R). We also recall that a compactly supported
distribution D can be extended to a continuous linear form to the space C∞

b (R) of
all bounded smooth functions. In particular, 〈D,1〉 represents 〈D, φ〉 where φ is
any function of C∞

c (R) that is equal to 1 on the support of D.

From now on, we assume that L satisfies the condition

L = O(Nα), where α <
2

3
(9.1)

which implies that
L2

MN
→ 0, i.e.

L

M2 → 0 (9.2)

The goal of this section is to establish the following theorem.

Theorem 9.1 Under (9.1), 1
MLTr (E(QN (z))) − tN (z) can be expanded as

1

ML
Tr (E(QN (z))) − tN (z) = L

MN

(
ŝN (z) + L3/2

MN
r̂N (z)

)
(9.3)

where ŝN (z) coincides with the Stieltjes transform of a distribution D̂N whose support
is included into S(0)

N = [σ 2(1 − √
cN )2, σ 2(1 + √

cN )2] and which verifies 〈D̂N ,1〉,
and where |r̂N (z)| ≤ P1(|z|)P2(

1
Imz ) when z belongs to a set F (2)

N defined by

F (2)
N =

{
z ∈ C

+,
L2

MN
Q1(|z|)Q2(1/Imz) ≤ 1

}
(9.4)

for some nice polynomials Q1 and Q2.
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As shown below in Sect. 10, (9.3) provides the desired almost sure location of the
eigenvalues of WNW∗

N . In order to establish (9.3), we express 1
MLTr (E(QN (z))) −

tN (z) as

1

ML
Tr (E(QN (z))) − tN (z) = 1

ML
TrΔN (z) + 1

L
Tr (RN (z) − tN (z) I)

and study the 2 terms separately. We first establish that if (9.1) holds, then

1

ML
TrΔN (z) = L

MN
sN (z) +

(
L

MN

)2

rN (z) (9.5)

where sN (z) is the Stieltjes transform of a distribution whose support is included in
S(0)

N , and where

|rN (z)| ≤ P1(|z|)P2(1/Imz)

for some nice polynomials P1 and P2 and for z ∈ F (2)
N . Using Theorem 7.1, (9.3) will

follow easily from (9.5).
The proof of (9.5) is quite demanding. It needs to establish a number of intermediate

results that are presented in Sect. 9.2 and used in Sect. 9.3.

9.1 Useful Results Concerning the Stieltjes Transforms of Compactly
Supported Distributions

Before establishing (9.5), we need to recall some results concerning the Stieltjes trans-
form of compactly supported real distributions and to establish that the so-called
Hellfer–Sjöstrand formula, valid for probability measures, can be generalized to com-
pactly supported distributions.

The following useful result was used in [29], Theorem 5.4, and Lemma 5.6 (see
also Theorem 4.3 in [11]).

Lemma 9.1 If D is a real distribution with compact support Supp(D), its Stieltjes
transform s(z) is defined for each z ∈ C − Supp(D) by

s(z) = 〈D,
1

λ − z
〉.

Then, s is analytic on C − Supp(D) and verifies the following properties:

– (a)s(z) → 0 if |z| → +∞
– It exists a compact K ⊂ R containing Supp(D) such that

– (b)s(z∗) = (s(z))∗ for each z ∈ C − K
– (c) It exists an integer n0 and a constant C such that for each z ∈ C − K,

|s(z)| ≤ C Max

(
1

(Dist(z,K))n0
, 1

)
(9.6)
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– If φ is an element of C∞
c (R), then the following inversion formula holds

1

π
lim

y→0+

∫
φ(λ) Im(s(λ + iy)) dλ = 〈D, φ〉 (9.7)

– If lim|z|→+∞ |zs(z)| = 0, then it holds that

〈D,1〉 = 0 (9.8)

Conversely, if K is a compact subset of R, and if s(z) is a function analytic on C−K
satisfying (a), (b), (c), then s(z) is the Stieltjes transform of a compactly supported
real distribution D such that Supp(D) ⊂ K. In this case, Supp(D) is the set of singular
points of s(z).

Remark 9.1 – We note that (9.6) of course implies that

|s(z)| ≤ C Max

(
1

(Imz)n0
, 1

)
≤ C

(
1 + 1

(Imz)n0

)
(9.9)

for each z ∈ C − R.
– We have chosen to present Lemma 9.1 as it is stated in [29]. However, we mention
that (b) and (c) hold for each compact subset K of R containing Supp(D). n0 does
not depend on the compactK and is related to the order of D. However, the constant
C does depend on K.

We now provide a useful example of such functions s(z).

Lemma 9.2 If p ≥ 1, then function sN (z) defined by

sN (z) = (tN (z))p(zt̃N (z))q 1(
1 − aN σ 4cN (z tN (z) t̃N (z))2

)n

for |aN | ≤ 1 coincides with the Stieltjes transform of a real bounded distribution DN

whose support is included in SN for each integer q ≥ 0 and n ≥ 0. Moreover, DN

satisfies (9.8) as soon as p ≥ 2.

Proof It is clear that sN (z∗) = (sN (z))∗ and that sN (z) → 0 if |z| → +∞ because
p ≥ 1 and that zt̃(z) → −1. We use Lemma 1.1 to manage the term

1(
1 − aN σ 4cN (z tN (z) t̃N (z))2

)n

and use that |tN (z)| ≤ 1
dist(z,SN )

for z ∈ C − SN . We also remark that

zt̃N (z) = cN

∫

SN

z

λ − z
dμσ 2,cN

(λ) − (1 − cN )
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or equivalently that

zt̃N (z) = cN

∫

SN

λ

λ − z
dμσ 2,cN

(λ) − 1

Therefore,

|zt̃N (z)| ≤ C

(
1 + 1

dist(z,SN )

)
≤ C max

(
1,

1

dist(z,SN )

)

for each z ∈ C − SN . Moreover, it holds that zs(z) → 0 if |z| → +∞ as soon as
p ≥ 2. ��

We now briefly justify that the Hellfer–Sjöstrand formula can be generalized to
compactly supported distributions. In order to introduce this formula, used in the
context of large random matrices in [2,3] and [26], we have to define some notations.
χ is a function of C∞

c (R)with support [−1, 1], which is equal to 1 in a neighbourhood
of 0. If φ(x) ∈ C∞

c (R), we denote by φk the function of C∞
c (R2,C) defined for

z = x + iy by

φk(z) =
k∑

l=0

φ(l)(x)
(iy)l

l! χ(y)

Function ∂φk is the “derivative”

∂φk(z) = ∂φk(z)

∂x
+ i

∂φk(z)

∂y

and is given by

∂φk(z) = φ(k+1)(x)
(iy)k

k! (9.10)

in the neighbourhood of 0 in which χ(y) = 1. If s(z) is the Stieltjes transform of a
probability measure μ, s(z) verifies |s(z)| ≤ 1

Imz on C
+. Therefore, (9.10) implies

that if k ≥ 1, then function ∂φk(z) s(z) is well defined near the real axis. The Hellfer–
Sjöstrand allows us to reconstruct

∫
φ(λ) dμ(λ) as:

∫
φ(λ) dμ(λ) = 1

π
Re

(∫

C+
∂φk(z) s(z) dxdy

)
(9.11)

The following Lemma extends formula (9.11) to real compactly supported distribu-
tions.

Lemma 9.3 We consider a compactly supported distribution D and s(z) is Stieltjes
transform. Then, if k is greater than the index n0 defined by (9.9), then ∂φk(z) s(z) is
well defined near the real axis, and

〈D, φ〉 = 1

π
Re

(∫

C+
∂φk(z) s(z) dxdy

)
(9.12)
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Sketch of proof. It is clear that ∂φk(z) s(z) is well defined near the real axis. Therefore,
the integral at the right-hand side of (9.12) exists. By linearity, it is sufficient to establish
(9.12) if D coincides with a derivative of a Dirac distribution D = δ

(p)
λ0

for p ≤ n0−1,

i.e. s(z) = 1
(λ0−z)p+1 . Using the integration by parts formula and the analyticity of s(z)

on C+, we obtain that

1

π
Re

(∫

C+
∂φk(z) s(z) dxdy

)
= lim

ε→0

1

π
Re

(
−i
∫

R

φk(x + iε)s(x + iε)dx

)

〈D, φ〉 is of course equal to

〈D, φ〉 = (−1)p〈δλ0 , φ
(p)〉

As the Hellfer–Sjöstrand formula is valid for measure δλ0 and that the Stieltjes trans-
form of δλ0 is

1
λ0−z , it holds that

〈δλ0 , φ
(p)〉 = lim

ε→0

1

π
Re

(
−i
∫

R

(
φ(p)

)
k
(x + iε)

1

λ0 − (x + iε)
dx

)

It is clear that
(
φ(p)

)
k
(x + iε) = d p

dx p φk(x + iε). Therefore, the integration by parts

leads to
∫

R

(
φ(p)

)
k
(x+iε)

1

λ0−(x+iε)
dx =(−1)p

∫

R

φk(x+iε)
1

(λ0−(x+iε))p+1 dx

from which (9.12) follows immediately. ��

9.2 Some Useful Evaluations

Equations (4.15) and (5.2) imply that 1
MLTr (Δ(z)) is given by

1

ML
Tr (Δ(z)) = σ 2cN

L−1∑
l1=−(L−1)

E

(
τ (M)(Q◦)(l1)

1

ML
Tr
(
QWJl1

NH
TW∗(IM ⊗ R)

)◦)

In order to establish (9.5), it is necessary to evaluate the right-hand side of the above
equation up to O( L

MN )2 terms using the integration by parts formula. If we denote by
κ(2)(l1, l2) the term defined by κ(2)(l1, l2) = E

(
τ (M)(Q◦)(l1)τ (M)(Q◦)(l2)

)
, then we

establish in the following that

1

ML
Tr (Δ(z)) = (σ 2cN )2

L−1∑
l1,l2=−(L−1)

κ(2)(l1, l2)

× E

[
1

ML
Tr
(
QWJl2

NH
T W∗ (IM ⊗ σ 2RTL ,L (HJ∗l1

N H)R
))]
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− (σ 2cN )2
L−1∑

l1,l2=−(L−1)

κ(2)(l1, l2)

× E

[
1

ML
Tr
(
QWJl2

NH
T Jl1

NH
T W∗(IM ⊗ R)

)]

+ σ 4cN

M L N

L−1∑
l1,i=−(L−1)

E

[
1

ML
Tr
(
Q(IM ⊗ Ji

L )Q(IM ⊗ Jl1
L )QWJi

NH
T W∗

× (IM ⊗ σ 2RTL ,L (HJ∗l1
N H)R

)]

− σ 4cN

M L N

L−1∑
l1,i=−(L−1)

E

[
1

ML
Tr
(
Q(IM ⊗ Ji

L )Q(IM ⊗ Jl1
L )QWJi

NH
T Jl1

NH
T W∗(IM ⊗ R

)]

+ (σ 2cN )2
L−1)∑

l1,l2=−(L−1)

E

[
τ (M)(Q◦)(l1)τ (M)(Q◦)(l2)

× 1

ML
Tr
(
QWJl2

NH
T W∗ (IM ⊗ σ 2RTL ,L (HJ∗l1

N H)R
))◦]

− (σ 2cN )2
L−1∑

l1,l2=−(L−1)

E

[
τ (M)(Q◦)(l1)τ (M)(Q◦)(l2)

1

ML
Tr
(
QWJl2

NH
T Jl1

NH
T W∗(IM ⊗ R)

)◦]

(9.13)

We evaluate in closed form the third and the fourth term of the right-hand side of (9.13)
up to O( L

MN )2, prove that κ(2)(u1, u2) = 1
MN C(z, u1)δ(u1+u2 = 0) + O( L

(MN)2
), and

establish that the 2 last terms of (9.13) are O( L
MN )2. In Paragraph 9.2.1, we calculate

useful quantities similar to the third and the fourth term of the right-hand side of (9.13),
and in Paragraph 9.2.2, we evaluate κ(2)(u1, u2).

9.2.1 Evaluation of the Third and Fourth Terms of the Right-Hand Side of (9.13)

We first state 2 technical Lemmas.

Lemma 9.4 We consider uniformly bounded ML × ML matrices (Cs)s=1,...,r and A,
and a uniformly bounded N × N matrix G. Then, for each p ≥ 2, it holds that

E

(
1

ML
Tr
(
�r

s=1QCs)◦
)p

= O

(
1

(MN)p/2

)
(9.14)

E

[
1

ML
Tr
(
(�r

s=1QCs)WGW∗A
)◦]p

= O

(
1

(MN)p/2

)
(9.15)

Proof We just provide a sketch of proof. We first establish (9.14) and (9.15) by induc-
tion for even integers p = 2q. For q = 1, we use the Poincaré–Nash inequality, and
for q ≥ 1, we take benefit of the identity
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E|x |2q = ∣∣E(xq)
∣∣2 + Var(xq)

and of the Poincaré–Nash inequality. We obtain (9.14) and (9.15) for odd integers
using the Schwartz inequality. ��

Wenowevaluate the expectation of normalized traces ofmatrices such as�r
s=1QCs .

Proposition 9.1 is used in the sequel in the case r = 2 and r = 3.

Proposition 9.1 For each ML × ML deterministic uniformly bounded matrices
(Cs)s=1,...,r+1 and A, it holds that

E

(
1

ML
Tr
(
�r+1

s=1QCs
))

= E

(
1

ML
Tr
[
(�r

s=1QCs)(IM ⊗ R)Cr+1)
])

+ O
(

L

MN

)
+ σ 2cN

r∑
s=1

L−1∑
i=−(L−1)

E

[
1

ML
Tr
((

�r
t=sQCs)Q

(
IM ⊗ Ji

L

))]

× E

[
1

ML
Tr
(
(�s−1

t=1QCs)QWJi
NH

TW∗(IM ⊗ R)Cr+1
)]

(9.16)

and that

E

[
1

ML
Tr
(
(�r

s=1QCs)QWGW∗A
)]

= E

(
1

ML
Tr
[
�r

s=1QCs(IM ⊗ σ 2RTL ,L(GTH))A
])

+ O
(

L

MN

)

+ σ 2cN

r∑
s=1

L−1∑
i=−(L−1)

E

[
1

ML
Tr
(
(�r

t=sQCs)Q(IM ⊗ Ji
L)
)]

×E

[
1

ML
Tr(�s−1

t=1QCs)QWJi
NH

TW∗(IM ⊗ σ 2RTL ,L(GTH))A
]

− σ 2cN

r∑
s=1

L−1∑
i=−(L−1)

E

[
1

ML
Tr
(
(�r

t=sQCs)(Q(IM ⊗ Ji
L)
)]

×E

[
1

ML
Tr
(
(�s−1

t=1QCs)QWJi
NH

TGW∗A
)]

(9.17)

The proof of this result is similar to the proof of (4.14) and (4.16), but is of
course more tedious. To establish (9.16) and (9.17), it is sufficient to evaluate matrix

E

[
�r

s=1Q
ns ,n

′
s

ls ,l
′
s

QWGW∗
]
using the integration by parts formula for each multi-

indices (l
′
1, . . . , l

′
r ) and (n

′
1, . . . , n

′
r ). A proof is provided in [23].
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We now use Proposition 9.1 to study the behaviour of certain useful terms. For this,
it is first necessary to give the following lemma. If A is a matrix, |||A|||∞ is defined
as

|||A|||∞ = sup
i

∑
j

|Ai, j |

Lemma 9.5 We consider the (2L − 1) × (2L − 1) diagonal matrix D(z) =
Diag(d(−(L − 1), z), . . . , d(0), . . . , d(L − 1, z) where for each l ∈ Z, d(l, z) is
defined as

d(l, z) = σ 4cN (z t (z) t̃(z))2 (1 − |l|/L)+ (1 − |l|/N )+ (9.18)

We consider a (2L − 1) × (2L − 1) deterministic matrix ϒ whose entries
(εk,l)−(L−1)≤k,l≤L−1 depend on z, L , M, N and satisfy

|εk,l | ≤ L

MN
P1(|z|)P2

(
1

Im(z)

)
(9.19)

for some nice polynomials P1 and P2 for each z ∈ C
+. Then, for each z belonging to

a set EN defined by

EN =
{

z ∈ C
+,

L2

MN
Q1(|z|)Q2

(
1

Im(z)

)
< 1

}
(9.20)

for some nice polynomials Q1, Q2, matrix (I − (D + ϒ)) is invertible and for each
L , M, N, and for each z ∈ EN , it holds that

sup
L ,M,N

||| (I − (D + ϒ))−1 |||∞ < C
(η2 + |z|2)2
(Im(z))4

(9.21)

for some nice constants η and C.

Proof It is well known (see, e.g. [20], Corollary 6.1.6 p. 390) that

ρ(D + ϒ) ≤ |||D + ϒ|||∞
Therefore, we obtain that

ρ(D + ϒ) ≤ σ 4cN |z t (z) t̃(z)|2 + L2

MN
P1(|z|)P2

(
1

Im(z)

)

As σ 4cN |z t (z) t̃(z)|2 ≤ 1 − C (Im(z))4

(η2+|z|2)2 for some nice constants C and η (see Eq.
1.31)), we get that

ρ(D + ϒ) < 1 − C

2

(Im(z))4

(η2 + |z|2)2

123



J Theor Probab

if z satisfies

C
(Im(z))4

(η2 + |z|2)2 − L2

MN
P1(|z|)P2

(
1

Im(z)

)
>

C

2

(Im(z))4

(η2 + |z|2)2

a condition that can be written as z ∈ EN for well chosen nice polynomials Q1, Q2.
We note that a similar result holds for ρ(|D| + |ϒ|) where for any matrix A, |A| is the
matrix defined by (|A|)i, j = |A|i, j . This implies that for z ∈ EN , matrices I−D−ϒ

and I − |D| − |ϒ| are invertible and that (I − D − ϒ)−1 = ∑+∞
n=0(D + ϒ)n and

(I−|D|−|ϒ|)−1 = ∑+∞
n=0(|D|+|ϒ|)n . We note that for each k, l, | ((D + ϒ)n)k,l | ≤

((|D| + |ϒ|)n)k,l . Therefore,

∣∣∣∣
(
(I − D − ϒ)−1

)
k,l

∣∣∣∣ ≤
(
(I − |D| − |ϒ|)−1

)
k,l

(9.22)

We denote by 1 the 2L −1 dimensional vector with all components equal to 1, and by b
the vector b = (I − |D| − |ϒ|) 1. It is clear that for each l ∈ {−(L−1), . . . , L−1},bl

is equal to

bl = 1 − σ 4cN |z t (z) t̃(z)|2 (1 − |l|/L)(1 − |l|/N ) −
∑

k

|εl,k |

which is greater than C
2

(Im(z))4

(η2+|z|2)2 if z ∈ EN . Therefore, for each l, for z ∈ EN , it holds
that

1 =
∑

k

(I − |D| − |ϒ|)−1
l,k bk >

C

2

(Im(z))4

(η2 + |z|2)2
∑

k

(I − |D| − |ϒ|)−1
l,k

which implies that

||| (I − (|D| + |ϒ)|)−1 |||∞ <
2

C

(η2 + |z|2)2
(Im(z))4

(9.21) follows immediately from (9.22). ��
We now introduce ω(u1, u2, z) defined for −(L − 1) ≤ ui ≤ (L − 1) for i = 1, 2

by

ω(u1, u2, z) = 1

ML
Tr
(
Q(IM ⊗ Ju1

L )Q(IM ⊗ Ju2
L )
)

(9.23)

and prove the following result.

Proposition 9.2 E(ω(u1, u2, z)) can be expressed as

E (ω(u1, u2, z)) = δ(u1 + u2 = 0) ω(u1, z) + O

(
L

MN

)
(9.24)
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for each z ∈ EN where EN is defined by (9.20), and where ω(u1, z) is defined by

ω(u1, z) = (1 − |u1|/L) t2(z)

1 − σ 4cN (z t (z) t̃(z))2(1 − |u1|/L)(1 − |u1|/N )

Proof We use (9.16) for r = 1,C1 = (IM ⊗ Ju1
L ),C2 = (IM ⊗ Ju2

L ). Using that

E

(
1

ML
Tr
(
QC1(IM ⊗ R)C2

))
= 1

ML
Tr
(
(IM ⊗ R)C1(IM ⊗ R)C2)

)

+ O

(
L

MN

)

we obtain that

E(ω(u1, u2)) = 1

L
Tr
(
RJu1

L RJu2
L

)

+ σ 2cN

L−1∑
i=−(L−1)

E

(
1

ML
Tr
(
QWJi

NH
TW∗ (IM ⊗ RJu2

L

))
E(ω(u1, i))

+ O

(
L

MN

)
(9.25)

For each u1 fixed, this equation can be interpreted as a linear system whose unknowns
are the (E(ω(u1, u2)))u2=−(L−1),...,L−1. (4.16) implies that

E

(
1

ML
Tr(QWJi

NH
TW∗(IM ⊗ RJu2

L )

)
= σ 2

L
TrRTL ,L(HJ∗i

L H)RJu2
L + O

(
L

MN

)

Moreover, we check that up to a O
( L

MN

)
term, matrices R and H can be replaced

into the right-hand side of the above equation by t (z)IL and −zt̃(z)IL , respectively.
In other words,

E

(
1

ML
Tr(QWJi

NH
TW∗(IM ⊗ RJu2

L )

)
= σ 2(zt (z) t̃(z))2

1

L
Tr
(
TL ,L(J∗i

L )Ju2
L

)

+ O

(
L

MN

)
= δ(i − u2) σ 2(zt (z) t̃(z))2(1 − |u2|/L)(1 − |u2|/N ) + O

(
L

MN

)

We write RTL ,L
(
HJ∗i

N H
)
RJu2

L as

RTL ,L

(
HJ∗i

N H
)
RJu2

L = (R − tI)TL ,L

(
HJ∗i

N H
)
RJu2

L

+ t TL ,L

(
(H + zt̃I)J∗i

N H
)
RJu2

L − zt t̃TL ,L

(
J∗i

N (H + zt̃I)
)
RJu2

L

+ t (zt̃)2TL ,L

(
J∗i

N

)
(R − t I)Ju2

L + t2(zt̃)3TL ,L
(
J∗u

N

)
Ju2

L
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The terms 1
L Tr

(
(R − t I)TL ,L

(
HJ∗i

N H
)
RJu2

L

)
and 1

L Tr
(
TL ,L

(
J∗i

N

)
(R − t I)Ju2

L

)
are

O
( L

MN

)
byProposition8.1.We just study the term 1

L Tr
(
t TL ,L

(
(H + zt̃I)J∗i

N H
)
RJu2

L

)
and omit 1

L Tr
(
TL ,L

(
J∗i

N (H + zt̃I)
)
RJu2

L

)
because it can be handled similarly. We

express H + zt̃I as

H + zt̃I = σ 2cN zt̃ HT (M)
N ,L (E(Q) − t I)

= σ 2cN zt̃ HT (M)
N ,L (E(Q) − IM ⊗ R) + σ 2cN zt̃ HTN ,L (R − t I)

Property (2.7) and Proposition 8.1 imply that 1
L Tr

(
t TL ,L

(
(H + zt̃I)J∗i

N H
)
RJu2

L

)
is a

O
( L

MN

)
. We have thus shown that for i, u2 ∈ −(L − 1), . . . , L − 1, then it holds that

σ 2cN E

(
1

ML
Tr(QWJi

NH
TW∗(IM ⊗ RJu2

L )

)
= δ(i + u2 = 0) d(i, z) + O

(
L

MN

)

(9.26)
Similarly, it holds that

1

L
Tr
(
RJu1

L RJu2
L

) = t (z)2
1

L
Tr
(
Ju1

L Ju2
L

)+ O
(

L

MN

)

= δ(u1 + u2 = 0) (t (z))2 (1 − |u1|/L) + O

(
L

MN

)

We denote by ω(u1) the (2L − 1) dimension vector (ω(u1, u2))u2=−(L−1),...,L−1,
and by γ (u1) the vector such that

γ (u1)u2 = δ(u1 + u2 = 0) (t (z))2 (1 − |u1|/L)

The linear system (9.25) can be written as

E(ω(u1)) = (D + ϒ)E(ω(u1)) + γ (u1) + ε

where the elements of matrix ϒ and the components of vector ε are O
( L

MN

)
terms.

Matrices D and ϒ verify the assumptions of Lemma 9.5. Therefore, it holds that

E(ω(u1)) = (I − D − ϒ)−1 (γ (u1) + ε)

when z belongs to a set EN defined as in (9.20). Writing matrix (I − D − ϒ)−1 as

(I − D − ϒ)−1 = (I − D)−1 + (I − D − ϒ)−1 ϒ (I − D)−1

we obtain that

E(ω(u1)) = (I − D)−1 γ (u1) + (I − D − ϒ)−1 ϒ (I − D)−1 γ (u1)

+ (I − D − ϒ)−1 ε
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(9.21) implies that for each u2,

(
(I − D − ϒ)−1 ε

)
u2

= O

(
L

MN

)

Moreover, as vector γ (u1) has only 1 nonzero component, it is clear that each com-
ponent of vector ϒ (I − D)−1 γ (u1) is a O

( L
MN

)
term. Hence, (9.21) leads to

(
(I − D − ϒ)−1 ϒ (I − D)−1 γ (u1)

)
u2

= O

(
L

MN

)

This establishes (9.24). We notice that Lemma 9.5 plays an important role in the above
calculations. The control of ||| (I − (|D| + |ϒ)|)−1 |||∞ allows in particular to show
that E(ω(u1, u2)) = O

( L
MN

)
if u1 + u2 �= 0, instead of O( L2

MN ) in the absence of

control on ||| (I − (|D| + |ϒ)|)−1 |||∞. As Lemma 9.5 is a consequence of L2

MN → 0,
this discussion confirms the importance of condition (9.1) and strongly suggests that
it is a necessary condition to obtain positive results. ��

It is also necessary to evaluateE(ω(u1, u2, u3, z))whereω(u1, u2, u3, z) is defined
by

ω(u1, u2, u3, z) = E

[
1

ML
Tr
(
Q(IM ⊗ Ju1

L )Q(IM ⊗ Ju2
L )Q(IM ⊗ Ju3

L )
)]

(9.27)

It holds that for z ∈ EN defined as in (9.20)

Proposition 9.3 E(ω(u1, u2, u3, z)) can be expressed as

E(ω(u1, u2, u3, z)) = δ(u1 + u2 + u3 = 0) ω(u1, u2, z) + O

(
L

MN

)
(9.28)

where ω(u1, u2, z) is given by

(t (z))3
1
L Tr

(
J

u2
L J

u1
L J

∗(u1+u2)

L

)
+ σ6c2N (zt (z) t̃(z))3 (1 − |u1|/L)(1 − |u2 |/L)(1 − |u1 + u2 |/L)+ 1

N Tr

(
J

u1
N J

u2
N J

∗(u1+u2)

N

)

(1 − d(u1, z)) (1 − d(u2, z)) (1 − d(u1 + u2, z))

(9.29)

Proof The proof is somewhat similar to the proof of Proposition 9.2, but it needs
rather tedious calculations.We just provide themain steps and omit the straightforward
details. We use again (9.16), but for r = 2, and Cs = (IM ⊗ Jus

L ) for s = 1, 2, 3. We
obtain immediately that

E(ω(u1, u2, u3)) = 1

ML
E
[
Tr
(
Q(IM ⊗ Ju1

L )Q(IM ⊗ Ju2
L RJu3

L )
)]

+ σ 2cN

L−1∑
i=−(L−1)

E

[
1

ML

(
Tr(QWJi

NH
TW∗(IM ⊗ RJu3

L )
)]

E(ω(u1, u2, i))
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+ σ 2cN

L−1∑
i=−(L−1)

1

ML
E

[
Tr
(
Q(IM ⊗ Ju1

L )QWJi
NH

TW∗(IM ⊗ RJu3
L )
)]

× E(ω(u2, i)) + O

(
L

MN

)
(9.30)

(9.30) can still be interpreted as a linear system whose unknown are the
(E(ω(u1, u2, u3)))u3∈{−(L−1),...,L−1}. The matrix governing the system is the same
matrixD+ϒ as in the proof of Proposition 9.2 (but for a different matrix ϒ). In order
to use the same arguments, it is sufficient to establish that

1

ML
E
[
Tr
(
Q(IM ⊗ Ju1

L )Q(IM ⊗ Ju2
L RJu3

L )
)] = C(u1, u2, z)δ(u1 + u2 + u3 = 0)

+ O

(
L

MN

)
(9.31)

and

L−1∑
i=−(L−1)

1

ML
E

[
Tr
(
Q(IM ⊗ Ju1

L )QWJi
NH

TW∗(IM ⊗ RJu3
L )
)]

E(ω(u2, i))

= C(u1, u2, z)δ(u1 + u2 + u3 = 0) + O

(
L

MN

)
(9.32)

To check (9.31), we use (9.16) for r = 1,C1 = IM ⊗ Ju1
L ,C2 = IM ⊗ Ju2

L RJu3
L . This

leads to

1

ML
E
[
Tr
(
Q(IM ⊗ Ju1

L )Q(IM ⊗ Ju2
L RJu3

L )
)] = 1

L
Tr
(
RJu1

L RJu2
L RJu3

L

)

+ σ 2cN

L−1∑
i=−(L−1)

E(ω(u1, i))E

[
1

ML

(
Tr(QWJi

NH
TW∗(IM ⊗ R2Ju2

L RJu3
L )
)]

+ O

(
L

MN

)

Up to a O
( L

MN

)
term, it is possible to replace R(z) by t (z)I into the first term of the

right-hand side of the above equation. This leads to

1

L
Tr
(
RJu1

L RJu2
L RJu3

L

) = (t (z))3
1

L
TrJu1

L Ju2
L Ju3

L + O

(
L

MN

)

= (t (z))3
1

L
TrJu1

L Ju2
L J∗(u1+u2)

L δ(u1 + u2 + u3 = 0)

+ O

(
L

MN

)
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Similarly, it is easy to check that

E

[
1

ML

(
Tr(QWJi

NH
TW∗(IM ⊗ R2Ju2

L RJu3
L )
)]

= C(u2, u3, z)δ(i = u2 + u3)

+ O

(
L

MN

)

As E(ω(u1, i, z)) = ω(u1, z)δ(i + u1 = 0) + O
( L

MN

)
, we get immediately that if

u1 + u2 + u3 �= 0, then,

σ 2cN

L−1∑
i=−(L−1)

E(ω(u1, i))E

[
1

ML

(
Tr(QWJi

NH
TW∗ (IM ⊗ R2Ju2

L RJu3
L

))]

= O

(
L

MN

)
+ L O

((
L

MN

)2
)

(9.31) follows from the observation that as L2

MN → 0, then L
( L

MN

)2 = L2

MN
L

MN =
o
( L

MN

)
.

Finally, (9.32) holds because, using (9.17) for r = 1,C1 = IM ⊗ Ju1
L ,G =

Ji
NH

T ,A = IM ⊗ RJu3
L , it can be shown that

1

ML
E

[
Tr
(
Q(IM ⊗ Ju1

L )QWJi
NH

TW∗(IM ⊗ RJu3
L )
)]

= C(u1, u3, z)δ(i = u1 + u3) + O

(
L

MN

)

As E(ω2(i, u2, z)) = δ(i + u2 = 0) ω(u2, z) + O
( L

MN

)
, L2

MN → 0 implies (9.32). ��

The calculation of ω(u1, u2, z) is omitted.
We now define and evaluate the following useful terms. If p ≥ 1 and q ≥ 1, for

each integers i, u1, u2, l1, . . . , l p, k1, . . . , kq belonging to {−(L −1), . . . , L −1}, we
define

βp,q(i, u1, l1, . . . , l p, k1, . . . , kq , u2, z)

as

1

ML
Tr
(
Q(IM ⊗ Ji

L)Q(IM ⊗ Ju1
L )QWJi

NH
T �

p
j=1

(
J

l j
NH

T
)
W∗

×
(
IM ⊗ �

q
n=1(RTL ,L(HJ∗kn

N H))RJu2
L

))
(9.33)
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We also define βp,0(i, u1, l1, . . . , l p, u2, z) as

1

ML
Tr
(
Q
(
IM ⊗ Ji

L

)
Q
(
IM ⊗ Ju1

L

)
QWJi

NH
T �

p
j=1

(
J

l j
NH

T
)
W∗ (IM ⊗ RJu2

L

))

(9.34)
and β0,q(i, u1, k1, . . . , kq , u2, z) is defined similarly. We finally denote by
β(i, u1, u2, z) the term β0,0(i, u1, u2, z), i.e.

β(i, u1, u2, z) = 1

ML
Tr
(
Q(IM ⊗ Ji

L)Q(IM ⊗ Ju1
L )QWJi

NH
TW∗(IM ⊗ RJu2

L )
)

(9.35)

Proposition 9.4 For p ≥ 0 and q ≥ 0, it holds that

E
(
βp,q(i, u1, l1, . . . , l p, k1, . . . , kq , u2, z)

)

= δ

⎛
⎝u1 + u2 =

∑
j

l j +
∑

n

kn

⎞
⎠β p,q(i, u1, l1, . . . , l p, k1, . . . , kq , z)

+ O

(
L

MN

)
(9.36)

where for each i, u1, l1, . . . , l p, k1, . . . , kq , function z → β p,q(i, u1, l1, . . . , l p, k1,
. . . , kq , z) is the Stieltjes transform of a distribution D whose support is included
into SN and such that 〈D,1〉 = 0. Moreover, if cN > 1, for each i, l1, function
z → β1,0(i, l1, l1, z) is analytic in a neighbourhood of 0, while 0 is pole of multiplicity
1 of functions z → zβ(i, l1, z) and z → β0,1(i, l1, z) where we denote β0,0(i, l1, z)
by β(i, l1, z) in order to simplify the notations. Finally, function s(i, l1, z) defined by

s(i, l1, z) = −σ 2β1,0(i, l1, l1, z) + σ 2β0,1(i, l1, l1, z)

+ σ 6cN
(
zt (z)t̃(z)

)2
zt̃(z)

(
1 + σ 2zt (z)t̃(z)(1 − |l1|/L)(1 − |l1|/N )

)

×
(
1 − |l1|/N

1 − d(l1, z)
β(i, l1, z)

)
(9.37)

is the Stieltjes transform of a distribution D whose support is included in S(0)
N and

verifying 〈D,1〉 = 0.

Proof In order to simplify the notations, we just establish the first part of the propo-
sition when p = q = 0, i.e. for the term β(i, u1, u2, z) = β0,0(i, u1, u2, z). Then, we
check that

E (β(i, u1, u2, z)) = δ(u1 + u2 = 0) β(i, u1, z) + O

(
L

MN

)
(9.38)
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where β(i, u, z) is given by

β(i, u, z) =
5∑

j=1

β j (i, u, z)

with

β1(i, u, z) = σ 2t (z)4(z t̃(z))2(1 − |i |/N ) 1
L Tr(J

i
LJ

u
LJ

∗i
L J∗u

L )

1 − d(i, z)
,

β2(i, u, z)=σ 6cN t (z)3(z t̃(z))4ω(i, u)(1−|i +u|/N ) (1−|i |/N )
1

L
Tr(Ju+i

L J∗i
L J∗u

L ),

β3(i, u, z) = σ 4cN t (z)2(z t̃(z))3ω(i, u)1|i+u|≤L−1 (1 − |u1|/L)
1

N
Tr(Ju+i

N J∗u
N J∗i

N ),

β4(i, u, z) = σ 6cN t (z)4(z t̃(z))4ω(u)(1 − |u|/N )(1 − |i |/N )
1

L
Tr(Ji

LJ
u
LJ

∗i
L J∗u

L )

+ σ 10c2N t (z)4(z t̃(z))6ω(u)ω(i)(1 − |i |/N )2(1 − |u|/N )
1

L
Tr(Ji

LJ
u
LJ

∗i
L J∗u

L )

− σ 8c2N t (z)3(z t̃(z))5ω(u)ω(i)(1−|i |/N )
1

N
Tr
(
Ju

NJ
i
NJ

∗(i+u)
N

) 1

L
Tr(Ju+i

L J∗i
L J∗u

L ),

β5(i, u, z) = σ 4cN t (z)3(z t̃(z))3ω(u)
1

N
Tr(J∗i

N Ju
NJ

i−u
N )

1

L
Tr(Ju

LJ
u−i
L J∗u

L )

+ σ 8c2N t (z)3(z t̃(z))5ω(u)ω(i)(1 − |i |/N )
1

N
Tr(J∗i

N Ju
NJ

i−u
N )

1

L
Tr(Ju

LJ
u−i
L J∗u

L )

+ σ 6c2N t (z)2(z t̃(z))4ω(i)ω(u)(1 − |u|/L)
1

N
Tr(J∗i

N Ju
NJ

i
NJ

∗u
N )

The proof is based on (9.17) for r = 2, with C1 = IM ⊗ Ji
L ,C2 = IM ⊗ Ju1

L ,G =
Ji

NH
T ,A = IM ⊗ RJu2

L . It holds that

E(β(i, u1, u2)) = 1

ML
E

[
Tr
(
Q(IM ⊗ Ji

L)Q(IM ⊗ Ju1
L )

×(IM ⊗ σ 2RTL ,L(HJ∗i
N H)RJu2

L )
)]

+ σ 2cN

L−1∑
j=−(L−1)

E(ω(i, u1, j))

× 1

ML
E

[
Tr
(
QWJ j

NH
TW∗(IM ⊗ σ 2RTL ,L(HJ∗i

N H)RJu2
L )
)]

+ σ 2cN

L−1∑
j=−(L−1)

E(ω(u1, j))

× 1

ML
E

[
Tr
(
Q(IM ⊗ Ji

L)QWJ j
NH

TW∗(IM ⊗ σ 2RTL ,L(HJ∗i
N H)RJu2

L )
)]

− σ 2cN

L−1∑
j=−(L−1)

E(ω(i, u1, j))
1

ML
E

[
Tr
(
QWJ j

NH
T Ji

NH
TW∗(IM ⊗ RJu2

L )
)]
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− σ 2cN

L−1∑
j=−(L−1)

E(ω(u1, j))

× 1

ML
E

[
Tr
(
Q(IM ⊗ Ji

L)QWJ j
NH

T Ji
NH

TW∗(IM ⊗ RJu2
L )
)]

Using (9.16), it is easy to check that

1

ML
E

[
Tr
(
Q(IM ⊗ Ji

L)Q(IM ⊗ Ju1
L )(IM ⊗ σ 2RTL ,L(HJ∗i

N H)RJu2
L )
)]

= δ(u1 + u2 = 0) C(i, u1, z) + O

(
L

MN

)
,

1

ML
E

[
Tr
(
QWJ j

NH
TW∗(IM ⊗ σ 2RTL ,L(HJ∗i

N H)RJu2
L )
)]

= δ( j = u2 − i)C(i, u2, z) + O

(
L

MN

)
,

1

ML
E

[
Tr
(
QWJ j

NH
T Ji

NH
TW∗(IM ⊗ RJu2

L )
)]

= δ( j = u2 − i)C(i, u2, z) + O

(
L

MN

)
,

1

ML
E

[
Tr
(
Q(IM ⊗ Ji

L)QWJ j
NH

TW∗(IM ⊗ σ 2RTL ,L(HJ∗i
N H)RJu2

L )
)]

= δ( j = u2)C(i, u2, z) + O

(
L

MN

)
,

1

ML
E

[
Tr
(
Q(IM ⊗ Ji

L)QWJ j
NH

T Ji
NH

TW∗(IM ⊗ RJu2
L )
)]

= δ( j = u2)C(i, u2, z) + O

(
L

MN

)

Proposition 9.2 and Proposition 9.3 immediately imply that E(β(i, u1, u2)) can be
written as (9.38). We omit the proof of the expression of β(i, u, z). Moreover, Lemma
9.2 implies that function z → β(i, u, z) is the Stieltjes transform of a distribution D
whose support is included in SN and which verifies 〈D,1〉 = 0. ��

We now establish the second part of the proposition and assume that cN > 1. In
this case, 0 is pole of multiplicity 1 of t (z) and t̃(z) is analytic at 0. It is easy to check
that for each j = 1, . . . , 5, 0 is pole with multiplicity 1 of function z → zβ j (i, l1, z)

and thus of function z → z β(i, l1, z). As for function z → β0,1(i, l1, l1, z), it can be
shown that

β0,1(i, l1, l1, z) = σ 2 (1 − |l1|/N ) t (z) (zt̃(z))2β(i, l1, z) (9.39)

fromwhichwededuce immediately that 0 is polewithmultiplicity 1 ofβ0,1(i, l1, l1, z).
The analytic expression of β1,0(i, l1, l1, z) (not provided) allows us to conclude
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immediately that 0 may be pole with multiplicity 1, but it can be checked that the
corresponding residue vanishes. Therefore, function z → β1,0(i, l1, l1, z) appears to
be analytic in a neighbourhood of 0 and thus coincides with the Stieltjes transform
of a distribution whose support is included into S(0)

N . In order to complete the proof
of the proposition, it remains to check that function z → s(i, l1, z) is analytic in a
neighbourhood of 0. As 0 is pole of zβ(i, l1, z) and β0,1(i, l1, l1, z) with multiplicity
1, it is sufficient to verify that

lim
z→0

z
[
β0,1(i, l1, l1, z) + σ 4cN

(
zt (z)t̃(z)

)2
zt̃(z)

×
(
1 + σ 2zt (z)t̃(z)(1 − |l1|/L)(1 − |l1|/N )

)( 1 − |l1|/N

1 − d(l1, z)
β(i, l1, z)

)]
= 0

This property follows immediately from (9.39).

9.2.2 Evaluation of κ(2)(l1, l2)

The treatment of the terms κ(2)(l1, l2) appears to be difficult and also needs a sharp
evaluation for each r of the term of κ(r)(u1, . . . , ur ) defined for u1, . . . , ur ∈ {−(L −
1), . . . , L − 1} by

κ(r)(u1, . . . , ur ) = E

(
�r

s=1 τ (M)(Q◦)(us)
)

(9.40)

Lemma 9.4 and the Hölder inequality immediately lead to κ(r)(u1, . . . , ur ) =
O( 1

(MN)r/2 ), but this evaluation is not optimal and has to be refined, in particular if
r = 2. More precisely, the following result holds.

Proposition 9.5 If z belongs to a set EN defined as in (9.20), then, for r = 2, it holds
that

κ(2)(u1, u2) = 1

MN
C(z, u1) δ(u1 + u2 = 0) + O

(
L

(MN)2

)
(9.41)

More generally, if r ≥ 2, and if (u1, u2, . . . , ur ) are integers such that −(L − 1) ≤
ui ≤ (L − 1) for i = 1, . . . , r for which uk + ul �= 0 for each k, l, k �= l, then it holds
that

κ(r)(u1, . . . , ur ) = 1√
MN

O

(
1

(MN)r/2

)
(9.42)

The proof of this result is quite intricate. The goal of paragraph 9.2.2 is to establish
Proposition 9.5.

In order to evaluate κ(r)(u1, . . . , ur ), we state the following result. It can be proved
by calculating, for each integers (l1, l

′
1, n1, n

′
1, . . . , lr , l

′
r , nr , n

′
r ), matrix

E

[
�r

s=1(Q
◦)ns ,n

′
s

ls ,l
′
s

QWGW∗
]

by the integration by parts formula. This calculation is provided in [23].

123



J Theor Probab

Proposition 9.6 We consider integers (u1, u2, . . . , ur ), (v1, v2, . . . , vr ) such that
−(L − 1) ≤ ui ≤ (L − 1),−(L − 1) ≤ vi ≤ (L − 1) for i = 1, . . . , r . Then,
it holds that

E

[
�r

s=1 τ (M)(Q◦)(us)
]

= −E

[
�r−1

s=1 τ (M)(Q◦)(us)
] 1

ML
Tr
(
Δ(IM ⊗ Jur

L )
)

+ σ 2cN

L−1∑
l1=−(L−1)

E

(
�r−1

s=1τ
(M)(Q◦)(us) τ (M)(Q◦)(l1)

)

×E

[
1

ML
Tr
(
QWJl1

NH
TW∗(IM ⊗ RJur

L )
)]

+ σ 2cN

L−1∑
l1=−(L−1)

E

(
�r−1

s=1τ
(M)(Q◦)(us) τ (M)(Q◦)(l1)

×
[

1

ML
Tr
(
QWJl1

NH
TW∗(IM ⊗ RJur

L )
)]◦)

+ σ 2

M L N

r−1∑
s=1

L−1∑
i=−(L−1)

E

[
�t �=s,r τ (M)(Q◦)(ut )

]
E(β(i, us, ur ))

+ σ 2

M L N

r−1∑
s=1

L−1∑
i=−(L−1)

E

[
�t �=s,r τ (M)(Q◦)(ut ) β(i, us, ur )

(0)
]

(9.43)

and that

E

[
�r

s=1 τ (M)(Q◦)(vs)

(
1

ML
Tr(QWGW∗A)

)◦]
= κ(r)(v1, . . . , vr ) ε(G,A)

+ σ 2cN

L−1∑
l2=−(L−1)

E

[
�r

s=1τ
(M)(Q◦)(vs) τ (M)(Q◦)(l2)

× 1

ML
Tr
(
QWJl2

NH
TW∗ (IM ⊗ σ 2RTL ,L(GTH)

)
A
)]

− σ 2cN

L−1∑
l2=−(L−1)

E

[
�r

s=1τ
(M)(Q◦)(vs) τ (M)(Q◦)(l2)

× 1

ML
Tr
(
QWJl2

NH
TGW∗A∗)

]

+ σ 2

M L N

∑
s≤r,|i |≤L−1

E

[
�t �=s τ (M)(Q◦)(vt )

× 1

ML
Tr
(
Q(IM ⊗Ji

L)Q(IM ⊗Jvs
L )QWJi

NH
TW∗ (IM ⊗σ 2RTL ,L(GTH)

)
A
)]
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− σ 2

M L N

∑
s≤r,|i |≤L−1

E

[
�t �=s τ (M)(Q◦)(vt )

× 1

ML
Tr
(
Q(IM ⊗Ji

L)Q(IM ⊗J�s
L )QWJi

NH
TGW∗A

)]
(9.44)

where we recall that β(i, us, ur ) is defined by (9.33), and where ε(G,A) is defined by

ε(G,A) = σ 2cNE

(
1

ML

(
QWT (M)

N ,L (Q◦)THT (GW∗A − W∗

×
(
IM ⊗ σ 2RTL ,L(GTH)

)
A
)))

In order to evaluate κ(r)(u1, . . . , ur−1, ur ), we interpret (9.43) as a linear sys-
tem whose unknowns are the (κ(r)(u1, . . . , ur−1, ur ))ur =−(L−1),...,L−1, the integers
(us)s=1,...,r−1 being considered as fixed.

Structure of the linear system We now precise the structure of this linear system. We
denote by κ (r) = (κ(r)(u1, . . . , ur−1, ur ))ur =−(L−1),...,L−1 the corresponding 2L −1-
dimensional vector. We remark that the second term of the right-hand side of (9.43)
coincides with component ur of the action of vector κ (r) on the matrix whose entry
(ur , l1) is

σ 2cN E

[
1

ML
Tr
(
QWJl1

NH
TW∗(IM ⊗ RJur

L )
)]

This matrix appears to be close from a diagonal matrix because

σ 2cN E

[
1

ML
Tr
(
QWJl1

NH
TW∗(IM ⊗ RJur

L )
)]

= δ(l1 + ur = 0) d(ur , z)

+ O

(
L

MN

)

(see (9.26)).We now study the fourth and the fifth term of the right-hand side of (9.43).
We introduce y1,ur and y2,ur defined by

y1,ur = σ 2

M L N

r−1∑
s=1

L−1∑
i=−(L−1)

E(β(i, us, ur )) E
[
�t �=s,r τ (M)(Q◦)(ut )

]

and

y2,ur = σ 2

M L N

r−1∑
s=1

L−1∑
i=−(L−1)

E

[
�t �=s,r τ (M)(Q◦)(ut ) β(i, us, ur )

◦] (9.45)
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and denote by y1 and y2 the corresponding 2L − 1-dimensional-related vec-
tors. We first evaluate the behaviour of y1. (9.38) and the rough evaluation
E
[
�t �=(s,r) τ (M)(Q◦)(ut )

] = O( 1
(MN)r/2−1 ) based on Lemma 9.4 and the Hölder

inequality imply that vector y1 can be written as

y1 = y∗
1 + z1 (9.46)

where all the components of z1 are L
MN O( 1

(MN)r/2 ) terms, or equivalently
L√
MN

O( 1
(MN)(r+1)/2 ) = o( 1

(MN)(r+1)/2 ), and where y∗
1 is defined by

y∗
1,ur

= σ 2

MN

⎛
⎝ 1

L

r−1∑
s=1

L−1∑
i=−(L−1)

β(i, us) δ(us + ur = 0)

⎞
⎠ κ(r−2) ((ut )t �=(s,r)

)

(9.47)
so that

y∗
1,ur

= 0 if ur �= −us for each s = 1, . . . , r − 1 (9.48)

Hence, (9.47,9.48) imply that

y1,ur = O

(
1

(MN)r/2

)
1ur ∈{−u1,...,−ur−1}+

L√
MN

O
(

1

(MN)(r+1)/2

)
1ur ∈{−u1,...,−ur−1}c

(9.49)

We note that if r = 3, y1,u3 = 0 for each u3 because for each s = 1, 2, the term
E
[
�t �=s,3 τ (M)(Q◦)(ut )

]
is identically zero. Therefore, for r = 3, it holds that y∗

1 = 0.
As for y2, we notice that Lemma 9.4 and the Hölder inequality lead to

y2,ur = O

(
1

(MN)(r+1)/2

)
(9.50)

We remark that if r = 2, then y2,u = 0 for each u because the term
�t �=s,r τ (M)(Q◦)(us) disappears and that y2,u represents themathematical expectation
of a zero-mean term.

In order to evaluate the third termof the right-hand side of (9.43), we define x̃(ur , l1)
by

x̃(ur , l1)

= E

(
�r−1

s=1τ
(M)(Q◦)(us) τ (M)(Q◦)(l1)

[
1

ML
Tr
(
QWJl1

NH
TW∗(IM ⊗ RJur

L )
)]◦)

,

(9.51)

and x̃(ur ) by

x̃(ur ) =
L−1∑

l1=−(L−1)

x̃(ur , l1) (9.52)
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In order to have a better understanding of x̃(ur ), we expand x̃(ur , l1) for each l1
using (9.44). We define (v1, . . . , vr ) by vs = us for s ≤ r − 1 and vr = l1, while
G and A represent the matrices G = Jl1

NH
T and A = (IM ⊗ RJur

L ). We denote
by (si (ur , l1))i=1,...,5 the i-th term of the right-hand side of (9.44) and denote by
(si (ur ))i=1,...,5 the term

si (ur ) =
L−1∑

l1=−(L−1)

si (ur , l1)

and by si vector si = (si (ur ))ur =−(L−1),...,L−1. Vector s1 plays a particular role
because s1(ur , l1) is equal to

s1(ur , l1) = κ(r)(u1, . . . , ur−1, l1) ε(Jl1
NH

T , I ⊗ RJur
L )

= κ(r)(u1, . . . , ur−1, l1) O

(
L

MN

)

We remark that vector s1 coincides with the action of vector κ (r) on matrix(
ε(Jl1

N , I ⊗ RJur
L )
)

−(L−1)≤ur ,l1≤(L−1)
. We define by x(ur , l1) and x(ur ) the terms

x(ur , l1) =
5∑

i=2

si (ur , l1), x(ur ) =
L−1∑

l1=−(L−1)

x(ur , l1) (9.53)

and vector x represents the 2L − 1-dimensional vector (x(ur ))ur =−(L−1),...,L−1.
We finally consider the first term of the right-hand side of (9.43) and denote by ε

the 2L −1-dimensional vector whose components (εur )ur =−(L−1),...,L−1 are given by

εur = −E

[
�r−1

s=1 τ (M)(Q◦)(us)
] 1

ML
Tr
(
Δ(IM ⊗ Jur

L )
)

We notice that if r = 2, vector ε is reduced to 0.
This discussion and (9.26) imply that (9.43) can be written as

κ (r) = (D + ϒ) κ (r) + y1,∗ + z1 + y2 + ε + σ 2cN x (9.54)

where we recall that D represents the diagonal matrix D = Diag(d(−(L −
1), z), . . . , d((L − 1), z)) and where the entries of matrix ϒ are defined by

ϒur ,l1 = σ 2cN E

[
1

ML
Tr
(
QWJl1

NH
TW∗(IM ⊗ RJur

L )
)]

−Dur ,l1 + σ 2cN ε(Jl1
NH

T , (IM ⊗ RJur
L ))

It is clear the each entry of ϒ is a O
( L

MN

)
term.
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Overview of the proof of Proposition 9.5 We now present unformally the various
steps of the proof of Proposition 9.5 and concentrate on the proof of Eq. (9.42) in
order to simplify the presentation. The particular case r = 2 is, however, briefly con-
sidered at the end of the overview, but it is of course detailed in the course of the
proof. ��

First step: inversion of the linear system (9.54). Lemma 9.5 implies that if z belongs
to a set EN defined as (9.20), matrix (I−D− ϒ) is invertible. Therefore, vector κ (r)

can be written as

κ (r) = (I − D − ϒ)−1
(
y1,∗ + z1 + y2 + ε + σ 2cN x

)

Using (9.21) and the properties of the components of vectors z1, y2, and ε, we obtain
easily that

(
(I − D − ϒ)−1y1,∗

)
ur

= 1

1 − d(ur , z)
y∗
1,ur

+ L√
MN

O

(
1

(MN)(r+1)/2

)
,

(
(I − D − ϒ)−1y2

)
ur

= O
(

1

(MN)(r+1)/2

)
,

and that

∣∣∣∣κ(r)(u1, . . . , ur ) − 1

1 − d(ur , z)
y∗
1,ur

∣∣∣∣ ≤ |κ(r−1)(u1, . . . , ur−1)| O

(
L

MN

)

+ C sup
u

|x(u)| + O(
1

(MN)(r+1)/2
)

(9.55)

If multi-index (u1, . . . , ur ) satisfies uk + ul �= 0 for k �= l, then y∗
1,ur

= 0 (see Eq.
(9.48)). Therefore, in order to establish (9.42), it is necessary to evaluate supu |x(u)|.

Second step: evaluation of supu |x(u)| In order to evaluate supu |x(u)|, we express
x(ur , l1) as x(ur , l1) = ∑5

i=2 si (ur , l1) (see Eq. (9.53)) and study each term
si (ur ) = ∑

l1 si (ur , l1) for i = 2, 3, 4, 5. s4(ur ) and s5(ur ) can be written as

κ(r−1)(u1, . . . , ur−1)O
( L

MN

)
δ(ur = 0) + o

(
1

(MN)(r+1)/2

)
. The terms s2(ur ) and

s3(ur ) have a more complicated structure. We just address s3(ur ) because the behav-
iour of s2(ur ) is similar. s3(ur , l1) can be written as s3(ur , l1) = ∑

l2 s3(ur , l1, l2)
where

s3(ur , l1, l2) = −σ 2cNE

[
�r−1

s=1τ
(M)(Q◦)(us)τ

(M)(Q◦)(l1)τ (M)(Q◦)(l2)

× 1

ML
Tr
(
QWJl2

NH
T Jl1

NH
TW∗(I ⊗ RJur

L )
)]

We define s3(ur , l1, l2) and x̃ (1)
3 (ur , l1, l2) by
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s3(ur , l1, l2) = −σ 2cN κ(r+1)(u1, . . . , ur−1, l1, l2)

×E

[
1

ML
Tr
(
QWJl2

NH
T Jl1

NH
TW∗(I ⊗ RJur

L )
)]

(9.56)

and

x̃ (1)
3 (ur , l1, l2) =
− σ 2cNE

[
�r−1

s=1τ
(M)(Q◦)(us)τ

(M)(Q◦)(l1)τ (M)(Q◦)(l2)

× 1

ML
Tr
(
QWJl2

NH
T Jl1

NH
TW∗(I ⊗ RJur

L )
)◦]

(9.57)

Then, it holds that

s3(ur , l1, l2) = s3(ur , l1, l2) + x̃ (1)
3 (ur , l1, l2)

and obtain that s3(ur ) = s3(ur )+ x̃ (1)
3 (ur )where s3(ur ) and x̃ (1)

3 (ur ) are defined as the

sum over l1, l2 of s3(ur , l1, l2) and x̃ (1)
3 (ur , l1, l2). Similarly, s2(ur ) can be expressed

as s2(ur ) = s2(ur ) + x̃ (1)
2 (ur ) where s2(ur ) and x̃ (1)

2 (ur ) are defined in the same way

than s3(ur ) and x̃ (1)
3 (ur ). The behaviour of (s j (ur )) j=2,3 is easy to analyse because

it can be shown that

s j (ur ) =
∑

l1

C j (ur , l1)κ
(r+1)(u1, . . . , ur−1, l1, ur − l1)

+
∑
l1,l2

κ(r+1)(u1, . . . , ur−1, l1, l2)O

(
L

MN

)

Therefore, (9.55) implies that

∣∣∣∣κ(r)(u1, . . . , ur ) − 1

1 − d(ur , z)
y∗
1,ur

∣∣∣∣

≤ |κ(r−1)(u1, . . . , ur−1)| O

(
L

MN

)

+ C sup
u

∑
l1

|κ(r+1)(u1, . . . , ur−1, l1, u − l1)|

+
∑
l1,l2

|κ(r+1)(u1, . . . , ur−1, l1, l2)|O
(

L

MN

)

+ sup
u

x̃ (1)(u) + O

(
1

(MN)(r+1)/2

)
(9.58)
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where x̃ (1)(u) is the positive term defined by

x̃ (1)(u) =
∣∣∣x̃ (1)

2 (u)

∣∣∣+
∣∣∣x̃ (1)

3 (u)

∣∣∣

Therefore, if ur + us �= 0 for s = 1, . . . , r − 1, then y∗
1,ur

= 0 and it holds that

∣∣∣κ(r)(u1, . . . , ur )

∣∣∣ ≤ |κ(r−1)(u1, . . . , ur−1)| O

(
L

MN

)

+ C sup
u

∑
l1

|κ(r+1)(u1, . . . , ur−1, l1, u − l1)|

+
∑
l1,l2

|κ(r+1)(u1, . . . , ur−1, l1, l2)|O
(

L

MN

)

+ sup
u

x̃ (1)(u) + O

(
1

(MN)(r+1)/2

)
(9.59)

In order to manage supu x̃ (1)(u), we expand x̃ (1)
j (u, l1, l2) using (9.44) when r is

exchanged by r + 1. In the same way than x̃(u) defined by (9.52), it holds that

x̃ (1)
j (u) =

5∑
i=1

s(1)
j,i (u)

where the terms (s(1)
j,i (u))i=1,...,5 are defined in the same way than (si (u))i=1,...,5. We

define x̃ (2)
j,i (u) for i = 2, 3 by the fact that

s(1)
j,i (u) = s(1)

j,i (u) + x̃ (2)
j,i (u)

We define x̃ (2)(u) as the positive term given by

x̃ (2)(u) =
∑

(i, j)=(2,3)

∣∣∣x̃ (2)
j,i (u)

∣∣∣

The terms x̃ (2)
j,i (u) can be developed similarly, and pursuing the iterative process, we

are able to define for each q ≥ 3 the positive terms x̃ (q)(u) which are the analogues of
x̃ (1)(u) and x̃ (2)(u). In order to characterize the behaviour of supu x̃ (1)(u), we express
x̃ (1)(u) as

x̃ (1)(u) =
p−1∑
q=1

(
x̃ (q)(u) − x̃ (q+1)(u)

)
+ x̃ (p)(u)
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where the choice of p depends on the context. The term x̃ (p)(u) is easy to control

because theHölder inequality leads immediately to x̃ (p)(u) =
(

L√
MN

)p+1
O( 1

(MN)r/2 ).

Moreover, it is shown that

x̃ (q)(u) − x̃ (q+1)(u)

≤
∑

li ,i=1,...,q+1

∣∣∣κ(r+q)(u1, . . . , ur−1, li , i = 1, . . . , q + 1)
∣∣∣ O

(
L

MN

)

+ C
∑

li ,i=1,...,q+1

∣∣∣∣∣∣
κ(r+q+1)(u1, . . . , ur−1, li , i = 1, . . . , q + 1, u −

q+1∑
i=1

li )

∣∣∣∣∣∣

+
∑

li ,i=1,...,q+2

∣∣∣κ(r+q+1)(u1, . . . , ur−1, li , i = 1, . . . , q + 2)
∣∣∣ O

(
L

MN

)

+ o

(
1

(MN)(r+1)/2

)
(9.60)

This allows us to evaluate
∑p−1

q=1

(
x̃ (q)(u) − x̃ (q+1)(u)

)
in the course of the proof.

Third step: establishing (9.42) (9.59) suggests that the rough evaluation
κ(r)(u1, . . . , ur ) = O( 1

(MN)r/2 ) can be improved when uk + ul �= 0 for k �= l. The
first term of the right-hand side of (9.59) can also be written as

L√
MN

1√
MN

∣∣∣κ(r−1)(u1, . . . , ur−1)

∣∣∣

Even if we evaluate κ(r−1)(u1, . . . , ur−1) as O( 1
(MN)(r−1)/2 ), it is clear the first term

of the right-hand side of (9.59) appears as a L√
MN

O( 1
(MN)r/2 ). A factor L√

MN
is thus

obtained w.r.t. the rate O( 1
(MN)r/2 ). One may imagine that using the information that

ui + u j �= 0 for 1 ≤ i, j ≤ r − 1, i �= j , should allow to improve the above rough
evaluation of κ(r−1)(u1, . . . , ur−1) and thus the evaluation of the first term of the
right-hand side of (9.59). A similar phenomenon is observed for the second and the
third terms of the right-hand side of (9.59). We just consider the second term. If each
term κ(r+1)(u1, . . . , ur−1, l1, u−l1) is roughly evaluated as O( 1

(MN)(r+1)/2 ), taking into
account the sum over l1, the second term of the right-hand side of (9.59) is decreased
by a factor L√

MN
w.r.t. the rough evaluation O( 1

(MN)r/2 ).
In order to formalize the above discussion, it seems reasonable to be able to prove

(9.42) from (9.59) using induction technics. However, this needs some care because
|κ(r)(u1, . . . , ur )| is controlled by |κ(r−1)(u1, . . . , ur−1)| and by similar terms of
orders greater than r . In order to establish (9.42), it is proved in Proposition 9.10 that
if (u1, . . . , ur ) satisfy ut + us �= 0 for 1 ≤ t, s ≤ r and t �= s, then, for each q ≥ 1,
for each r ≥ 2, it holds that
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κ(r)(u1, . . . , ur ) = max

((
L√
MN

)r−1+q

,
1√
MN

)
O

(
1

(MN)r/2

)
(9.61)

This leads immediately to (9.42) because, as L = O(Nα) with α < 2/3, it exists

q for which
(

L√
MN

)r−1+q = o
(

1√
MN

)
. In order to establish (9.61), we first show

in Proposition 9.9 that for each r ≥ 2 and each integer 1 ≤ p ≤ r − 1, if integers
u1, . . . , ur ∈ {−(L − 1), . . . , L − 1} satisfy

ur + us �= 0 s = 1, . . . , r − 1
ur−1 + us �= 0 s = 1, . . . , r − 2

...
...

...

ur−p+1 + us �= 0 s = 1, . . . , r − p

(9.62)

then, it holds that

κr (u1, . . . , ur ) = max

((
L√
MN

)p

,
1√
MN

)
O

(
1

(MN)r/2

)
(9.63)

Using (9.59) as well as the above evaluation of supu x̃ (1)(u), we prove Proposition 9.9
by induction on r : we verify that it holds for r = 2, assume that it holds until integer
r0 − 1, and establish it is true for integer r0. For this, we prove that for each r ≥ r0
and for each multi-index (u1, . . . , ur ) satisfying (9.62) for p ≤ r0 − 1, then (9.63)
holds. This is established by induction on integer p in Lemma 9.6.

We note that (9.63) used for integer p = r − 1 coincides with (9.61) for q = 0.
(9.61) is established for each integer q by induction on integer q. It is first established
by induction on r that (9.61) holds for each r for q = 1. Then, (9.61) is assumed to
hold for each r until integer q − 1, and we prove by induction on r that it holds for
integer q. For this, it appears necessary to evaluate

∑
l1

∣∣∣κ(r+1)(u1, . . . , ur−1, l1,−l1)
∣∣∣

where u1, . . . , ur−1 verify uk + ul �= 0 for each k, l ∈ 1, 2, . . . , r − 1 (see Lemma
9.7). This expression corresponds to the second term of the right-hand side of (9.59)
for u = 0.

Fourth step: establishing (9.41). For r = 2, the term O( 1
(MN)(r+1)/2 ) at the right-hand

side of (9.58) is replaced by a O( L
(MN)2

) term because vector y2 whose components
are defined by (9.45) is identically 0. Moreover, the first term at the right-hand side of
(9.58) vanishes. Using (9.42), it is easy to prove that the third term of the right-hand

side of (9.58) is o
(

L
(MN)2

)
. (9.41) follows in turn from the evaluation

∑
l1

∣∣∣κ(3)(u1, l1,−l1)
∣∣∣ = O

(
L

(MN)2

)
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which is proved in Lemma 9.8.

Proof of Proposition 9.5 We now complete the proof of Proposition 9.5. In order to
evaluate κ(r)(u1, . . . , ur ), we use (9.54) and Lemma 9.5. We write that

κ (r) = (I − D − ϒ)−1
(
y1,∗ + z1 + y2 + ε + σ 2cN x

)

We first evaluate each component of the first 3 terms of the right-hand side of the
above equation. Vector (I − D − ϒ)−1 y1,∗ can also be written as

(I − D − ϒ)−1 y1,∗ = (I − D)−1 y1,∗ + (I − D − ϒ)−1ϒ(I − D)−1y1,∗

As vector y1,∗ has at most r − 1 nonzero components which are O( 1
(MN)r/2 ) terms

and that the entries of ϒ are O
( L

MN

)
terms, the entries of vector ϒ(I − D)−1y1,∗ are

L√
MN

O( 1
(MN)(r+1)/2 ) = o( 1

(MN)(r+1)/2 ) terms. (9.21) implies that the entries of (I−D−
ϒ)−1ϒ(I − D)−1y1,∗ are L√

MN
O( 1

(MN)(r+1)/2 ) terms as well. Therefore, it holds that

(
(I − D − ϒ)−1 y1,∗

)
ur

= 1

1 − d(ur , z)
y∗
1,ur

+ L√
MN

O

(
1

(MN)(r+1)/2

)

and that this term is reduced to a L√
MN

O( 1
(MN)(r+1)/2 ) if ur does not belong to

{−u1, . . . ,−ur−1}. (9.21) implies that

(
(I − D − ϒ)−1 z1

)
ur

= L√
MN

O

(
1

(MN)(r+1)/2

)

and that

(
(I − D − ϒ)−1 y2

)
ur

= O

(
1

(MN)(r+1)/2

)

for r ≥ 3, while this term is zero for r = 2 because y2 = 0 in this case. If
ur does not belong to {−u1, . . . ,−ur−1}, the contributions of the above 3 terms

to κ(r)(u1, . . . , ur ) are at most O
(

1
(MN)(r+1)/2

)
terms, which corresponds to what

is expected because we recall that the goal of the subsection is to establish that

κ(r)(u1, . . . , ur ) = O
(

1
(MN)(r+1)/2

)
if uk + ul �= 0 for k �= l (see (9.42)). Finally,

(9.21) implies that

(
(I − D − ϒ)−1 ε

)
ur

= κ(r−1)(u1, . . . , ur−1) O

(
L

MN

)
(9.64)

and that
sup

u

∣∣∣
(
(I − D − ϒ)−1 x

)
u

∣∣∣ ≤ C sup
u

|x(u)| (9.65)
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Therefore, it holds that

∣∣∣∣κ(r)(u1, . . . , ur ) − 1

1 − d(ur , z)
y∗
1,ur

∣∣∣∣ ≤ |κ(r−1)(u1, . . . , ur−1)| O

(
L

MN

)

+ C sup
u

|x(u)| + O

(
1

(MN)(r+1)/2

)

(9.66)

where we recall that y∗
1,ur

= 0 if ur does not belong to {−u1, . . . ,−ur−1}. We note
that if r = 2, (9.66) can be written as

∣∣∣∣κ(2)(u1, u2) − 1

1 − d(u2, z)
y∗
1,u2

∣∣∣∣ ≤ C sup
u

|x(u)| + O

(
L

(MN)2

)
(9.67)

because y2 = ε = 0. ��
In order to establish (9.42), it is necessary to study the behaviour of supu |x(u)|.

We express x(ur ) as x(ur ) = ∑L−1
l1=−(L−1) x(ur , l1) and evaluate the 4 terms si (ur ) =∑L−1

l1=−(L−1) si (ur , l1) for i = 2, 3, 4, 5. We just study si (ur ) for i = 3 and i = 5
because s2(ur ) (resp. s4(ur )) has essentially the same behaviour than s3(ur ) (resp.
s5(ur )). s3(ur , l1) is given by

s3(ur , l1) =
L−1∑

l2=−(L−1)

s3(ur , l1, l2)

where

s3(ur , l1, l2) = −σ 2cNE

[
�r−1

s=1τ
(M)(Q◦)(us)τ

(M)(Q◦)(l1)τ (M)(Q◦)(l2)

× 1

ML
Tr
(
QWJl2

NH
T Jl1

NH
TW∗ (I ⊗ RJur

L

))]

We define s3(ur , l1, l2) and x̃ (1)
3 (ur , l1, l2) by

s3(ur , l1, l2) = −σ 2cN κ(r+1)(u1, . . . , ur−1, l1, l2)

×E

[
1

ML
Tr
(
QWJl2

NH
T Jl1

NH
TW∗(I ⊗ RJur

L )
)]

(9.68)

and

x̃ (1)
3 (ur , l1, l2) = −σ 2cNE

[
�r−1

s=1τ
(M)(Q◦)(us)τ

(M)(Q◦)(l1)τ (M)(Q◦)(l2)

× 1

ML
Tr
(
QWJl2

NH
T Jl1

NH
TW∗(I ⊗ RJur

L )
)◦]

(9.69)
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Then, it holds that

s3(ur , l1, l2) = s3(ur , l1, l2) + x̃ (1)
3 (ur , l1, l2)

We also define s3(ur , l1), s3(ur ), x̃ (1)
3 (ur , l1), and x̃ (1)

3 (ur ) as s3(ur , l1)

= ∑
l2 s3(ur , l1, l2), s3(ur ) = ∑

l1 s3(ur , l1), x̃ (1)
3 (ur , l1) = ∑

l2 x̃ (1)
3 (ur , l1, l2), and

x̃ (1)
3 (ur ) = ∑

l1 x̃ (1)
3 (ur , l1). It is easy to check that

E
1

ML
Tr
(
QWJl2

NH
T Jl1

NH
TW∗(I ⊗ RJur

L )
)

= C(ur , l1)δ(l2 = ur − l1) + O

(
L

MN

)

Therefore, s3(ur ) is equal to

s3(ur ) =
∑

l1

C(ur , l1)κ
(r+1)(u1, . . . , ur−1, l1, ur − l1)

+
∑
l1,l2

κ(r+1)(u1, . . . , ur−1, l1, l2)O

(
L

MN

)

We now evaluate s5(ur ). For this, we recall that we denote β1,0(i, us, l1, ur ) the
term

β1,0(i, us, l1, ur )

= 1

ML
Tr
(
Q(IM ⊗ Ji

L)Q(IM ⊗ Jus
L )QWJi

NH
T Jl1

NH
TW∗ (IM ⊗ RJur

L

))

We notice that

s5(ur , l1) = s5,1(ur , l1) + s5,2(ur , l1)

where

s5,1(ur , l1) = − σ 2

M L N

r−1∑
s=1

L−1∑
i=−(L−1)

×E

[(
�t �=(s,r) τ (M)(Q◦)(ut ) τ (M)(Q◦)(l1)

)
β1,0(i, us, l1, ur )

]

and

s5,2(ur , l1) = − σ 2

M L N

L−1∑
i=−(L−1)

E

[
�t≤r−1 τ (M)(Q◦)(ut ) β1,0(i, l1, l1, ur )

]

We first evaluate s5,1(ur ) = ∑
l1 s5,1(ur , l1). We express β1,0(i, us, l1, ur ) as

β1,0(i, us, l1, ur ) = E
(
β1,0(i, us, l1, ur )

)+ β1,0(i, us, l1, ur )
◦
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and notice that s5,1(ur , l1) = s5,1(ur , l1) + s̃5,1(ur , l1) where

s5,1(ur , l1) = − σ 2

M L N

L−1∑
i=−(L−1)

r−1∑
s=1

κ(r−1)((ut )t �=(s,r), l1)E
(
β1,0(i, us, l1, ur )

)

and

s̃5,1(ur , l1) = − σ 2

M L N

r−1∑
s=1

L−1∑
i=−(L−1)

×E

[
�t �=s,r τ (M)(Q◦)(ut ) τ (M)(Q◦)(l1) β1,0(i, us, l1, ur )

◦]

It is clear that s̃5,1(ur , l1) = O( 1
(MN)(r+2)/2 ) which implies that

∑
l1

s̃5,1(ur , l1) = L√
MN

O

(
1

(MN)(r+1)/2

)
= o

(
1

(MN)(r+1)/2

)
(9.70)

Proposition 9.4 implies that

E
(
β1,0(i, us, l1, ur )

) = β1,0(i, us, l1)δ(l1 = ur + us) + O

(
L

MN

)
(9.71)

Using the rough evaluation κ(r−1)((ut )t �=s,r , l1) = O( 1
(MN)(r−1)/2 ), we get immediately

that

s5,1(ur ) =
∑

l1

s5,1(ur , l1) = O

(
1

(MN)(r+1)/2

)
(9.72)

We finally notice that if r = 2, s5,1(ur ) is reduced to 0.
We define s̃5,2(ur , l1) and s5,2(ur , l1) in the same way and obtain easily that

∑
l1

s̃5,2(ur , l1) = L√
MN

O

(
1

(MN)(r+1)/2

)
= o

(
1

(MN)(r+1)/2

)
(9.73)

The behaviour of
∑

l1 s5,2(ur , l1) is, however, different from the behaviour of∑
l1 s5,1(ur , l1) if ur = 0. Indeed,

E
(
β1,0(i, l1, l1, ur )

) = β1,0(i, l1, l1)δ(ur = 0) + O

(
L

MN

)
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It is easy to check that the contribution of the O
( L

MN

)
terms to

∑
l1 s5,2(ur , l1) is a

o
(

1
(MN)(r+1)/2

)
term. Therefore,

s5,2(ur ) =
∑

l1

s5,2(ur , l1)

=
∑

l1

⎛
⎝ 1

L

L−1∑
i=−(L−1)

β1,0(i, l1, l1)

⎞
⎠ 1

MN
κ(r−1)(u1, . . . , ur−1) δ(ur = 0)

+o

(
1

(MN)(r+1)/2

)

= κ(r−1)(u1, . . . , ur−1) O

(
L

MN

)
δ(ur = 0) + o

(
1

(MN)(r+1)/2

)
(9.74)

As above, s5,2(ur ) is reduced to 0 if r = 2.
The reader may check that the terms s2(ur ) = s2(ur ) + x̃ (1)

2 (ur ) and s4(ur ) have
exactly the same behaviour than s3(ur ) and s5(ur ). For the reader’s convenience, we
mention that x̃ (1)

2 (ur ) is defined as

x̃ (1)
2 (ur ) =

∑
l1,l2

x̃ (1)
2 (ur , l1, l2)

where x̃ (1)
2 (ur , l1, l2) is the term given by

σ 2cNE

[
�r−1

s=1τ
(M)(Q◦)(us)τ

(M)(Q◦)(l1)τ (M)(Q◦)(l2)

× 1

ML
Tr
(
QWJl2

NH
TW∗(I ⊗ σ 2RTL ,L(HJ∗l1

N H)RJur
L )
)◦]

(9.75)

In sum, we have proved the following useful result.

Proposition 9.7 If r ≥ 2, for each ur , it holds that

x(ur ) =
∑

l1

C(ur , l1)κ
(r+1)(u1, . . . , ur−1, l1, ur − l1)

+
∑
l1,l2

κ(r+1)(u1, . . . , ur−1, l1, l2)O

(
L

MN

)

+ κ(r−1)(u1, . . . , ur−1) O

(
L

MN

)
δ(ur = 0) + x̃ (1)

2 (ur )

+ x̃ (1)
3 (ur ) + O

(
1

(MN)(r+1)/2

)
(9.76)
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while if r = 2,

x(u2) =
∑

l1

C(u2, l1)κ
(3)(u1, l1, u2 − l1) +

∑
l1,l2

κ(3)(u1, l1, l2)O

(
L

MN

)

(9.77)

+ x̃ (1)
2 (u2) + x̃ (1)

3 (u2) + O

(
L

(MN)2

)
(9.78)

(9.66) thus leads to the Proposition:

Proposition 9.8 For r ≥ 2, it holds that

∣∣∣∣κ(r)(u1, . . . , ur ) − y∗
1,ur

1 − d(ur , z)

∣∣∣∣ ≤ |κ(r−1)(u1, . . . , ur−1)| O

(
L

MN

)

+ C sup
u

∑
l1

|κ(r+1)(u1, . . . , ur−1, l1, u − l1)|

+
∑
l1,l2

|κ(r+1)(u1, . . . , ur−1, l1, l2)|O
(

L

MN

)

+ sup
u

|x̃ (1)
2 (u)| + sup

u
|x̃ (1)

3 (u)| + O

(
1

(MN)(r+1)/2

)
(9.79)

while for r = 2,

∣∣∣∣κ(2)(u1, u2) − y∗
1,u2

1 − d(u2, z)

∣∣∣∣ ≤ C sup
u

∑
l1

|κ(3)(u1, l1, u − l1)|

+
∑
l1,l2

|κ(3)(u1, l1, l2)|O
(

L

MN

)
+ sup

u
|x̃ (1)

2 (u)| + sup
u

|x̃ (1)
3 (u)| + O

(
L

(MN)2

)

(9.80)

We now establish Proposition 9.9 introduced into the overview of the proof of Propo-
sition 9.5.

Proposition 9.9 For each r ≥ 2 and for each integer p, 1 ≤ p ≤ r − 1, if integers
u1, . . . , ur ∈ {−(L − 1), . . . , L − 1} satisfy

ur + us �= 0 s = 1, . . . , r − 1
ur−1 + us �= 0 s = 1, . . . , r − 2

...
...

...

ur−p+1 + us �= 0 s = 1, . . . , r − p

(9.81)

then, it holds that

κr (u1, . . . , ur ) = max

((
L√
MN

)p

,
1√
MN

)
O

(
1

(MN)r/2

)
(9.82)
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We prove the proposition by induction on r . We first check (9.82) if r = 2. In this
case, the integer p is necessarily equal to 1 and (9.81) reduces to u1 + u2 �= 0.
We use (9.80). Using the rough evaluations κ(3)(v1, v2, v3) = O( 1

(MN)3/2
) and

supu |x̃ (1)
j (u)| = O( L2

(MN)2
) = ( L√

MN
)2O( 1

MN ) for j = 2, 3, we obtain immediately
that (9.82) holds if r = 2.

We now assume that (9.82) holds until integer r0 − 1 and prove that it is true for
integer r0. For this, we establish that for each r ≥ r0 and for each u1, . . . , ur , (9.82)
holds provided (9.81) is true until p ≤ r0−1. We first verify that (9.82) holds for each
r ≥ r0 and for p = 1 as soon as ur +us �= 0 s = 1, . . . , r −1. For this, we use (9.79).
y∗
1,ur

is of course equal to 0. Moreover, as κ(r−1)(u1, . . . , ur−1) = O( 1
(MN)(r−1)/2 ), it

is clear that

|κ(r−1)(u1, . . . , ur−1)| O

(
L

MN

)
= L√

MN
O

(
1

(MN)r/2

)

as expected.Using thatκ(r+1)(v1, . . . , vr+1)= O
(

1
(MN)(r+1)/2

)
for each (v1, . . . , vr+1),

we obtain immediately that

sup
u

∑
l1

|κ(r+1)(u1, . . . , ur−1, l1, u−l1)|= L√
MN

O

(
1

(MN)r/2

)

and

∑
l1,l2

|κ(r+1)(u1, . . . , ur−1, l1, l2)|O
(

L

MN

)
= L2

MN

L√
MN

O

(
1

(MN)r/2

)

Finally, the Hölder inequality leads to

sup
u

∣∣∣x̃ (1)
2 (u)

∣∣∣+ sup
u

∣∣∣x̃ (1)
3 (u)

∣∣∣ = O

(
L2

(MN)(r+2)/2

)
=
(

L√
MN

)2

O

(
1

(MN)r/2

)

(9.83)
Next,we consider the case p = 2 for the reader’s convenience.We consider r ≥ r0, and
assume that ur +us �= 0 s = 1, . . . , r −1 as well as ur−1 +us �= 0 s = 1, . . . , r −2.
We again use (9.79) and remark that y∗

1,ur
= 0. As ur−1 + us �= 0 s = 1, . . . , r − 2,

the use of (9.82) for integer r − 1, multi-index (u1, . . . , ur−1) and p = 1 (proved
above) implies that κ(r−1)(u1, . . . , ur−1) = L√

MN
O( 1

(MN)(r−1)/2 ) and that

κ(r−1)(u1, . . . , ur−1) O

(
L

MN

)
=
(

L√
MN

)2

O

(
1

(MN)r/2

)

We now evaluate
∑

l1 |κ(r+1)(u1, . . . , ur−1, l1, u − l1)|. It is clear that

κ(r+1)(u1, . . . , ur−1, l1, u − l1) = κ(r+1)(l1, u − l1, u1, . . . , ur−1)
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As ur−1 + us �= 0 s = 1, . . . , r − 2, the use of (9.82) for integer r + 1, multi-index
(l1, u − l1, u1, . . . , ur−1), and p = 1 leads to

κ(r+1)(u1, . . . , ur−1, l1, u − l1) = L√
MN

O

(
1

(MN)(r+1)/2

)

as soon as ur−1 + l1 �= 0 and ur−1 + u − l1 �= 0, or equivalently if l1 �= −ur−1 and
l1 �= u + ur−1. Therefore,

∑
l1 �=(−ur−1,u+ur−1)

|κ(r+1)(u1, . . . , ur−1, l1, u − l1)| =
(

L√
MN

)2

O

(
1

(MN)r/2

)

If l1 = −ur−1 or l1 = u + ur−1, we use the rough evaluation

κ(r+1)(u1, . . . , ur−1, l1, u − l1) =
(

1√
MN

)
O

(
1

(MN)r/2

)

Therefore, we obtain that

∑
l1

|κ(r+1)(u1, . . . , ur−1, l1, u − l1)| = max

((
L√
MN

)2

,
1√
MN

)
O

(
1

(MN)r/2

)

We now consider
∑

l1,l2 |κ(r+1)(u1, . . . , ur−1, l1, l2)|O
( L

MN

)
. We remark that

κ(r+1)(u1, . . . , ur−1, l1, l2) = κ(r+1)(l1, l2, u1, . . . , ur−1). Therefore, if ur−1 + l1 �=
0 and ur−1 + l2 �= 0, (9.82) for integer r + 1, multi-index (l1, l2, u1, . . . , ur−1), and
p = 1 implies that

κ(r+1)(u1, . . . , ur−1, l1, l2) = L√
MN

O

(
1

(MN)(r+1)/2

)

If l1 = −ur−1 or l2 = −ur−1, we use again that

κ(r+1)(u1, . . . , ur−1, l1, l2) =
(

1√
MN

)
O

(
1

(MN)r/2

)

so that for i, j = 1, 2, i �= j , it holds that

∑
li =−ur−1,l j

|κ(r+1)(u1, . . . , ur−1, li , l j )|O
(

L

MN

)
= L2

MN

(
1√
MN

)
O

(
1

(MN)r/2

)

= o

(
1

(MN)(r+1)/2

)
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We finally obtain that

∑
l1,l2

|κ(r+1)(u1, . . . , ur−1, l1, l2)|O
(

L

MN

)

= max

((
L√
MN

)4

,
1√
MN

)
O

(
1

(MN)r/2

)

Finally, the first evaluation (9.83) of x̃ (1)
2 (ur ) and x̃ (1)

3 (ur ) establishes (9.82) for each
r ≥ r0 and for p = 2 if ur + us �= 0 for s = 1, . . . , r − 1 and ur−1 + us �= 0 for
s = 1, . . . , r − 2.

In order to complete the proof of (9.82) for each r ≥ r0 and for each p ≤ r0−1, we
assume that (9.82) holds for each r ≥ r0 and for each p ≤ p0 where p0 ≤ r0 − 2 and
prove that it also holds for p = p0 + 1. For this, we establish the following Lemma.

Lemma 9.6 Assume that for each t ≥ r0 − 1 and for each integer p, 1 ≤ p ≤ p0 ≤
r0 − 2, it holds that

κ(t)(v1, . . . , vt ) = max

((
L√
MN

)p

,
1√
MN

)
O

(
1

(MN)t/2

)
(9.84)

for each multi-index (v1, . . . , vt ) satisfying

vt + vs �= 0 s = 1, . . . , t − 1
vt−1 + vs �= 0 s = 1, . . . , t − 2

...
...

...

vt−p+1 + us �= 0 s = 1, . . . , t − p

(9.85)

Then, for each r ≥ r0 and for each multi-index (u1, . . . , ur ) satisfying (9.81) for p =
p0 + 1, it holds that κ(r−1)(u1, . . . , ur−1)O

( L
MN

)
,
∑

l1 |κ(r+1)(u1, . . . , ur−1, l1, u −
l1)|,∑l1,l2 |κ(r+1)(u1, . . . , ur−1, l1, l2)|O

( L
MN

)
, supu |x̃ (1)

j (u)| for j = 2, 3 are

max

((
L√
MN

)(p0+1)
, 1√

MN

)
O
(

1
(MN)r/2

)
terms.

Using (9.79), (9.82) for p = p0 + 1 follows immediately from Lemma 9.6. Conse-
quently, (9.82) holds for each r ≥ r0 until index p ≤ (r0 − 1), and in particular for
r = r0 and p ≤ (r0 − 1). This completes the proof of Proposition 9.9.

Proof of Lemma 9.6 We consider a multi-index (u1, . . . , ur ) satisfying (9.81) for p =
p0 + 1 and remark that it verifies

ur−1 + us �= 0 s = 1, . . . , r − 2
ur−2 + us �= 0 s = 1, . . . , r − 3

...
...

...

ur−p0 + us �= 0 s = 1, . . . , r − p0 − 1

(9.86)
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Therefore, (9.84) used for t = r − 1, p = p0, and multi-index (v1, . . . , vr−1) with
vs = us leads to

κ(r−1)(u1, . . . , ur−1) = max

((
L√
MN

)p0
,

1√
MN

)
O

(
1

(MN)(r−1)/2

)

Therefore,

κ(r−1)(u1, . . . , ur−1)O

(
L

MN

)

= L√
MN

max

((
L√
MN

)p0
,

1√
MN

)
O

(
1

(MN)r/2

)

which, of course, also coincides with a max

((
L√
MN

)p0+1
, 1√

MN

)
O
(

1
(MN)r/2

)
term.

We now study the term

∑
l1

∣∣∣κ(r+1)(u1, . . . , ur−1, l1, u − l1)
∣∣∣

Using (9.84) for t = r + 1 and multi-index l1, u − l1, u1, . . . , ur−1, we obtain that

κ(r+1)(u1, . . . , ur−1, l1, u − l1) = max

((
L√
MN

)p0
,

1√
MN

)
O

(
1

(MN)(r+1)/2

)

if l1 is such that ur− j + l1 �= 0 and ur− j + u − l1 �= 0 for each j =
1, . . . , p0. The sum of the terms |κ(r+1)(u1, . . . , ur−1, l1, u − l1)| over these values
of l1 is therefore a L max

((
L√
MN

)p0
, 1√

MN

)
O
(

1
(MN)(r+1)/2

)
term, or equivalently a

L√
MN

((
L√
MN

)p0
, 1√

MN

)
O
(

1
(MN)r/2

)
term, which, of course, is also a

max

((
L√
MN

)p0+1

,
1√
MN

)
O

(
1

(MN)r/2

)

term. If l1 is equal to −ur− j0 or to ur− j0 + u for some j0 = 1, . . . , p0, we use the
rough evaluation

κ(r+1)(u1, . . . , ur−1, l1, u − l1) = O

(
1

(MN)(r+1)/2

)
= 1√

MN
O

(
1

(MN)r/2

)

This discussion implies that

∑
l1

|κ(r+1)(u1, . . . , ur−1, l1, u − l1)|
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= max

((
L√
MN

)p0+1

,
1√
MN

)
O

(
1

(MN)r/2

)

The evaluation of
∑

l1,l2 |κ(r+1)(u1, . . . , ur−1, l1, l2)|O
( L

MN

)
is similar and is thus

omitted. ��
In order to complete the proof of Lemma 9.6, it remains to prove that

sup
u

|x̃ (1)
j (u)| ≤ max

((
L√
MN

)(p0+1)

,
1√
MN

)
O

(
1

(MN)r/2

)

for j = 2, 3. For this, we study in more detail supu |x̃ (1)
j (u)| for j = 2, 3. We expand

x̃ (1)
j (u, l1, l2) using (9.44) when r is exchanged by r + 1. In the same way than x̃(u)

defined by (9.52), it holds that

x̃ (1)
j (u) =

5∑
i=1

s(1)
j,i (u)

where the terms (s(1)
j,i (u))i=1,...,5 are defined in the same way than (si (u))i=1,...,5. We

define x̃ (2)
j,i (u) for i = 2, 3 by the fact that

s(1)
j,i (u) = s(1)

j,i (u) + x̃ (2)
j,i (u)

We define x̃ (1)(u) as the positive term

x̃ (1)(u) =
∣∣∣x̃ (1)

2 (u)

∣∣∣+
∣∣∣x̃ (1)

3 (u)

∣∣∣

and, similarly, x̃ (2)(u) is given by

x̃ (2)(u) =
∑

(i, j)=(2,3)

∣∣∣x̃ (2)
j,i (u)

∣∣∣

A rough evaluation (based on the Hölder inequality and on (9.36)) of the vari-

ous terms s(1)
j,i (u) for i = 4, 5 leads to s(1)

j,i (u) = L√
MN

O
(

1
(MN)(r+1)/2

)
. After some

calculations, we obtain that

x̃ (1)(u) ≤
∑
l1,l2

|κ(r+1)(u1, . . . , ur−1, l1, l2)| O

(
L

MN

)

+ C
∑
l1,l2

|κ(r+2)(u1, . . . , ur−1, l1, l2, u − l1 − l2)|
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+
∑

l1,l2,l3

|κ(r+2)(u1, . . . , ur−1, l1, l2, l3)| O

(
L

MN

)
+ x̃ (2)(u)

+ L√
MN

O

(
1

(MN)(r+1)/2

)
(9.87)

The first term of the right-hand side of (9.87) corresponds to the contribution of
s(1)

j,1(u), while the second and the third terms are due to s(1)
j,2(u) and s(1)

j,3(u). The term
L√
MN

O
(

1
(MN)(r+1)/2

)
is due to the s(1)

j,i (u) for i = 4, 5. The terms x̃ (2)
j,i (u) can of course

be also developed, and we obtain similarly

x̃ (2)(u) ≤
∑

l1,l2,l3

|κ(r+2)(u1, . . . , ur−1, l1, l2, l3)| O

(
L

MN

)

+C
∑

l1,l2,l3

|κ(r+3)(u1, . . . , ur−1, l1, l2, l3, u − l1 − l2 − l3)|

+
∑

l1,l2,l3,l4

|κ(r+3)(u1, . . . , ur−1, l1, l2, l3, l4)| O

(
L

MN

)
+ x̃ (3)(u)

+
(

L√
MN

)2

O

(
1

(MN)(r+1)/2

)
(9.88)

The term ( L√
MN

)2O
(

1
(MN)(r+1)/2

)
is due to the terms (s(2)

k1,k2,i
(u)) for i = 4, 5 and

k1, k2 = 2, 3: it is easily seen using the Hölder inequality that their order of magnitude
is L√

MN
smaller than the order of magnitude of the (s(1)

k,i )i=4,5 for k = 2, 3. More
generally, it holds that

x̃ (q)(u) ≤
∑

li ,i=1,...,q+1

|κ(r+q)(u1, . . . , ur−1, li , i = 1, . . . , q + 1)| O

(
L

MN

)

+C
∑

li ,i=1,...,q+1

|κ(r+q+1)(u1, . . . , ur−1, li , i = 1, . . . , q + 1, u −
q+1∑
i=1

li )|

+
∑

li ,i=1,...,q+2

|κ(r+q+1)(u1, . . . , ur−1, li , i = 1, . . . , q + 2)| O

(
L

MN

)

+ x̃ (q+1)(u) +
(

L√
MN

)q

O

(
1

(MN)(r+1)/2

)
(9.89)

We remark that the Hölder inequality leads to

sup
u

x̃ (p)(u) =
(

L√
MN

)p+1

O

(
1

(MN)r/2

)
(9.90)
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for each p. We express x̃ (1)(u) as

x̃ (1)(u) =
p0−1∑
q=1

(
x̃ (q)(u) − x̃ (q+1)(u)

)
+ x̃ (p0)(u) (9.91)

We now prove that for each q, then it holds that

x̃ (q)(u) − x̃ (q+1)(u) ≤
(

L√
MN

)q

max

((
L√
MN

)p0+1

,
1√
MN

)
O

(
1

(MN)r/2

)

(9.92)
(9.89) implies that x̃ (q)(u) − x̃ (q+1)(u) is upperbounded by the sum of 4 terms. We
just study the second term, i.e.

∑
li ,i=1,...,q+1

∣∣∣∣∣∣
κ(r+q+1)

⎛
⎝u1, . . . , ur−1, li , i = 1, . . . , q + 1, u −

q+1∑
i=1

li

⎞
⎠
∣∣∣∣∣∣

because, as the fourth term ( L√
MN

)q O
(

1
(MN)(r+1)/2

)
, it can be easily checked that the

first and the third term are negligible w.r.t. the right-hand side of inequality (9.92). If
the integers l1, . . . , lq+1, u −∑q+1

i=1 li do not belong {−ur−1, . . . ,−ur−p0}, (9.84) for
t = r + q + 1 and for multi-index (l1, . . . , lq+1, u −∑q+1

i=1 li , u1, . . . , ur−1) implies
that

κ(r+q+1)

⎛
⎝u1, . . . , ur−1, li , i = 1, . . . , q + 1, u −

q+1∑
i=1

li

⎞
⎠

= max

((
L√
MN

)(p0)

,
1√
MN

)
O

(
1

(MN)(r+q+1)/2

)

Therefore, the sum over all these integers can be upperbounded by

Lq+1 max

((
L√
MN

)(p0)

,
1√
MN

)
O

(
1

(MN)(r+q+1)/2

)

=
(

L√
MN

)q L√
MN

max

((
L√
MN

)p0
,

1√
MN

)
O

(
1

(MN)r/2

)

which, of course, is a
(

L√
MN

)q
max

((
L√
MN

)p0+1
, 1√

MN

)
O
(

1
(MN)r/2

)
term as

expected.
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If at least one of the indexes l1, . . . , lq+1, u − ∑q+1
i=1 li is equal an integer

(−ur−i )i=1,...,p0 , we use the rough evaluation

κ(r+q+1)

⎛
⎝u1, . . . , ur−1, li , i = 1, . . . , q + 1, u −

q+1∑
i=1

li

⎞
⎠ = O

(
1

(MN)(r+q+1)/2

)

The sum over the corresponding multi-indices is thus a Lq O( 1
(MN)(r+q+1)/2 ) =(

L√
MN

)q
O
(

1
(MN)(r+1)/2

)
. This completes the proof of (9.92). Therefore, (9.91) and

(9.90) imply that

sup
u

x̃ (1)(u) = max

((
L√
MN

)p0+1

,
1√
MN

)
O

(
1

(MN)r/2

)

as expected. This, in turn, completes the proof of Lemma 9.6.
We now improve the evaluation of Proposition 9.9 when (u1, . . . , ur ) satisfy ut +

us �= 0 for 1 ≤ t, s ≤ r , and t �= s, or equivalently if (u1, . . . , ur ) verify (9.81) for
p = r − 1. More precisely, we prove the following result.

Proposition 9.10 Assume that (u1, . . . , ur ) satisfy ut + us �= 0 for 1 ≤ t, s ≤ r , and
t �= s. Then, for each q ≥ 1, for each r ≥ 2, it holds that

κ(r)(u1, . . . , ur ) = max

((
L√
MN

)r−1+q

,
1√
MN

)
O

(
1

(MN)r/2

)
(9.93)

Proof We prove this result by induction on integer q. We first establish (9.93) for
q = 1 by induction on integer r . If r = 2, we have to check that if u1 + u2 �= 0, then
it holds that

κ(2)(u1, u2) = max

((
L√
MN

)2

,
1√
MN

)
O

(
1

MN

)
(9.94)

For this, we use (9.80). We have already mentioned that the Hölder inequality leads
to

sup
u

x̃ (1)(u) =
(

L√
MN

)2

O

(
1

MN

)

We study the term

sup
u

∑
l1

|κ(3)(u1, l1, u − l1)|
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Proposition 9.9 in the case r = 3 and p = 1 implies that

κ(3)(u1, l1, u − l1) = L√
MN

O

(
1

(MN)3/2

)

as soon as l1 �= −u1 and l1 �= u + u1. Therefore,

∑
l1 �=(−u1,u+u1)

|κ(3)(u1, l1, u − l1)| =
(

L√
MN

)2

O

(
1

MN

)

If l1 = −u1 or l1 = u + u1, we use the rough evaluation κ(3)(u1, l1, u − l1) =
O( 1

(MN)3/2
), and we finally obtain that

∑
l1

|κ(3)(u1, l1, u − l1)| = max

((
L√
MN

)2

,
1√
MN

)
O

(
1

MN

)

as expected. The term

∑
l1,l2

|κ(3)(u1, l1, l2)|O
(

L

MN

)

is evaluated similarly. We have thus established (9.94). ��
We assume that (9.93) holds for q = 1 until index r0−1 and prove that it also holds

for index r0. We take (9.79) as a starting point. We consider (u1, . . . , ur0) satisfying
ut + us �= 0 for 1 ≤ t, s ≤ r0, or equivalently (9.81) for r = r0 and p = r0 − 1.
(9.93) for q = 1, r = r0 − 1, and multi-index (u1, . . . , ur0−1) leads to

κ(r0−1)(u1, . . . , ur0−1) = max

((
L√
MN

)r0−2+1

,
1√
MN

)
O

(
1

(MN)(r0−1)/2

)

and to

κ(r0−1)(u1, . . . , ur0−1)O
(

L

MN

)

= L√
MN

max

((
L√
MN

)r0−1

,
1√
MN

)
O

(
1

(MN)r0/2

)

which, of course, is a max

((
L√
MN

)r0−1+1
, 1√

MN

)
O
(

1
(MN)r0/2

)
term as expected.

We now evaluate

∑
l1

∣∣∣κ(r0+1)(u1, . . . , ur0−1, l1, u − l1)
∣∣∣
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If l1+us �= 0 and u−l1+us �= 0 for s = 1, . . . , r0−1, Proposition 9.9 for r = r0+1,
multi-index (l1, u − l1, u1, . . . , ur−1), and p = r0 − 1 implies that

κ(r0+1)(u1, . . . , ur0−1, l1, u − l1)

= max

((
L√
MN

)r0−1

,
1√
MN

)
O

(
1

(MN)(r0+1)/2

)

and that the sum of the |κ(r0+1)(u1, . . . , ur0−1, l1, u − l1)| over these indices is a

L√
MN

max

((
L√
MN

)r0−1

,
1√
MN

)
O

(
1

(MN)r0/2

)

term. If l1 + us = 0 or u − l1 + us = 0 for some integer s, we use as previously that

κ(r0+1)(u1, . . . , ur0−1, l1, u − l1) = 1√
MN

O

(
1

(MN)r0/2

)

This, in turn, implies that

sup
u

∣∣∣∣∣∣
∑

l1

κ(r0+1)(u1, . . . , ur0−1, l1, u − l1)

∣∣∣∣∣∣

= max

((
L√
MN

)r0−1+1

,
1√
MN

)
O

(
1

(MN)r0/2

)

as expected.
The term

∑
l1,l2

|κ(r0+1)(u1, . . . , ur0−1, l1, l2)| O

(
L

MN

)

can be evaluated similarly. Finally, it is easy to show as in the proof of Lemma 9.6
that supu x̃ (1)(u) behaves as expected.

This completes the proof of (9.93) for each r and q = 1. In order to establish the
proposition for each q, we assume that it is true until integer q − 1 and prove that
it holds for integer q. We prove this statement by induction on integer r and begin
to consider r = 2. We of course use (9.80) for u1 + u2 �= 0. It is easy to check as
previously that the term supu x̃ (1)(u) is as expected and that it is also the case for∑

l1,l2 |κ(3)(u1, l1, l2)|O
( L

MN

)
. However, the term

sup
u

∑
l1

|κ(3)(u1, l1, u − l1)|
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appearsmore difficult to evaluate. If u �= 0, it is easy to check that
∑

l1 |κ(3)(u1, l1, u−
l1)| is a

max

((
L√
MN

)1+q

,
1√
MN

)
O

(
1

MN

)

term because, except if u1 + l1 = 0 or u1 + u − l1 = 0 (the contribution of these
particular values to the sum is a O( 1

(MN)3/2
) term), (9.93) used for r = 3 and integer

q − 1 implies that

κ(3)(u1, l1, u − l1) = max

((
L√
MN

)1+q

,
1√
MN

)
O

(
1

(MN)3/2

)

and that

∑
l1 �=−u1,u1+u

|κ(3)(u1, l1, u − l1)|

= L√
MN

max

((
L√
MN

)1+q

,
1√
MN

)
O

(
1

(MN)

)

If u = 0, the sum becomes

∑
l1

∣∣∣κ(3)(u1, l1,−l1)
∣∣∣

(9.93) for r = 3 and integer q −1 cannot be used to evaluate κ(3)(u1, l1,−l1) because
l1 − l1 = 0. We thus have to study separately this kind of term. For this, we prove the
following lemma.

Lemma 9.7 We consider an integer r ≥ 2 and assume the following hypotheses:

– for each integer s and for each v1, . . . , vs such that vs1 + vs2 �= 0, 1 ≤ s1, s2 ≤
s, s1 �= s2, it holds that

κ(s)(v1, . . . , vs) = max

((
L√
MN

)s−1+q−1

,
1√
MN

)
O

(
1

(MN)s/2

)
(9.95)

– for each s ≤ r − 1, and each v1, . . . , vs such that vs1 + vs2 �= 0, 1 ≤ s1, s2 ≤
s, s1 �= s2, it holds that

κ(s)(v1, . . . , vs) = max

((
L√
MN

)s−1+q

,
1√
MN

)
O

(
1

(MN)s/2

)
(9.96)
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Then, if u1, . . . , ur−1 verify us1 + us2 �= 0, 1 ≤ s1, s2 ≤ r − 1, s1 �= s2, it holds that

∑
l1

|κ(r+1)(u1, . . . , ur−1, l1,−l1)|

= max

((
L√
MN

)r−1+q

,
1√
MN

)
O

(
1

(MN)r/2

)
(9.97)

Proof We evaluate κ(r+1)(u1, . . . , ur−1, l1,−l1) using (9.79) when r is replaced by
r + 1 and for multi-index (u1, . . . , ur−1, l1,−l1). If l1 = ±us for some s, the term

κ(r+1)(u1, . . . , ur−1, l1,−l1) is a O
(

1
(MN)(r+1)/2

)
. It is thus sufficient to prove (9.97)

when the sum is over the integers l1 that do not belong to {−u1, . . . ,−ur−1} and
{u1, . . . , ur−1}. In order to simplify the notations, we do not mention in the following
that the sum does not take into account {−u1, . . . ,−ur−1} and {u1, . . . , ur−1}. ��

If l1 does not belong to {−u1, . . . ,−ur−1} and {u1, . . . , ur−1}, component −l1 of
vector y∗

1 corresponding to κ = (κr+1(u1, . . . , ur−1, l1, u))u=−(L−1),...,(L−1) can be
written as

y∗
1,−l1 = κ(r−1)(u1, . . . , ur−1) O

(
1

MN

)

(see (9.47)). Therefore, for l1 �= ±us, s = 1, . . . , r − 1, (9.79)) implies that

|κ(r+1)(u1, . . . , ur−1, l1,−l1)| ≤ |κ(r−1)(u1, . . . , ur−1)| O

(
1

MN

)

+ |κ(r)(u1, . . . , ur−1, l1)| O

(
L

MN

)

+ C sup
u

∑
l2

|κ(r+2)(u1, . . . , ur−1, l1, l2, u − l2)|

+
∣∣∣∣∣∣
∑
l2,l3

κ(r+2)(u1, . . . , ur−1, l1, l2, l3) O

(
L

MN

)∣∣∣∣∣∣

+ sup
u

|x̃ (1)
2,l1

(u)| + sup
u

|x̃ (1)
3,l1

(u)| + O

(
1

(MN)(r+2)/2

)
(9.98)

where we indicate that the terms x̃ (1)
j (u) associated with (u1, . . . , ur−1, l1, u) depend

on l1 (these terms also depend on (us)s≤r−1 but it is not useful to mention this depen-
dency). In the following, we denote by α(1)(u1, . . . , ur−1) the term

α(1)(u1, . . . , ur−1) =
∑

l1

|κ(r+1)(u1, . . . , ur−1, l1,−l1)|
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(9.98) implies that

α(1)(u1, . . . , ur−1) ≤ |κ(r−1)(u1, . . . , ur−1)| O

(
L

MN

)

+
∑

l1

|κ(r)(u1, . . . , ur−1, l1)| O

(
L

MN

)

+C sup
u

∑
l1,l2

|κ(r+2)(u1, . . . , ur−1, l1, l2, u − l2)|

+
∣∣∣∣∣∣
∑

l1,l2,l3

κ(r+2)(u1, . . . , ur−1, l1, l2, l3) O

(
L

MN

)∣∣∣∣∣∣

+ sup
u

∑
l1

|x̃ (1)
2,l1

(u)| + sup
u

∑
l1

|x̃ (1)
3,l1

(u)| + O

(
L

(MN)(r+2)/2

)
(9.99)

(9.96) for s = r − 1 implies that

|κ(r−1)(u1, . . . , ur−1)| = max

((
L√
MN

)r−2+q

,
1√
MN

)
O

(
1

(MN)(r−1)/2

)

and that

|κ(r−1)(u1, . . . , ur−1)|O
(

L

MN

)

= L√
MN

max

((
L√
MN

)r−2+q

,
1√
MN

)
O

(
1

(MN)r/2

)

which, of course, is also a max

((
L√
MN

)r−1+q
, 1√

MN

)
O
(

1
(MN)r/2

)
term as expected.

In order to evaluate the second term of the right-hand side of (9.99), we first notice
that if l1 ∈ {−u1, . . . ,−ur−1}, the Hölder inequality leads to

|κ(r)(u1, . . . , ur−1, l1)| O

(
L

MN

)
= o

(
1

(MN)(r+1)/2

)

If l1 + us �= 0 for each s = 1, . . . , r − 1, we use (9.95) for s = r and (v1, . . . , vr ) =
(u1, . . . , ur−1, l1). It holds that

κ(r)(u1, . . . , ur−1, l1) = max

((
L√
MN

)r−1+q−1

,
1√
MN

)
O

(
1

(MN)r/2

)
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so that

∑
l1 �=−us ,s=1,...,r−1

|κ(r)(u1, . . . , ur−1, l1)| O

(
L

MN

)

=
(

L√
MN

)2

max

((
L√
MN

)r−1+q−1

,
1√
MN

)
O

(
1

(MN)r/2

)

which is amax

((
L√
MN

)r−1+q
, 1√

MN

)
O
(

1
(MN)r/2

)
term. The fourth termof the right-

hand side of (9.99) is evaluated similarly. Moreover, following the arguments used to
establish Lemma 9.6, it can be shown that

sup
u

∑
l1

|x̃ (1)
2,l1

(u)| + sup
u

∑
l1

|x̃ (1)
3,l1

(u)|

= max

((
L√
MN

)r−1+q

,
1√
MN

)
O

(
1

(MN)r/2

)

It remains to evaluate the third term of the right-hand side of (9.99). The supremum
over u �= 0 is as expected, but the term corresponding to u = 0 has also to be evaluated.
We denote α(2)(u1, . . . , ur−1) the term

α(2)(u1, . . . , ur−1) =
∑
l1,l2

∣∣∣κ(r+2)(u1, . . . , ur−1, l1, l2,−l2)
∣∣∣

The previous discussion implies that

α(1)(u1, . . . , ur−1) ≤ C α(2)(u1, . . . , ur−1)

+max

((
L√
MN

)r−1+q

,
1√
MN

)
O

(
1

(MN)r/2

)

It can be shown similarly that

α(2)(u1, . . . , ur−1) ≤ C α(3)(u1, . . . , ur−1)

+max

((
L√
MN

)r−1+q

,
1√
MN

)
O

(
1

(MN)r/2

)

where

α(3)(u1, . . . , ur−1) =
∑

l1,l2,l3

|κ(r+3)(u1, . . . , ur−1, l1, l2, l3,−l3)|
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More generally, if α(p)(u1, . . . , ur−1) is defined by

α(p)(u1, . . . , ur−1) =
∑

li ,i=1,...,p

|κ(r+p)(u1, . . . , ur−1, (li , i = 1, . . . , p),−l p)|

it holds that

α(p−1)(u1, . . . , ur−1) ≤ C α(p)(u1, . . . , ur−1)

+max

((
L√
MN

)r−1+q

,
1√
MN

)
O

(
1

(MN)r/2

)

and consequently that

α(1)(u1, . . . , ur−1) ≤ C α(p)(u1, . . . , ur−1)

+max

((
L√
MN

)r−1+q

,
1√
MN

)
O

(
1

(MN)r/2

)

(9.100)

The Hölder inequality leads immediately to

α(p)(u1, . . . , ur−1) =
(

L√
MN

)p

O

(
1

(MN)r/2

)

and choosing p = r − 1 + q provides (9.97).
We finally complete the proof of Proposition 9.10. The use of Lemma 9.7 for r = 2

establishes immediately that if (9.93) holds until integer q − 1 for each s, then it also
holds for integer q and r = 2. We assume that (9.93) holds for integer q until integer
r − 1, i.e. that both (9.95) and (9.96) hold, and prove that it also holds for integer r ,
i.e. that

κ(r)(u1, . . . , ur ) = max

((
L√
MN

)r−1+q

,
1√
MN

)
O

(
1

(MN)r/2

)

For this, we use (9.79). All the terms of the right-hand side of (9.79) are easily seen to
be as expected, except the second one. However, Lemma 9.7 implies that the second

term is also a max

((
L√
MN

)r−1+q
, 1√

MN

)
O
(

1
(MN)r/2

)
. This completes the proof of

Proposition 9.10.
We are now in position to establish (9.42)

Corollary 9.1 If (u1, . . . , ur ) satisfy ut + us �= 0 for t �= s, 1 ≤ t, s ≤ r , then (9.42)
holds for r ≥ 2.
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Proof As L = Nα with α < 2/3, it exists an integer q0 for which ( L√
MN

)r−1+q0 =
o( 1√

MN
). Therefore,

max

((
L√
MN

)r−1+q0
,

1√
MN

)
= 1√

MN

(9.93) for q = q0 thus implies (9.42). ��
It remains to establish (9.41). For this, we take (9.80) as a starting point and prove

that the right-hand side of (9.80) is a O
(

L
(MN)2

)
term. We first justify that:

sup
u

x̃ (1)(u) = O

(
L

(MN)2

)
(9.101)

We use the decomposition (9.91) of x̃ (1)(u) for the following convenient value of p:
we recall that the Hölder inequality implies that

x̃ (p)(u) =
(

L√
MN

)p+1

O

(
1

MN

)

As L = Nα with α < 2/3, it exists p for which

(
L√
MN

)p+1

= o

(
L

MN

)

For such a value of p, it holds that

x̃ (p)(u) = o

(
L

(MN)2

)

Using (9.87) for r = 2 as well as (9.42), it is easy to check that x̃ (1)(u) − x̃ (2)(u) is a

O
(

L
(MN)2

)
term and that the same holds true for x̃ (q)(u) − x̃ (q+1)(u) for each q ≥ 1.

This establishes (9.101).

(9.42) implies that the second termof the right-hand side of (9.80) is a O
(( L

MN

)3) =
o
(

L
(MN)2

)
) term. It remains to establish that

∑
l1

|κ3(u1, l1,−l1)| = O

(
L

(MN)2

)
(9.102)

Lemma 9.7 for q = q0 (where q0 is defined in the proof of Corollary 9.1 for r = 2)
implies that this term isO( 1

(MN)3/2
), but this evaluation is not sufficient to prove (9.41).

Using (9.42), we now evaluate κ(r+1)(u1, . . . , ur−1, l1,−l1) when us1 + us2 �= 0 for
s1 �= s2,−(L − 1) ≤ s1, s2 ≤ L − 1 and for r ≥ 2.
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Lemma 9.8 We consider r ≥ 2 and a multi-index (u1, . . . , ur−1, l1,−l1) such that
us1 + us2 �= 0 for s1 �= s2,−(L − 1) ≤ s1, s2 ≤ L − 1. Then,

– if l1 ± us �= 0 for s = 1, . . . , r − 1, it holds that

κ(r+1)(u1, . . . , ur−1, l1,−l1) = O

(
1

(MN)(r+2)/2

)
(9.103)

– if l1 ± us = 0 for some s = 1, . . . , r − 1,

κ(r+1)(u1, . . . , ur−1, l1,−l1) = L√
MN

O

(
1

(MN)(r+1)/2

)
(9.104)

Proof The proof is similar to the proof of Lemma 9.7. We take (9.98) as a starting
point, but just evaluate κ(r+1)(u1, . . . , ur−1, l1,−l1) instead of α(1)(u1, . . . , ur−1) by
iterating (9.98). Using (9.42), it is easy to check that for each l1,

sup
u

|x̃ (1)
j,l1

(u)| = O

(
1

(MN)(r+2)/2

)

We first assume that l1 ±us �= 0 for s = 1, . . . , r −1. (9.42) implies that the first term

of the right-hand side of (9.98) is O(
(

1
(MN)(r+2)/2

)
(and is identically 0 if r = 2). The

second term is L√
MN

O(
(

1
(MN)(r+2)/2

)
while the fourth term is ( L√

MN
)2O(

(
1

(MN)(r+2)/2

)
.

The supremum over u �= 0 of the third term is O(
(

1
(MN)(r+2)/2

)
which implies that

|κ(r+1)(u1, . . . , ur−1, l1,−l1)| ≤
∑

l2

∣∣∣κ(r+2)(u1, . . . , ur−1, l1, l2,−l2)
∣∣∣

+O
(

1

(MN)(r+2)/2

)

As in the proof of Lemma (9.7), we iterate this inequality until an index p for which

∑
l2,...,l p

∣∣∣κ(r+p)(u1, . . . , ur−1, l1, l2, . . . , l p,−l p)

∣∣∣ = O

(
L p−1

(MN)(r+p)/2

)

is a o(
(

1
(MN)(r+2)/2

)
term. This, in turn, proves (9.103). (9.104) follows directly from

the use of the Hölder inequality in (9.98). ��
We now complete the proof of (9.102). For this, we remark that

∑
l1

|κ3(u1, l1,−l1)| =
∑

l1 �=±u1

|κ3(u1, l1,−l1)| + 2|κ3(u1,−u1, u1)|
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Lemma 9.8 implies that

∑
l1 �=±u1

|κ3(u1, l1,−l1)| = O

(
L

(MN)2

)

and that

|κ3(u1,−u1, u1)| = O

(
L

(MN)2

)

This establishes (9.102) as well as (9.41).

9.3 Expansion of 1
MLTr (Δ(z))

In the following, we establish (9.5). We recall that (5.2) implies that 1
MLTr (Δ(z)) is

given by

1

ML
Tr (Δ(z))

= σ 2cN

L−1∑
l1=−(L−1)

E

(
τ (M)(Q◦)(l1)

1

ML
Tr
(
QWJl1

NH
TW∗(IM ⊗ R)

)◦)

In the following, we denote by x̃(l1) and x̃ the terms defined by

x̃(l1) = E

(
τ (M)(Q◦)(l1)

1

ML
Tr
(
QWJl1

NH
TW∗(IM ⊗ R)

)◦)

and

x̃ =
L−1∑

l1=−(L−1)

E

(
τ (M)(Q◦)(l1)

1

ML
Tr
(
QWJl1

NH
TW∗(IM ⊗ R)

)◦)

x̃(l1) and x̃ appear to be formally similar to x̃(0, l1) and x̃(0) defined by (9.51) and
(9.52) in the particular case r = 1.Whilewehave considered in the previous subsection
the case r ≥ 2, a number of evaluations and results can be adapted to the easier case
r = 1. As in Sect. 9.2, we expand x̃(l1) and x̃ using (9.44) in the case r = 1, v1 =
l1,G = Jl1

NH
T , andA = (IM ⊗R). Using the same notations as in Sect. 9.2, we obtain

that

x̃(l1) =
5∑

j=2

s j (l1)
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and

x̃ =
5∑

j=2

s j

where s j = ∑
l1 s j (l1). We note that the term s1 is reduced to 0 in the present context.

It is easy to check that

s4(l1) = σ 2

MN

L−1∑
i=−(L−1)

E
(
β0,1(i, l1, l1, 0)

)

and that

s5(l1) = − σ 2

MN

L−1∑
i=−(L−1)

E
(
β1,0(i, l1, l1, 0)

)

where the terms β are defined by (9.33). Proposition 9.4 immediately implies that

s4 = σ 2

MN

∑
l1

(
1

L

∑
i

β0,1(i, l1, l1)

)
+ O

((
L

MN

)2
)

or equivalently,

s4(z) = σ 2 L

MN
β0,1(z) + O

(
L2

(MN)2

)

where β0,1(z) is defined as

β0,1(z) = 1

L2

∑
l1,i

β0,1(i, l1, l1)(z)

Similarly, it holds that

s5(z) = −σ 2 L

MN
β1,0(z) + O

(
L2

(MN)2

)

where

β1,0(z) = 1

L2

∑
l1,i

β1,0(i, l1, l1)(z)
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We have now to evaluate s2(z) and s3(z). For j = 2, 3, s j can be written as

s j = s j + x̃ (1)
j

We first evaluate s3 and s2.s3 is equal to

s3 = −σ 2cN

∑
l1,l2

κ(2)(l1, l2)E

[
1

ML
Tr
(
QWJl2

NH
T Jl1

NH
TW∗(IM ⊗ R)

)]

We remark that

E

[
1

ML
Tr
(
QWJl2

NH
T Jl1

NH
TW∗(IM ⊗ R)

)]

= −σ 2t (z)2(zt̃(z))3(1 − |l1|/N )δ(l1 + l2 = 0) + O

(
L

MN

)

We also have to evaluate κ(2)(l1, l2). Using (9.47), (9.80), and the observation that the

right-hand side of (9.80) is a O
(

L
(MN)2

)
term (see (9.41)), we obtain that

κ(2)(l1, l2) = σ 2

MN

1

1 − d(l1, z)

1

L

∑
i

β(i, l1) δ(l1 + l2 = 0) + O

(
L

(MN)2

)

Therefore, s3 can be written as

s3(z) = σ 6cN t (z)2(zt̃(z))3
1

L2

∑
i,l1

1 − |l1|/N )

1 − d(l1, z)
β(i, l1)

L

MN
+ O

(
L2

(MN)2

)

Similar calculations lead to

s2 = σ 8cN t (z)3(zt̃(z))4
1

L2

∑
i,l1

(1 − |l1|/N )2(1 − |l1|/L)

1 − d(l1, z)
β(i, l1)

L

MN

+ O

(
L2

(MN)2

)

Therefore, it holds that

s2(z)+s3(z)+s4(z)+s5(z) = L

MN

1

L2

∑
i,l1

s(i, l1, z)+x̃ (1)
2 (z)+x̃ (1)

3 (z)+O

(
L2

(MN)2

)

(9.105)
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where s(i, l1, z) is defined by (9.37). Proposition 9.4 implies that function sN (z)
defined by

sN (z) = σ 2cN
1

L2

∑
i,l1

sN (i, l1, z)

coincides with the Stieltjes transform of a distribution whose support is included into
S(0)

N and satisfying (9.8) forK = S(0)
N . In order to complete the proof of (9.5),wefinally

prove that x̃ (1) = |x̃ (1)
2 | + |x̃ (1)

3 | is a O
(

L2

(MN)2

)
term. For this, we remark that x̃ (1)

verifies (9.87) in the case r = 1 and u = 0. However, the term L√
MN

O
(

1
(MN)(r+1)/2

)

(for r = 1) is replaced by a O
(

L2

(MN)2

)
term. This term corresponds to the contribution

of the s(1)
j,i for j = 2, 3 and i = 4, 5. In the present context, r = 1 and it is easy to check

that s(1)
j,i is identically zero and that s(1)

j,i coincides with s̃(1)
j,i , which, using the Hölder

inequality, appears to be a O
(

L2

(MN)2

)
term. In order to prove that x̃ (1) = O

(
L2

(MN)2

)
,

we use (9.91) as in the proof of Lemma 9.6. The Hölder inequality implies that

x̃ (p) =
(

L√
MN

)p+1

O

(
1√
MN

)
=
(

L√
MN

)p

O

(
L

MN

)

As L = Nα with α < 2/3, it exists an integer p1 such that

(
L√
MN

)p1
= o

(
L

MN

)

Therefore, using (9.91) for p = p1, we obtain as in the proof of Lemma 9.6 that

x̃ (1) = O
(

L2

(MN)2

)
as expected. This, in turn, completes the proof of (9.5).

9.4 Evaluation of E
(

1
MLTr(QN(z))

)
− tN(z)

In order to establish (9.3), we evaluate 1
L Tr(RN (z))− tN (z). For this, we use (8.4) for

A = I. We claim that the third, fourth, and fifth terms of the right-hand side of (8.4)

are O( L5/2

(MN)2
). We just check the third term. It is clear that

∣∣∣∣
1

L
Tr
(
(R − tI)TL ,L

[
TN ,L(R − tI)

])∣∣∣∣ ≤ sup
‖A‖≤1

∣∣∣∣
1

L
Tr ((R − tI)A)

∣∣∣∣ ‖TN ,L(R − tI)‖

Proposition 8.1 and (7.1) immediately implies that the third term of the right-hand side

of (8.4) is a O( L5/2

(MN)2
) term. The fourth and the fifth term can be addressed similarly.
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The first term is equal to

−σ 4cN (zt (z)t̃(z))
1

ML
Tr
(
Δ (IM ⊗ TL ,L

[
TN ,L(R)H

])

Writing thatR = tI+R−tI andH = −zt̃(z)+H+zt̃(z), and using (5.1), Proposition
8.1 and (7.1), we obtain that

1

ML
Tr
(
Δ (IM ⊗ TL ,L

[
TN ,L(R)H

]) = −zt (z)t̃(z)
1

ML
Tr(Δ) + O

(
L5/2

(MN)2

)

Therefore, we deduce from (8.4) that

1

L
Tr(RN (z)) − tN (z) = dN (0, z)

1 − dN (0, z)

1

ML
Tr(ΔN (z)) + O

(
L5/2

(MN)2

)

This, in turn, implies that

E

(
1

ML
Tr(QN (z))

)
− tN (z) = L

MN

sN (z)

1 − dN (0, z)
+ O

(
L5/2

(MN)2

)

and that (9.3) holds with ŝN (z) = sN (z)
1−dN (0,z) , which has the same properties that sN (z).

This, in turn, establishes Theorem 9.1.

10 Almost Sure Location of the Eigenvalues of WW∗

Under condition (9.1), we finally establish that the eigenvalues ofWNW∗
N lie almost

surely in a neighbourhood of the support of the Marcenko–Pastur distribution.

Theorem 10.1 If c∗ ≤ 1, for each ε > 0, almost surely, it exists N0 ∈ N such that
all the eigenvalues of WNW∗

N belong to [σ 2
(
1 − √

c∗
)2 − ε, σ 2

(
1 + √

c∗
)2 + ε] for

N > N0. If c∗ > 1, for each ε > 0, almost surely, it exists N0 ∈ N such that the N
nonzero eigenvalues of WNW∗

N belong to [σ 2
(
1 − √

c∗
)2 − ε, σ 2

(
1 + √

c∗
)2 + ε]

for N > N0.

The proof follows [17] and the Lemma 5.5.5 of [2] which needs to verify conditions
that are less demanding than in [17].

We first establish the following lemma.

Lemma 10.1 For all ψ ∈ C∞
b (R) constant on the complementary of a compact inter-

val, and vanishing on SN for each N large enough, it holds that:

E
[
Tr
(
ψ(WNW∗

N )
)] = O

(
(

L

M2 )3/2
)

(10.1)
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E
∣∣Tr (ψ(WNW∗

N )
)− E

(
ψ(WNW∗

N )
)∣∣2l = O

[(
L3/2

M4

)l
]

(10.2)

for each l ≥ 1.

Proof In order to establish (10.1), we first justify that for each smooth compactly
supported function ψc, then it holds that

E
[
Tr
(
ψc(WNW∗

N )
)]− ML

∫
ψc(λ) dμσ 2,cN

(λ) − ML
L

MN
〈D̂N , ψc〉

= O

((
L

M2

)3/2
)

(10.3)

(10.3) is a consequence of Theorem 9.1. In order to prove (10.3), we cannot use
Theorem 6.2 of [17] because function r̂N (z) defined by (9.3) does not satisfy |r̂N (z)| ≤
P1(|z|)P2(1/Imz) for each z ∈ C

+, but when z belongs to the set F (2)
N defined by (9.4).

To solve this issue, we use the approach of [2] based on the Hellfer–Sjöstrand formula
which is still valid when |r̂N (z)| is controlled by P1(|z|)P2(1/Imz) for z ∈ F (2)

N . ��
As we have proved in Lemma 9.3 that the Hellfer–Sjöstrand formula is valid

for compactly supported distributions, (10.3) follows directly from Lemma 5.5.5 of
[2] provided we verify that for each nice constants C0, C

′
0, it exist nice constants

C1, C2, C3 and an integer N0 such that

∣∣∣∣
1

ML
E (TrQN (z)) − tN (z) − L

MN
ŝN (z)

∣∣∣∣ ≤ C2
L5/2

(MN)2

1

(Imz)C3
(10.4)

for each z in the domain |Re(z)| ≤ C0,
1

N C1
≤ Im(z) ≤ C

′
0 and for each N > N0.

In order to check that (10.4) holds, we fix nice constants C0, C
′
0, and first show that

it exists C1 such that the above domain, denoted EN ,C1 , is included in the set F (2)
N

defined by (9.4) for N large enough. It is clear that for each z ∈ EN ,C1 , it holds that

Q1(|z|)Q2(1/Imz) ≤ Q1

(
(C2

0 + C
′2
0 )1/2

)
Q2(N C1) ≤ C N q2C1

for some nice constant C , where q2 = Deg(Q2). Hence,

L2

MN
Q1(|z|)Q2(1/Imz) ≤ C

L2

MN
N q2C1

Using that N = O(ML), we obtain immediately that

L2

MN
Q1(|z|)Q2(1/Imz) ≤ C

L1+q2C1

M2−q2C1
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Condition (9.1) implies that

L1+q2C1

M2−q2C1
= O

(
1

N 2−3α−q2C1

)

We chooseC1 > (2−3α)/q2 so that L1+q2C1

M2−q2C1
→ 0. Therefore, L2

MN Q1(|z|)Q2(1/Imz)
is less than 1 for N large enough. We have thus shown the existence of a nice constant
C1 for which DN ,C1 ⊂ F (2)

N for N large enough. Hence, for each z ∈ EN ,C1 ,

∣∣∣∣
1

ML
E (TrQN (z)) − tN (z) − L

MN
ŝN (z)

∣∣∣∣ ≤ L5/2

(MN)2
P1(|z|)P2(1/Imz)

We now prove that if z ∈ EN ,C1 , then P1(|z|)P2(1/Imz) ≤ C2
1

(Imz)C3
for some nice

constants C2 and C3. We remark that P1(|z|) ≤ P1

(
(C2

0 + C
′2
0 )1/2

)
and denote by

p2 and (P2,i )i=0,...,p2 the degree and the coefficients of P2, respectively. If Imz ≤ 1,
it is clear that P2(1/Imz) ≤ (∑p2

i=0 P2,i
) 1

(Imz)p2 . This completes the proof of (10.4)

if C
′
0 ≤ 1. If C

′
0 > 1, it remains to consider the case where z ∈ DN ,C1 verifies

1 < Imz ≤ C
′
0. It is clear that

1
Imz ≤ C

′
0

Imz . Therefore,

P2(1/Imz) ≤ P2

(
C

′
0

Imz

)
≤
( p2∑

i=0

P2,i

)
(C

′
0)

p2

(Imz)p2

In sum, we have proved that P1(|z|)P2(1/Imz) ≤ C2
1

(Imz)p2 for some nice constant
C2 and for each z ∈ EN ,C1 , which, in turn, establishes (10.4).

Equation (9.12) allows us to follow the arguments of the proof of Lemma 5.5.5 of
[2] and to establish (10.3). In order to prove (10.1), we follow [17]. We denote by κ

the constant for which ψ(λ) = κ outside a compact subset. Function ψc = ψ − κ is
thus compactly supported and is equal to −κ on SN for N large enough. Therefore,

∫
ψc(λ) dμσ 2,cN

(λ) = −κ and 〈D̂N , ψc〉 = 0

and (10.3) implies (10.1).
The proof of (10.2) is based on the Poincaré–Nash inequality and is rather standard.

A proof is provided in [23].
As L3/2

M3 → 0, (10.1) and (10.2) for l large enough imply that

Tr
(
ψ(WNW∗

N )
) → 0 a.s. (10.5)

Consider a function ψ ∈ C∞
b (R) such that

– ψ(x) = 1 if x ∈
(
[σ 2

(
1 − √

c∗
)2 − ε, σ 2

(
1 + √

c∗
)2 + ε] ∪ [−ε, ε]1c∗>1

)c
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– ψ(x) = 0 if x ∈
(
[σ 2

(
1 − √

c∗
)2 − ε/2, σ 2

(
1 + √

c∗
)2

+ε/2] ∪ [−ε/2, ε/2]1c∗>1
)

– 0 ≤ ψ(x) ≤ 1 elsewhere

Such a function ψ satisfies the hypotheses of Lemma 10.1. It is clear that the number

of eigenvalues of WNW∗
N located into

(
[σ 2

(
1 − √

c∗
)2 − ε, σ 2

(
1 + √

c∗
)2 + ε]∪

[−ε, ε]1c∗>1
)c is less than Tr

(
ψ(WNW∗

N )
)
, which, by (10.5), converges almost

surely towards 0. This completes the proof of Theorem 10.1 if c∗ ≤ 1. If c∗ > 1, we
consider a function ψc ∈ C∞

c (R) such that

– ψc(x) = 1 if x ∈ [−ε/2, ε/2]
– ψc(x) = 0 if x ∈ [−ε, ε]c

– 0 ≤ ψc(x) ≤ 1 elsewhere

As 0 does not belong to the support of D̂N , it holds that 〈D̂N , ψc〉 = 0 for each N
large enough.Using (10.3) and the observation that functionψc satisfies also (10.2),we
obtain as above that almost surely, for N large enough, the interval [−ε, ε] contains
ML − N eigenvalues of WNW∗

N . As ML − N coincides with the multiplicity of
eigenvalue 0, this implies that the N remaining (nonzero) eigenvalues are located into
[σ 2

(
1 − √

c∗
)2 − ε, σ 2

(
1 + √

c∗
)2 + ε]. This establishes Theorem 10.1 if c∗ > 1.

Appendix 1: Proof of Proposition 2.3

We first establish (2.14). For this, we first remark that as K coincides with the size of
square matrixA, then, for i, j ∈ {1, 2, . . . , R}, it holds that (TR,K (A)

)
i, j = τ(A)(i −

j)1|i− j |≤(K−1) is equal to

(
TR,K (A)

)
i, j = 1

K

K∑
k=1

Ak+i− j,k11≤k+i− j≤K

We establish that for each R-dimensional vector b, then ‖b∗TR,K (A)‖2
≤ b∗TR,K (AA∗)b. For this, we note that component r of b∗TR,K (A) is equal to

(
b∗TR,K (A)

)
r =

R∑
i=1

bi
1

K

K∑
k=1

Ak+i−r,k 11≤k+i−r≤K

Therefore,

‖b∗TR,K (A)‖2 =
R∑

r=1

∣∣∣∣∣
1

K

K∑
k=1

R∑
i=1

biAk+i−r,k 11≤k+i−r≤K

∣∣∣∣∣
2
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and is thus less that the term a defined by

a =
R∑

r=1

1

K

K∑
k=1

∣∣∣∣∣
R∑

i=1

biAk+i−r,k 11≤k+i−r≤K

∣∣∣∣∣
2

a can also be written as

a =
∑

(i, j)=1,...,R

bib j
1

K

R∑
r=1

K∑
k=1

Ak+i−rAk+ j−r,k 11≤k+i−r≤K ,1≤k+ j−r≤K

We denote by u the index u = k − r and rewrite a as

a =
∑

(i, j)=1,...,R

bib j
1

K

K∑
k=1

∑
u∈Z

11≤k−u≤R Au+i,kAu+ j,k 11≤u+i≤K ,1≤u+ j≤K

or equivalently as,

a =
K∑

k=1

∑
u∈Z

11≤k−u≤R
1

K

∣∣∣∣∣
R∑

i=1

biAu+i,k 11≤u+i≤K

∣∣∣∣∣
2

Therefore, a satisfies

a ≤
K∑

k=1

∑
u∈Z

1

K

∣∣∣∣∣
R∑

i=1

biAu+i,k 11≤u+i≤K

∣∣∣∣∣
2

or equivalently

a ≤
∑

(i, j)=1,...,R

bib j
1

K

∑
u∈Z

(
AA∗)

u+i,u+ j 11≤u+i≤K ,1≤u+ j≤K

We define index k as k = u + j and remark that

1

K

∑
u∈Z

(
AA∗)

u+i,u+ j 11≤u+i≤K ,1≤u+ j≤K

= 1

K

K∑
k=1

(
AA∗)

k+i− j,k 11≤k+i− j≤K = (
TR,K (AA∗)

)
i, j

Therefore, we have shown that

‖b∗TR,K (A)‖2 ≤ a ≤ b∗TR,K (AA∗)b
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In order to prove (2.15), it is sufficient to remark that the entry (i, j), (i, j) ∈
{1, 2, . . . , R} of matrix TR,R(A) is still equal to

(
TR,R(A)

)
i, j = 1

K

K∑
k=1

Ak+i− j,k 11≤k+i− j≤K

because R ≤ K and to follow the proof of (2.14).

Appendix 2: Proof of Lemma 4.1

Weuse the same ingredients than in the proof of Lemma 5-1 of [16]. Therefore, we just
provide a sketch of proof. The invertibility of IN + σ 2cNT (M)

N ,L (E(Q(z))) for z ∈ C
+

is a direct consequence of Im (Q(z)) > 0 on C+ (see (1.26)) as well as of Proposition
2.2. In order to prove (4.2), we first establish that function G(z) defined by

G(z) = − H(z)

z

coincides with the Stieltjes transform of a positive C
N×N matrix-valued measure ν

carried by R
+ such that ν(R+) = IN , i.e.

G(z) =
∫

R+
d ν(λ)

λ − z

For this, it is sufficient to check that Im(G(z)) and Im(zG(z)) are both positive onC+
and that limy→+∞ −iy G(iy) = IN (see proof of Lemma 5-1 of [16]). We omit the
corresponding derivations. It is clear that

Im(G(z)) = Im(z)
∫

R+
d ν(λ)

|λ − z|2 ≤ 1

Im(z)
IN

for z ∈ C
+.Im(G(z)) can also be written as

Im(G(z)) = H(z)

z

1

2i

[
zH−1(z) − z∗ (H−1(z)

)∗] H(z)∗

z∗

or equivalently as

Im(G(z)) = H(z)

z

[
Im(z) + σ 2cNT (M)

N ,L (Im(zQ(z)))
] H(z)∗

z∗

As Im(zQ(z)) > 0 on C
+ (see (1.26)), this implies that

1

Im(z)
IN ≥ Im(G(z)) >

Im(z)

|z|2 H(z)H(z)∗

which implies (4.2). The other statements of Lemma 4.1 are proved similarly.
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