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1. Introduction.

1.1. The addressed problem and the results.

In this paper, we consider a sequence of integer (M(N))N≥1, and positive definite

M(N)×M(N) hermitian matrices (RN )N≥1. For each N , we define an independent

identically distributed sequence (yn)n≥1 (depending on N) of zero mean complex

Gaussian M(N)–dimensional random vectors such that yn = R
1/2
N ξn where the

components of the M–dimensional vector ξn are complex Gaussian standard i.i.d.

random variables (i.e. their real and imaginary parts are i.i.d. and N (0, 1/2) dis-

tributed). If L is a fixed integer, we consider the 2 block-Hankel ML×N matrices

Wp,N and Wf,N defined by

Wp,N =
1√
N
Yp,N =

1√
N



y1 y2 . . . yN−1 yN
y2 y3 . . . yN yN+1

...
...

...
...

...
...

...
...

...
...

yL yL+1 . . . yN+L−2 yN+L−1

 (1.1)

1
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and

Wf,N =
1√
N
Yf,N =

1√
N



yL+1 yL+2 . . . yN−1+L yN+L

yL+2 yL+3 . . . yN+L yN+L+1

...
...

...
...

...
...

...
...

...
...

y2L y2L+1 . . . yN+2L−2 yN+2L−1

 (1.2)

If (λ̂k,N )k=1,...,ML are the eigenvalues

of the ML × ML matrix Wf,NW
∗
p,NWp,NW

∗
f,N , we study the behaviour of the

empirical eigenvalue distribution

ν̂N =
1

ML

ML∑
k=1

δλ̂k,N

ofWf,NW
∗
p,NWp,NW

∗
f,N in the asymptotic regime whereM andN converge towards

+∞ in such a way that

cN =
ML

N
→ c∗, c∗ > 0.

Using Gaussian tools, we evaluate the asymptotic behaviour of the resolvent

QN (z) = (Wf,NW
∗
p,NWp,NW

∗
f,N − zI)−1, and establish that the sequence (ν̂N )N≥1

has the same almost sure asymptotic behaviour than a sequence (νN )N≥1 of de-

terministic probability measures. In the following, νN will be referred to as the

deterministic equivalent of ν̂N . We evaluate the Stieltjes transform of νN , charac-

terize its support, study the properties of its density, and eventually establish that

almost surely, for N large enough, all the eigenvalues of Wf,NW
∗
p,NWp,NW

∗
f,N are

located in a neighbourhood of the support of νN .

1.2. Motivation

Matrix Wf,NW
∗
p,N =

Yf,NY
∗
p,N

N represents the traditional empirical estimate of the

autocovariance matrix RLf |p,y between the past and the future of y defined as

RLf |p,y = E




yn+L

yn+L+1

...

yn+2L−1

(y∗n, y∗n+1, . . . , y
∗
n+L−1

)
 .

This matrix plays a key role in statistical inference problems related to multivariate

time series with rational spectrum. In order to explain this, we consider a M–

dimensional multivariate time series (vn)n∈Z generated as

vn = un + yn, (1.3)
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where (yn)n∈Z is as above a Gaussian ”noise” term such that E(yn+ky
∗
k) = Rδn

for some unknown positive definite matrix R, and where (un)n∈Z is a ”useful” non

observable Gaussian signal with rational spectrum. un can thus be represented as

xn+1 = Axn +Bωn, un = Cxn +Dωn, (1.4)

where (ωn)n∈Z is a K ≤ M–dimensional white noise sequence (i.e. E(ωn+kω
∗
k) =

IK δn), A is a deterministic P ×P matrix whose spectral radius ρ(A) is strictly less

than 1, and where B,C,D are deterministic matrices. The P -dimensional Marko-

vian sequence (xn)n∈Z is called the state-space sequence associated to (1.4). The

state space representation (1.4) is said to be minimal if the dimension P of the

state space sequence is minimal. Given the autocovariance sequence (Ru,n)n∈Z of u

(i.e. Ru,n = E(uk+nu
∗
k) for each n), the so-called stochastic realization problem of

(un)n∈Z consists in characterizing all the minimal state space representations (1.4)

of u, or equivalently in identifying all the minimum Mac-Millan degreea matrix-

valued function Φ(z) = D + C(zI −A)−1B such that ρ(A) < 1 and

Su(e2iπf ) =
∑
n∈Z

Ru,ne
−2iπnf = Φ(e2iπf )Φ(e2iπf )∗ (1.5)

for each f . Such a function Φ is called a minimal degree causal spectral factorization

of Su. We refer the reader to [24] or [37] for more details.

The identification of P and of matrices C and A is based on the observation

that the autocovariance sequence of u can be represented as

Ru,n = E(un+ku
∗
k) = CAn−1G (1.6)

for each n ≥ 1, where the 3 matrices (A,C,G) are unique up to similarity trans-

forms, thus showing that the matrices C and A associated to a minimal realiza-

tion are uniquely defined (up to a similarity). Moreover, the autocovariance matrix

RLf |p,u between the past and the future of u can be written as

R
(L)
f |p,u = O(L) C(L), (1.7)

where matrix O(L) is the ML× P ”observability” matrix

O(L) =


C

CA
...

CAL−1

 (1.8)

and matrix C(L) is the P ×ML ”controllability” matrix

C(L) =
(
AL−1G,AL−2G, . . . , G

)
. (1.9)

aThe Mac-Millan degree of a rational matrix-valued function Φ is defined as the minimal dimension
of the matrices A for which Φ(z) can be represented as D + C(zI −A)−1B
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For each L ≥ P , the rank of R
(L)
f |p,u remains equal to P , and each minimal rank

factorization of R
(L)
f |p,u can be written as (1.7) for some particular triple (A,C,G). In

particular, if R
(L)
f |p,u = ΘΓΘ̃∗ is the singular value decomposition of R

(L)
f |p,u, matrix

ΘΓ1/2 coincides with the observability matrix O(L) of a pair (C,A). C and A are

immediately obtained from the knowledge of the structured matrix O(L). This dis-

cussion shows that the evaluation of P , C and A from the autocovariance sequence

of u is an easy problem. We mention that, while C and A are essentially unique,

there exist in general more than one pair (B,D) for which (1.4) holds because the

minimal degree spectral factorization problem (1.5) has more than 1 solution. We

refer the reader to [24] or [37].

We notice that as (yn)n∈Z in (1.3) is an uncorrelated sequence, it holds that

Rv,n = E(vn+kv
∗
k) coincides with Ru,n for each n ≥ 1. Therefore, P and matrices C

and A can still be identified from the autocovariance sequence of the noisy version v

of u. In practice, however, the exact autocovariance sequence (Rv,n)n≥1 is in general

unknown, and it is necessary to estimate P and (C,A) from the sole knowledge of N

samples v1 = u1 +y1, v2 = u2 +y2, . . . , vN = uN +yN . For this, P is first estimated

as the number of significant singular values of the empirical estimate R̂Lf |p,v of the

true matrix RLf |p,v = RLf |p,u defined by

R̂Lf |p,v =
Vf,NV

∗
p,N

N
,

where Vf,N and Vp,N are defined in the same way than Yf,N and Yp,N . If (γ̂p)p=1,...,P

and Θ̂ = (θ̂1, . . . , θ̂P ) are the P largest singular values and corresponding left sin-

gular vectors of matrix R̂
(L)
f |p,v, and if Γ̂ is the P ×P diagonal matrix with diagonal

entries (γ̂p)p=1,...,P , the ML × P matrix Ô(L) = Θ̂Γ̂1/2 is an estimator of an ob-

servability matrix O(L). Ô(L) has not necessarily the structure of an observability

matrix, but C and A can be estimated respectively by the top M × P block Ĉ of

Ô(L) and by the argument Â of the minimum of the quadratic fuction

Tr
((
Ô(L)

downA− Ô
(L)
up

)(
Ô(L)

downA− Ô
(L)
up

)∗)
,

where the operator ”down” (resp. ”up”) suppresses the last (resp. the first) M rows

from ML× P matrix Ô(L). This approach provides consistent estimates of P,C,A

when N → +∞ while M , L and P are fixed parameters. We refer the reader to [11]

for a detailed analysis of this statistical inference scheme.

If M is large and that the sample size N cannot be arbitrarily larger than M ,

the ratio ML/N may not be small enough to make reliable the above statistical

analysis. It is thus relevant to study the behaviour of the above estimators in asymp-

totic regimes where M and N both converge towards +∞ in such a way that ML
N

converges towards a non zero constant. In this context, the truncated singular value

decomposition of R̂
(L)
f |p,v does not provide a consistent estimate of an observability
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matrix O(L), and it appears relevant to study the largest singular values and cor-

responding singular vectors of R̂
(L)
f |p,v when M and N both converge towards +∞,

and to precise how they are related to an observability matrix O(L).

Without formulating specific assumptions on u, this problem seems very compli-

cated. In the past, a number of works addressed high-dimensional inference schemes

based on the eigenvalues and eigenvectors of the empirical covariance matrix of the

observation (see e.g. [30], [28], [31], [17], [38], [39], [12], [36]) when the useful signal

lives in a low-dimensional deterministic subspace. Using results related to spiked

large random matrix models (see e.g. [4] [5], [33]), based on perturbation technics,

a number of important statistical problems could be addressed using large ran-

dom matrix theory technics. Our ambition is to follow the same kind of approach

to address the estimation problem of P,A,C when u satisfies some low rank as-

sumptions. The first part of this program is to study the asymptotic behaviour of

the singular values of the empirical autocovariance matrix in the absence of sig-

nal Wf,NW
∗
p,N =

Yf,NY
∗
p,N

N . As the singular values of Wf,NW
∗
p,N are the square

roots of the eigenvalues of Wf,NW
∗
p,NWp,NW

∗
f,N , this is precisely the topic of the

present paper. Using the obtained results, it should be possible to use a perturba-

tion approach in order to evaluate the behaviour of the largest singular values and

corresponding left singular vectors in the presence of a useful signal, and to deduce

from this some improved performance schemes for estimating P,C,A.

1.3. On the literature.

The large sample behaviour of high-dimensional autocovariance matrices was com-

paratively less studied than the high-dimensional covariance matrices. We first men-

tion [20] which studied the asymptotic behaviour of the eigenvalue distribution of

the hermitian matrix R̂τ + R̂∗τ where R̂τ is defined as R̂τ = 1
N

∑N
n=1 xn+τx

∗
n where

(xn)n∈Z represents a M dimensional non Gaussian i.i.d. sequence, the components

of each vector xn being moreover i.i.d. with zero means and unit variances. In

particular, E(xnx
∗
n) = I. It is proved that the empirical eigenvalue distribution of

R̂τ + R̂∗τ converges towards a limit distribution independent from τ ≥ 1. Using

finite rank perturbation technics of the resolvent of the matrix under considera-

tion, the Stieltjes transform of this distribution was shown to satisfy a polynomial

degree 3 equation. Solving this equation led to an explicit expression of the proba-

bility density of the limit distribution. [25] extended these results to the case where

(xn)n∈Z is a non Gaussian linear process xn =
∑+∞
l=0 Alzn−l where (zn)n∈Z is i.i.d.,

and where matrices (Al)l≥0 are simultaneously diagonalizable. The limit eigenvalue

distribution was characterized through its Stieltjes transform that is obtained by

integration of a certain kernel, itself solution of an integral equation. The proof was

based on the observation that in the Gaussian case, the correlated vectors (xn)n∈Z
can be replaced by independent ones using a classical frequency domain decorre-

lation procedure. The results were generalized in the non Gaussian case using the
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generalized Lindeberg principle. We also mention [2] (see also the book [3]) where

the existence of a limit distribution of any symmetric polynomial of (R̂τ , R̂
∗
τ )τ∈T

for some finite set T was proved using the moment method when x is a linear

non Gaussian process. [22] studied the asymptotic behaviour of matrix R̂τ R̂
∗
τ when

(xn)n∈Z represents a M dimensional non Gaussian i.i.d. sequence, the components

of each vector xn being moreover i.i.d. Using finite rank perturbation technics, it

was shown that the empirical eigenvalue distribution converges towards a limit dis-

tribution whose Stieltjes transform is solution of a degree 3 polynomial equation.

As in [20], this allowed to obtain the expression of the corresponding probability

density function. Using combinatorial technics, [22] also established that almost

surely, for large enough dimensions, all the eigenvalues of R̂τ R̂
∗
τ are located in a

neighbourhood of the support of the limit eigenvalue distribution. We finally men-

tion that [23] used the results in [22] in order to study the largest eigenvalues

and corresponding eigenvectors of R̂τ R̂
∗
τ when the observation contains a certain

spiked useful signal that is more specific than the signals (un)n∈Z that motivated

the present paper.

We now compare the results of the present paper with the content of the above

previous works. We first study a matrix that is more general than R̂τ R̂
∗
τ . While we

do not consider linear processes here, we do not assume that the covariance matrix

of the i.i.d. sequence (yn)n∈Z is reduced to I as in [22]. This in particular implies

that the Stieltjes transform of the deterministic equivalent νN of the empirical

eigenvalue distribution ν̂N of Wf,NW
∗
p,NWp,NW

∗
f,N cannot be evaluated in closed

from. Therefore, a dedicated analysis of the support and of the properties of νN is

provided here. We also mention that in contrast with the above papers, we char-

acterize the asymptotic behaviour of the resolvent of matrix Wf,NW
∗
p,NWp,NW

∗
f,N

while the mentionned previous works only studied the normalized trace of the re-

solvent of the matrices under consideration. Studying the full resolvent matrix is

necessary to address the case where a useful spiked signal u is added to the noise y.

We notice that the above papers addressed the non Gaussian case while we consider

the case where y is a complex Gaussian i.i.d. sequence. This situation is of course

simpler in that various Gaussian tools are available, but appears to be relevant

because in the context of the present paper, y is indeed supposed to represent some

additive noise, which, in a number of contexts, is Gaussian.

We finally mention that some of the results of this paper may be obtained by

adapting general recent results devoted to the study of the spectrum of hermi-

tian polynomials of GUE matrices and deterministic matrices (see [6] and [27]). If

we denote by ZN the M × (N + 2L − 1) matrix ZN = (y1, . . . , yN+2L−1), then

ZN can be written as ZN = R
1/2
N XN where the entries of XN are i.i.d. com-

plex Gaussian standard variables. Each M × M block ΣN,k,l (1 ≤ k, l ≤ L) of

ΣN = Wf,NW
∗
p,NWp,NW

∗
f,N is clearly a polynomial of XN , X

∗
N and various M ×M
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and M × (N + 2L − 1) deterministic matrices. Assume that M < N + 2L − 1. In

order to be back to a polynomial of GUE matrices, it is possible to consider the

L(N + 2L − 1) × L(N + 2L − 1) matrix Σ̃N whose (N + 2L − 1) × (N + 2L − 1)

blocks are defined by

Σ̃N,k,l =

(
ΣN,k,l 0

0 0

)
.

It is clear that apart 0, the eigenvalues of Σ̃N coincide with those of ΣN . If X̃N

is any (N + 2L− 1)× (N + 2L− 1) matrix with i.i.d. complex Gaussian standard

entries whose M first rows coincide with XN , then, it is easily seen that each

block of Σ̃N coincides with a hermitian polynomial of X̃N , X̃
∗
N and deterministic

(N + 2L− 1)× (N + 2L− 1) matrices such as

R̃N =

(
RN 0

0 0

)
.

Expressing X̃N as the sum of its hermitian and anti-hermitian parts, we are back

to study the behaviour of the eigenvalues of a matrix whose blocks are hermitian

polynomials of 2 independent GUE matrices and of (N + 2L − 1) × (N + 2L − 1)

deterministics matrices. Extending Proposition 2.2 and Theorem 1.1 in [6] to block

matrices (as in Corollary 2.3 in [27]) would lead to the conclusion that ν̂N has a

deterministic equivalent νN and that the eigenvalues of Wf,NW
∗
p,NWp,NW

∗
f,N are

located in the neighbourhood of the support of νN . While this last consequence

would avoid the use of the specific approach used in section 8 of the present pa-

per, the existence of νN is not a sufficient information. νN should of course be

characterized through its Stieltjes transform, and we believe that the adaptation of

Proposition 2.2 and Theorem 1.1 in [6] is not the most efficient approach.

1.4. Overview of the paper.

As the entries of matrices Wp,N and Wf,N are correlated, approaches based on

finite rank perturbation of the resolvent QN (z) of matrix Wf,NW
∗
p,NWp,NW

∗
f,N ,

usually used when independence assumptions hold, are not the most efficient in

our context. We rather propose to use Gaussian tools, i.e. integration by parts

formula in conjunction with the Poincaré-Nash inequality (see e.g. [32]), because

they are robust to correlation of the matrix entries. Moreover, as the entries of

Wf,NW
∗
p,NWp,NW

∗
f,N are biquadratic functions of y1, . . . , yN+2L−1, we rather use

the well-known linearization trick that consists in studying the resolvent QN (z) of

the 2ML× 2ML hermitized version(
0 Wf,NW

∗
p,N

Wp,NW
∗
f,N 0

)
of matrix Wf,NW

∗
p,N . As is well known, the first ML×ML diagonal block of QN (z)

coincides with zQN (z2). Therefore, we characterize the asymptotic behaviour of
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QN (z), and deduce from this the results concerning QN (z). The hermitized version

is this time a quadratic function of y1, . . . , yN+2L−1, and the Gaussian calculus

that is needed in order to study QN (z) appears much simpler than if QN (z) was

evaluated directly.

In section 3, we evaluate the variance of useful functionals for QN (z) using the

Poincaré-Nash inequality. In section 4, we establish some useful lemmas related to

certain Stieltjes transforms. In section 5, we use the integration by parts formula

to establish that E(QN (z)) behaves as I2L ⊗ SN (z) where SN (z) is defined by

SN (z) = −
(

cNαN (z)

1− c2NαN (z)2
RN + zIM

)−1

,

where αN (z) is defined by αN (z) = 1
MLTrE(QN,pp(z))(IL ⊗ RN ) where QN,pp(z)

represents the first ML ×ML diagonal block of QN (z). As usual, if A and B are

two nA×mA and nB ×mB matrices, A⊗B represents the nAnB ×mAmB matrix

whose nB ×mB blocks are the matrices Ai,jB for i = 1, . . . , nA and j = 1, . . . ,mA.

We deduce from this that

E(QN (z)) = IL ⊗ SN (z) + ∆N (z),

where SN (z) = −
(
zIM +

cNzαN (z)

1− c2NαN (z)2
RN

)−1

, αN (z) = 1
MLTrE(QN (z))(IL ⊗

RN ), and where ∆N (z) is an error term such that∣∣∣∣ 1

ML
Tr ∆N (z)

∣∣∣∣ ≤ 1

N2
P1(|z|)P2(

1

Im(z)
)

for each z ∈ C+, where P1 and P2 are 2 polynomials whose degrees and coefficients

do not depend on N . Using this, we prove in section 6 that for each z ∈ C+,

1

ML
TrE [QN (z)− IL ⊗ TN (z)]FN → 0,

where (FN )N≥1 is any deterministic sequence of matrices such that supN ‖FN‖ <
+∞, and where TN (z) is defined by

TN (z) = −
(
zIM +

zcN tN (z)

1− zc2N t2N (z)
RN

)−1

,

tN (z) being the unique solution of the equation

tN (z) =
1

M
TrRN

(
−zIM −

zcN tN (z)

1− zc2N t2N (z)
RN

)−1

such that tN (z) and ztN (z) belong to C+ when z ∈ C+. tN (z) and TN (z) are

shown to coincide with the Stieltjes transforms of a scalar measure µN and of a

M ×M positive matrix valued measure νTN respectively (see Section 4 for a formal

definition of a M ×M positive matrix valued measure). Recalling that ν̂N denotes

the empirical eigenvalue distribution of Wf,NW
∗
p,NWp,NW

∗
f,N , it is proved that
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the measure νN defined by νN = 1
MTr(νTN ) is a probability measure, and that

ν̂N −νN → 0 weakly almost surely. νN is referred to as the deterministic equivalent

of ν̂N . In section 7, we study the properties and the support of νN , or equivalently

of µN because the 2 measures are absolutely continuous one with respect to each

other. For this, we study the behaviour of tN (z) when z converges towards the real

axis. For each x > 0, the limit of tN (z) when z ∈ C+ converges towards x exists and

is finite. If cN ≤ 1, we deduce from this that νN is absolutely continuous w.r.t. the

Lebesgue measure. The corresponding density gN (x) is real analytic on R+, and

converges towards +∞ when x→ 0, x > 0. If cN < 1, it holds that gN (x) = O( 1√
x

)

while gN (x) = O( 1
x2/3 ) if cN = 1. If cN > 1, νN contains a Dirac mass at 0 with

weight 1 − 1
cN

and an absolutely continuous component. In order to analyse the

support of µN and νN , we establish that the function wN (z) defined by

wN (z) = zcN tN (z)− 1

cN tN (z)

is solution of the equation φN (wN (z)) = z for each z ∈ C−R+ where φN (w) is the

function defined by

φN (w) = cNw
2 1

M
TrRN (RN − wI)

−1

(
cN

1

M
TrRN (RN − wI)

−1 − 1

)
.

Moreover, if we define tN (x) and wN (x) for x > 0 by the limit of tN (z) and wN (z)

when z → x, z ∈ C+, the equality φN (wN (z)) = z is also valid on R+. We establish

that if x is outside the support of µN , then, it holds that

φN (wN (x)) = x, φ
′
(wN (x)) > 0, wN (x)

1

M
TrRN (RN − wN (x)I)

−1
< 0.

This property allows to prove that apart {0} when cN > 1, the support of µN
is a union of intervals whose end points are the extrema of φN whose arguments

verify w 1
MTrRN (RN − wI)

−1
< 0. A sufficient condition on the eigenvalues of RN

ensuring that the support of µN is reduced to a single interval is formulated. Using

the Haagerup-Thorbjornsen approach ([15]), it is moreover proved in section 8 that

for each N large enough, all the eigenvalues of Wf,N W ∗p,N Wp,N W ∗f,N lie in a

neighbourhood of the support of the deterministic equivalent νN . The above results

do not imply that ν̂N converges towards a limit distribution. In order to obtain this

kind of result, some extra assumptions have to be formulated, such as the existence

of a limit empirical eigenvalue distribution for RN when N → +∞. If the relevant

conditions are met, νN , and therefore ν̂N , will converge towards a limit distribution

whose Stieltjes transform can be obtained by replacing in the above results the em-

pirical eigenvalue of RN by its limit. We do not present the corresponding results

here because we believe that results that characterize the behaviour of νN for each

N large enough are more informative than the convergence towards a limit.

In section 9, we finally indicate that the use of free probability tools is an

alternative approach to characterize the asymptotic behaviour of ν̂N . The results

of section 9 are based on the following observations:
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• Up to the zero eigenvalue, the eigenvalues of Wf,NW
∗
p,NWp,NW

∗
f,N coincide

with the eigenvalues of W ∗f,NWf,NW
∗
p,NWp,N

• While the matrices W ∗f,NWf,N and W ∗p,NWp,N do not satisfy the condi-

tions of the usual asymptotic freeness results, it turns out that they are

almost surely asymptotically free. Therefore, the eigenvalue distribution of

W ∗f,NWf,NW
∗
p,NWp,N converges towards the free multiplicative convolution

product of the limit distributions of W ∗f,NWf,N and W ∗p,NWp,N . These two

distributions appear to coincide both with the limit distribution of the well

known random matrix model 1
NX

∗
N (IL ⊗RN )XN where XN is a ML×N

complex Gaussian random matrix with standard i.i.d. entries.

The asymptotic freeness of W ∗f,NWf,N and W ∗p,NWp,N appear to be a consequence

of Lemma 6 in [14]. While this approach seems to be simpler than the use of

the Gaussian tools proposed in the present paper, we mention that the above free

probability theory arguments do not allow to study the asymptotic behaviour of the

resolvent of Wf,NW
∗
p,NWp,NW

∗
f,N . We recall that in order to evaluate the largest

eigenvalues and corresponding eigenvectors of Wf,NW
∗
p,NWp,NW

∗
f,N in the presence

of a useful signal, the asymptotic behaviour of the full resolvent in the absence of

signal has to be available.

2. Some notations, assumptions, and useful results.

In the following, it is assumed that L is a fixed integer, and that M and N converge

towards +∞ in such a way that

cN =
ML

N
→ c∗, c∗ > 0. (2.1)

This regime will be referred to as N → +∞ in the following. In the regime (2.1),

M should be interpreted as an integer M = M(N) depending on N . The vari-

ous matrices we have introduced above thus depend on N and will be denoted

RN , Yf,N , Yp,N , . . .. In order to simplify the notations, the dependency w.r.t. N will

sometimes be omitted.

We recall that the resolvent QN (z) of Wf,NW
∗
p,NWp,NW

∗
f,N is defined by

QN (z) =
(
Wf,NW

∗
p,NWp,NW

∗
f,N − zI

)−1
. (2.2)

As the direct study of QN (z) is not obvious, we rather introduce the resolvent

QN (z) of the 2ML× 2ML block matrix

MN =

(
0 Wf,NW

∗
p,N

Wp,NW
∗
f,N 0

)
. (2.3)

It is well known that QN (z) can be expressed as

QN (z) =

(
zQN (z2) QN (z2)Wf,NW

∗
p,N

Wp,NW
∗
f,NQN (z2) zQ̃N (z2)

)
, (2.4)
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where Q̃N (z) is the resolvent of matrix Wp,NW
∗
f,NWf,NW

∗
p,N . As shown below, it

is rather easy to evaluate the asymptotic behaviour of QN (z) using the Poincaré-

Nash inequality and the integration by part formula (see Propositions 2.2 and 2.1

below). Formula (2.4) will then provide all the necessary information on QN (z).

In the following, every 2ML× 2ML matrix G will be written as

G =

(
Gpp Gpf

Gfp Gff

)
,

where the 4 matrices (Gij)i,j∈{p,f} are ML ×ML. Sometimes, the blocks will be

denoted G(pp), G(pf), ....

We denote by WN the 2ML×N matrix defined by

WN =

(
Wp,N

Wf,N

)
. (2.5)

Its elements (Wm
i,j)i≤2L,j≤N,m≤M satisfy

E{Wm
i,j(W

m′

i′,j′)
∗} =

1

N
Rmm′,Nδi+j,i′+j′ ,

where Wm
i,j represents the element which lies on the (m + M(i − 1))-th line and

j-th column for 1 ≤ m ≤ M , 1 ≤ i ≤ 2L and 1 ≤ j ≤ N . Similarly, Qm1m2
i1i2

,

where 1 ≤ m1,m2 ≤ M and 1 ≤ i1, i2 ≤ 2L, represents the entry (m1 + M(i1 −
1)), (m2+M(i2−1)) of Q. For each j = 1, . . . , N , {wj}Nj=1, {wp,j}Nj=1 and {wf,j}Nj=1

are the column of matrices W,Wp and Wf respectively. For each 1 ≤ i ≤ 2L and

1 ≤ m ≤ M , fmi represents the vector of the canonical basis of C2ML with 1 at

the index m + (i − 1)M and zeros elsewhere. In order to simplify the notations,

we mention that if i ≤ L, vector fmi may also represent the vector of the canonical

basis of CML with 1 at the index m+ (i− 1)M and zeros elsewhere. Vector ej with

1 ≤ j ≤ N represents the j –th vector of the canonical basis of CN . Also for any

integer K, JK is the K ×K ”shift” matrix defined by

(JK)ij = δj−i,1. (2.6)

In order to short the notations, for each integer l ∈ Z, we define the symbol ε(l)

by ε(l) = l if l ≥ 0 and ε(l) = ∗|l| if l ≤ 0. Consequently, for each l, matrix J
ε(l)
K is

equal to J lK if l ≥ 0 and to J
∗|l|
K if l ≤ 0.

If A is a matrix, then ‖A‖ and ‖A‖F represent its spectral norm and Frobenius

norm respectively. If morever A is a square matrix, Im(A) is the Hermitian matrix

defined by Im(A) = A−A∗
2i . We recall that if A and B are two nA×mA and nB×mB

matrices, A⊗B represents the nAnB ×mAmB matrix whose nB ×mB blocks are

the matrices Ai,jB for i = 1, . . . , nA and j = 1, . . . ,mA.
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The sequence of covariance matrices (RN )N≥1 of M–dimensional vectors

(yn)n=1,...,N is supposed to verify

a I ≤ RN ≤ b I (2.7)

for each N , where a > 0 and b > 0 are two constants. λ1,N ≥ λ2,N ≥ . . . ≥ λM,N

represent the eigenvalues of RN arranged in the decreasing order and f1,N , . . . , fM,N

denote the corresponding eigenvectors. Hypothesis (2.7) is obviously equivalent to

λM,N ≥ a and λ1,N ≤ b for each N .

The eigenvalues and eigenvectors of matrix Wf,NW
∗
p,NWp,NW

∗
f,N are denoted

λ̂1,N ≥ . . . ≥ λ̂ML,N and f̂1,N , . . . , f̂ML,N respectively.

By a nice constant, we mean a positive deterministic constant which does not

depend on the dimensions M and N nor of the complex variable z. In the fol-

lowing, κ will represent a generic nice constant whose value may change from

one line to the other. A nice polynomial P (z) is a polynomial whose degree

and coefficients are nice constants. Finally, if (αN )N≥1 is a sequence of posi-

tive real numbers and if Ω is a domain of C, we will say that a sequence of

functions (fN (z))N≥1 verifies fN (z) = Oz(αN ) for z ∈ Ω if there exists two

nice polynomials P1 and P2 such that |fN (z)| ≤ αNP1(|z|)P2( 1
|Imz| ) for each

z ∈ Ω. If Ω = C+, we will just write fN (z) = Oz(αN ) without mentioning

the domain. We notice that if P1, P2 and Q1, Q2 are nice polynomials, then

P1(|z|)P2( 1
|Imz| ) + Q1(|z|)Q2( 1

|Imz| ) ≤ (P1 + Q1)(|z|)(P2 + Q2)( 1
|Imz| ), from which

we conclude that if the sequences (f1,N )N≥1 and (f2,N )N≥1 are Oz(αN ) on Ω, then

it also holds f1,N (z) + f2,N (z) = Oz(αN ) on Ω.

C∞c (R,R) represents the set of all C∞ real valued compactly supported functions

defined on R.

If ξ is a random variable, we denote by ξ◦ the zero mean random variable defined

by

ξ◦ = ξ − Eξ. (2.8)

We finally recall the two Gaussian tools that will be used in the sequel in order

to evaluate the asymptotic behaviour of QN (z) and QN (z).

Proposition 2.1. (Integration by parts formula.) Let ξ = [ξ1, . . . , ξK ]T be a

complex Gaussian random vector such that E{ξ} = 0, E{ξξT } = 0 and E{ξξ∗} = Ω.

If Γ : (ξ) 7→ Γ(ξ, ξ̄) is a C1 complex function polynomially bounded together with its

derivatives, then

E{ξiΓ(ξ)} =

K∑
k=1

ΩikE
{
∂Γ(ξ)

∂ξ̄k

}
. (2.9)
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Proposition 2.2. (Poincaré-Nash inequality.) Let ξ = [ξ1, . . . , ξK ]T be a com-

plex Gaussian random vector such that E{ξ} = 0, E{ξξT } = 0 and E{ξξ∗} = Ω. If

Γ : (ξ) 7→ Γ(ξ, ξ̄) is a C1 complex function polynomially bounded together with its

derivatives, then, noting ∇ξΓ = [ ∂Γ
∂ξ1

, . . . , ∂Γ
∂ξK

]T and ∇ξ̄Γ = [ ∂Γ
∂ξ̄1

, . . . , ∂Γ
∂ξ̄K

]T

Var{Γ(ξ)} ≤ E
{
∇ξΓ(ξ)TΩ∇ξΓ(ξ)

}
+ E

{
∇ξ̄Γ(ξ)∗Ω∇ξ̄Γ(ξ)

}
. (2.10)

3. Use of the Poincaré-Nash inequality.

In this paragraph, we control the variance of various functionals of QN (z) using

the Poincaré-Nash inequality. For this, it appears useful to evaluate the moments

of ‖WN‖. The following result holds.

Lemma 3.1. For any l ∈ N, it holds that supN≥1 E{‖WN‖2l} < +∞.

Proof. We first remark that it is possible to be back to the case where matrix

RN = IM . Due to the Gaussianity of the i.i.d. vectors (yn)n≥1, it exists i.i.d.

Nc(0, IM ) distributed vectors (yiid,n)n≥1 such that E(yiid,ny
∗
iid,n) = IM verifying

yn = R
1/2
N yiid,n. From this, we obtain immediately that the 2ML×N block Hankel

matrix Wiid,N built from (yn,iid)n=1,...,N satisfies

WN =


R

1/2
N

. . .

R
1/2
N

Wiid,N . (3.1)

As the spectral norm of RN is assumed uniformly bounded when N increases, the

statement of the lemma is equivalent to supN E{‖Wiid‖2l} < +∞. It is shown in

[26] that the empirical eigenvalue distribution of Wiid,NW
∗
iid,N converges towards

the Marcenko-Pastur distribution µMP,∗ with parameter c∗, i.e. µMP,∗ is the limit

of the empirical eigenvalue distribution of matrices such as 1
K2
XX∗ where X is

a K1 × K2 random matrix with i.i.d. zero mean and unit variance entries when

K1 and K2 converge towards +∞ in such a way that K1

K2
→ c∗. The smallest non

zero eigenvalue and the largest eigenvalue of Wiid,NW
∗
iid,N (which coincides with

‖Wiid,N‖2) converge almost surely towards (1−√c∗)2 and (1 +
√
c∗)

2 respectively.

We express E{‖Wiid‖2l} as

E{‖Wiid‖2l} = E{‖Wiid‖2l1‖Wiid‖2≤(1+
√
c∗)2+δ}+ E{‖Wiid‖2l1‖Wiid‖2>(1+

√
c∗)2+δ}

≤ κ+ E{‖Wiid‖2lF 1‖Wiid‖2>(1+
√
c∗)2+δ} ≤ κ+ E{‖Wiid‖4lF }1/2E{1‖Wiid‖2>(1+

√
c∗)2+δ}1/2

where κ > 0 is a nice constant. As E{‖Wi.i.d.‖4lF } = O(N2l), it is sufficient to prove

that E{1‖Wiid‖2>(1+
√
c∗)2+δ} is less than any power of N−1. We introduce a smooth

function φ0 defined on R by

φ0(λ) =

{
1, for λ ∈ [−∞, −δ] ∪ [(1 +

√
c∗)

2 + δ, +∞],

0, for λ ∈ [−δ/2, (1 +
√
c∗)

2 + δ/2]
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and φ0(λ) ∈ (0, 1) elsewhere. Then, it holds that

E{1‖Wiid‖2>(1+
√
c∗)2+δ} = E{1λmax(WiidW∗iid)>(1+

√
c∗)2+δ} ≤ P[Trφ0(WiidW

∗
iid) ≥ 1]

≤ E{(Trφ0(WiidW
∗
iid))

2k}

for any k ∈ N. Lemma 3.1 thus appears as an immediate consequence of the follow-

ing lemma.

Lemma 3.2. For each smooth function φ such that φ(λ) = 0 if λ ∈ [−δ/2, (1 +√
c∗)

2 + δ/2] and φ(λ) constant on [−∞, −δ] ∪ [(1 +
√
c∗)

2 + δ, +∞], it holds that

∀k ∈ N, E
{

(Trφ(WiidW
∗
iid))

2k
}
≤ κ

N2k
.

Proof. We prove the Lemma by induction. We first consider the case k = 1.

For more convenience we will write W instead of Wiid in the course of the proof.

Here and below we take sum for all possible values of indexes, if not specified. From

(2.10) we have

Var{Trφ(WW ∗)} ≤
∑

E

{(
∂Trφ(WW ∗)

∂W
m1

i1,j1

)∗
E{Wm1

i1,j1
W

m2

i2,j2}
∂Trφ(WW ∗)

∂W
m2

i2,j2

}

+
∑

E

{
∂Trφ(WW ∗)

∂Wm1
i1,j1

E{Wm1
i1,j1

W
m2

i2,j2}

(
∂Trφ(WW ∗)

∂Wm2
i2,j2

)∗}
. (3.2)

We only evaluate the first term, denoted by ψ, of the right handside of (3.2), because

the second one can be addressed similarly. For this, we first remark that

∂Trφ(WW ∗)

∂W
m1

i1,j1

= Tr

(
φ′(WW ∗)

∂WW ∗

∂W
m1

i1,j1

)
= (φ′(WW ∗)W )

m1

i1,j1
.

Plugging this into (3.2) we obtain

ψ =
∑ 1

N
E
{

(φ′(WW ∗)W )
∗m1

j1,i1
δm1,m2

δi1+j1,i2+j2 (φ′(WW ∗)W )
m2

i2,j2

}
.

Denoting l = i1 − i2, it is easy to verify that ψ can be written as

ψ =
1

N

L−1∑
l=−(L−1)

E{Tr (φ′(WW ∗)W )
∗

(J
∗ε(l)
L ⊗ IM ) (φ′(WW ∗)W ) J

∗ε(l)
N } (3.3)

where we recall that matrix JL is defined by (2.6) and that ε(l) = l if l ≥ 0 and

ε(l) = ∗|l| if l ≤ 0. For each ML × N matrices A and B, the Schwartz inequality

and the inequality between arithmetic and geometric means lead to∣∣∣∣ 1

N
TrA∗(J

∗ε(u)
L ⊗ IM )BJ

∗ε(u)
N

∣∣∣∣ ≤ 1

2N
TrA∗(J

∗ε(u)
L J

ε(u)
L ⊗ IM )A+

1

2N
TrBJ

∗ε(u)
N J

ε(u)
N B∗.

Therefore, since J
∗ε(u)
L J

ε(u)
L ⊗ IM ≤ IML and J

∗ε(u)
N J

ε(u)
N ≤ IN∣∣∣∣ 1

ML
TrA∗(J

∗ε(u)
L ⊗ IM )BJ

∗ε(u)
N

∣∣∣∣ ≤ κ

N
(TrA∗A+ TrBB∗). (3.4)
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By taking here A = B = φ′(WW ∗)W , we obtain from (3.2) and (3.3)

Var{Trφ(WW ∗)} ≤ κ

N
E
{

Tr (φ′(WW ∗))
2
WW ∗

}
. (3.5)

Consider the function η(λ) = (φ′(λ))2λ. It is clear that η(λ) is a compactly sup-

ported smooth function. Therefore (see e.g. [26]), it holds that

E
{

1

ML
Tr
(
(φ′(WW ∗))2WW ∗

)}
=

∫
SMP,N

η(λ)dµMP,N (λ) +O
(

1

N2

)
,

where µMP,N is the measure associated to Marcenko-Pastur distribution with pa-

rameter cN and where SMP,N ⊂ [0, (1 +
√
cN )2] represents the support of µMP,N .

It is clear that for N large enough, the support of φ′ and SMP,N do not intersect,

so that
∫
SMP,N

η(λ)dµMP,N (λ) = 0. Therefore, we obtain that

E
{

1

ML
Tr
(
(φ′(WW ∗))2WW ∗

)}
= O

(
1

N2

)
.

This and (3.5) lead to the conclusion that Var{Trφ(WW ∗)} = O
(
N−2

)
. To

finalize the case k = 1, we express E{(Trφ(WW ∗))2} as E{(Trφ(WW ∗))2} =

Var{Trφ(WW ∗)} + E{Trφ(WW ∗)}2. [26, Lemma 10.1] implies that

E{Trφ(WW ∗)} = O(N−1), which completes the proof for k = 1.

Now we suppose that for any n ≤ k we have E{(Trφ(WW ∗))2n} = O(N−2n)

and are about to prove that it holds for n = k+ 1. As in the previous case we write

E{(Trφ(WW ∗))2(k+1)} = Var{(Trφ(WW ∗))k+1}+
(
E{(Trφ(WW ∗))k+1}

)2

.

(3.6)

To evaluate the second term of the r.h.s. of (3.6), we use the Schwartz inequality

and the induction assumption

E{(Trφ(WW ∗))k+1} ≤
(
E{(Trφ(WW ∗))2k}E{(Trφ(WW ∗))2}

)1/2

= O
(

1

Nk+1

)
,

(3.7)

We follow the same steps as in the case k = 1 to study the first term of the r.h.s.

of (3.6). Using again the Poincaré-Nash inequality, we obtain that

Var{(Trφ(WW ∗))k+1} ≤ κ

N
E
{

(Trφ(WW ∗))
2k

Tr
(
φ′(WW ∗)2WW ∗

)}
.

Using Holder’s inequality, we obtain

Var{(Trφ(WW ∗))k+1} ≤ κ

N
E
{

(Trφ(WW ∗))
2k+2

} k
k+1 E

{(
Tr(φ′(WW ∗)2WW ∗)

)k+1
} 1

k+1

.

(3.8)

The properties of function η(λ) = φ′(λ)2λ imply that it satisfies the induction

hypothesis and that it verifies (3.7), i.e. E
{

(Tr(φ′(WW ∗)2WW ∗))k+1
}

= O( 1
Nk+1 ).

Plugging this into (3.8), we get that

Var{(Trφ(WW ∗))k+1} ≤ κ

N2
E
{

(Trφ(WW ∗))
2k+2

} k
k+1

.
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From this, (3.7) and (3.6), we immediately obtain

E{(Trφ(WW ∗))2k+2} ≤ κ1

N2
E{(Trφ(WW ∗))2k+2}

k
k+1 +

κ2

N2k+2
. (3.9)

We denote by zk,N the term zk,N = N2k+2 E{(Trφ(WW ∗))2k+2}. Then, (3.9) im-

plies that

zk,N ≤ κ1 (zk,N )k/(k+1) + κ2.

This inequality leads to the conclusion that sequence (zk,N )N≥1 is bounded, or

equivalently that E{(Trφ(WW ∗))2k+2} ≤ κ
N2k+2 as expected. This completes the

proof of Lemmas 3.2 and 3.1. �

We now evaluate the variance of useful functionals of the resolvent QN (z).

Lemma 3.3. Let (FN )N≥1, (GN )N≥1 be sequences of deterministic 2ML × 2ML

matrices and (HN )N≥1 a sequence of deterministic N × N matrices such that

max{supN ‖FN‖, supN ‖GN‖, supN ‖HN‖} ≤ κ. Then, for each z ∈ C+, it holds

that

Var

{
1

ML
TrFQ

}
≤ C(z)κ2

N2
, (3.10)

Var

{
1

ML
TrFQGWHW ∗

}
≤ C(z)κ6

N2
. (3.11)

where C(z) can be written as C(z) = P1(|z|)P2

(
1

Imz

)
for some nice polynomials P1

and P2.

Proof. We first prove (3.10) and denote by ξ the term ξ = 1
MLTrFQ. The

Poincare-Nash inequality leads to

Var{ξ} ≤
∑

i1,j1,m1
i2,j2,m2

E

{(
∂ξ

∂W
m1

i1,j1

)∗
E{Wm1

i1,j1
W

m2

i2,j2}
∂ξ

∂W
m2

i2,j2

}

+
∑

i1,j1,m1
i2,j2,m2

E

{
∂ξ

∂Wm1
i1,j1

E{Wm1
i1,j1

W
m2

i2,j2}

(
∂ξ

∂Wm2
i2,j2

)∗}
.

We just evaluate the first term of the r.h.s. that we denote by φ. For this, we need

the expression of the derivative of Q with respect to the complex conjugates of the

entries of W . We denote by Πpf and Πfp the 2ML × 2ML matrices defined by

Πpf =
(

0 IML
0 0

)
and Πfp =

(
0 0

IML 0

)
. Then, after some algebra, we obtain that

∂Q

∂W
m

i,j

= −Q (
wj,f

0 ) (fmi+L)TQ 1i≤L −Q
(

0
wj,p

)
(fmi−L)TQ 1i>L

= −QΠpfWej (fmi )TΠpfQ−QΠfpWej (fmi )TΠfpQ. (3.12)
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From this, we deduce immediately that

∂ξ

∂W
m1

i1,j1

= − 1

ML

(
ΠpfQFQΠpfW + ΠfpQFQΠfpW

)m1

i1,j1
.

Using that E{Wm1
i1,j1

W
m2

i2,j2} = 1
NRm1m2δi1+j1,i2+j2 , we obtain that φ is given by

φ =
1

N(ML)2

∑
i1,j1,m1
i2,j2,m2

(ej1)T (ΠpfQFQΠpfW + ΠfpQFQΠfpW )∗fm1
i1
Rm1m2

× δi1+j1,i2+j2(fm2
i2

)T (ΠpfQFQΠpfW + ΠfpQFQΠfpW )ej2 .

We put u = i1− i2 and remark that
∑
m1,m2,i1−i2=u fm1

i1
Rm1m2

(fm2
i2

)T = J
∗ε(u)
L ⊗R

and that
∑
j2−j1=u ej2e

T
j1

= J
∗ε(u)
N . Therefore, φ can be written as

φ =
1

MLN
E
{ L−1∑
u=−(L−1)

1

ML
Tr(ΠpfQFQΠpfW + ΠfpQFQΠfpW )∗(J

∗ε(u)
L ⊗R)

× (ΠpfQFQΠpfW + ΠfpQFQΠfpW )J
∗ε(u)
N

}
. (3.13)

Each term inside the sum over u can be written as
1

ML
TrA∗(IL ⊗ R1/2)(J

∗ε(u)
L ⊗

I)(IL ⊗ R1/2)AJ
∗ε(u)
N , where the expression of the ML × N matrix A is omitted.

As ‖R‖ is bounded by the nice constant b (see (2.7)), (3.4) and (3.13) lead to

the conclusion that we just need to evaluate 1
MLE{TrA∗A}. Using the Schwartz

inequality, we obtain immediately that

E{TrA∗A} ≤ 2E{Tr ((ΠpfQFQΠpfW )∗ΠpfQFQΠpfW )} (3.14)

+ 2E{Tr ((ΠfpQFQΠfpW )∗ΠfpQFQΠfpW )}.

Since (ΠpfQFQΠpf )
∗

ΠpfQFQΠpf ≤ ‖Q‖4‖F‖2 I and ‖Q‖ ≤ 1
Imz , we get that

1

ML
E{Tr ((ΠpfQFQΠpfW )∗ΠpfQFQΠpfW )} ≤ 1

(Imz)4
‖F‖2 1

ML
E{TrW ∗W}

≤ 1

(Imz)4
‖F‖2 E{‖W‖2}

Lemma 3.1 thus implies that

1

ML
E{Tr ((ΠpfQFQΠpfW )∗ΠpfQFQΠpfW )} ≤ κ2P

(
1

Imz

)
for some nice polynomial P . The term 1

MLE{Tr (ΠfpQFQΠfpW )∗ΠfpQFQΠfpW )}
can be handled similarly. Therefore, (3.13) leads to φ ≤ κ2 1

N2P
(

1
Imz

)
. This estab-

lishes (3.10).
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To prove (3.11) one can also use Poincaré-Nash inequality for ξ =
1
MLTrFQGWHW ∗. After some calculations, we get that the variance of ξ is up-

perbounded by a term given by

κ1

N2
E
(

1

ML
Tr(FQGWH)∗(FQGWH) +

1

ML
Tr(FQWH)∗(FQWH) + η1 + η2

)
,

(3.15)

where κ1 is some nice constant, and where η1 and η2 are defined by

η1 =
1

ML
Tr(ΠpfQGWHW ∗FQΠpfW )∗(ΠpfQGWHW ∗FQΠpfW ),

η2 =
1

ML
Tr(ΠfpQGWHW ∗FQΠfpW )∗(ΠfpQGWHW ∗FQΠfpW ).

Using Lemma 3.1 as well as the inequality QQ∗ ≤ 1
Im2z

I, we obtain immediately

(3.11). This completes the proof of Lemma 3.3. �

In the following, we also need to evaluate the variance of more specific terms.

The following result appears to be a consequence of Lemma 3.3 and of the particular

structure (2.4) of matrix Q(z).

Corollary 3.1. Let (F1,N )N≥1 be a sequence of deterministic ML×ML matrices

such that supN ‖F1,N‖ ≤ κ, and (HN )N≥1 a sequence of deterministic N × N

matrices satisfying supN ‖HN‖ ≤ 1. Then, if z ∈ C+ and Imz2 > 0, the following

evaluations hold:

Var

{
1

ML
TrF1Qij(z)

}
≤ κ2 1

N2
P1(|z2|)P2

(
1

Imz2

)
, (3.16)

where i and j belong to {p, f};

Var

{
1

ML
Tr

[
HW ∗Πi1j1

(
F1 0

0 0

)
Q(z)Πi2j2W

]}
≤ κ2 1

N2
P1(|z2|)P2

(
1

Imz2

)
,

(3.17)

where i1, j1, i2, j2 still belong to {p, f}, but verify i1 6= j1 and i2 6= j2.

Proof. We first prove (3.16), and first consider the case where i = j = p. We

define the 2ML×2ML matrix F by F =

(
F1 0

0 0

)
, and remark that 1

MLTrF1Qpp(z)

coincides with ξ = 1
MLTrFQ(z). We follow the proof of (3.10), and evaluate the

right hand side of (3.14) in a more accurate manner by taking into account the

particular structure of the present matrix F . It is easy to check that

1

ML
E{Tr (ΠpfQFQΠpfW )∗ΠpfQFQΠpfW )}

=
1

ML
E{Tr

(
W ∗fQ∗ppF

∗
1 Q∗fpQfpF1QppWf

)
}.

As Qfp(z) = WpW
∗
fQ(z2), we obtain that

Q∗fp(z)Qfp(z) = (Q(z2))∗WfW
∗
pWpW

∗
fQ(z2) ≤ ‖W‖4 1

(Imz2)2
I
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if Im(z2) > 0. Therefore, it holds that

F ∗1 Q∗fpQfpF1 ≤ κ2‖W‖4 1

(Imz2)2
I.

From this, using the expression of Qpp = zQ(z2), we obtain similarly that

W ∗fQ∗ppF
∗
1 Q∗fpQfpF1QppWf ≤ κ2‖W‖6 |z|2

(Imz2)4
.

Lemma 3.1 thus leads to the conclusion that

1

ML
E{Tr

(
W ∗fQ∗ppF

∗
1 Q∗fpQfpF1QppWf

)
} ≤ κ2 κ1|z|2

(Imz2)4
,

where κ1 is a nice constant such that E(‖WN‖6) ≤ κ1 for each N . Using similar

arguments, we obtain that

1

ML
E{Tr (ΠfpQFQΠfpW )∗ΠfpQFQΠfpW )} ≤ κ2 κ1|z2|2

(Imz2)4
.

This, in turn, implies (3.16) for i = j = p. As the arguments are essentially the

same for the other values of i and j, we do not provide the corresponding proofs.

In order to establish (3.17), we follow the proof (3.11) for F = Πi1j1

(
F1 0

0 0

)
,

G = Πi2j2 . It is necessary to check that the 4 terms inside the bracket of (3.15) can

be upperbounded by κ2P1(|z2|)P2( 1
Imz2 ) for nice polynomials P1 and P2. As above,

the use of the particular expression of matrices (Qij)i,j∈{f,p} allows to establish this

property. The corresponding easy calculations are omitted. �

4. Various lemmas on Stieltjes transform

In this paragraph, we provide a number of useful results on certain Stieltjes trans-

forms. We recall that if K is a positive integer, then a K×K matrix-valued positive

measure ω is a σ–additive function from the Borel sets of R onto the set of all pos-

itive K × K matrices (see e.g. [34], Chapter 1 for more details). ω is said to be

finite if the scalar positive measure Tr(ω) is finite. In the following, if A is a Borel

set of R, we denote by SM (A) the set of all Stieltjes transforms of M ×M matrix

valued positive finite measures carried by A. S1(A) is denoted S(A). We first begin

by stating well known properties of Stieltjes transforms (see e.g. the Appendix of

[21], the Appendix A of [16], and the references therein).

Proposition 4.1. The following properties hold true:

1. Let f be the Stieltjes transform of a positive finite measure µ, then

– the function f is analytic over C+,

– if z ∈ C+ then f(z) ∈ C+,

– the function f satisfies: |f(z)| ≤ µ(R)
Imz , for z ∈ C+

– if µ(−∞, 0) = 0 then its Stieltjes transform f is analytic over C/R+. More-

over, z ∈ C+ implies zf(z) ∈ C+.
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– for all φ ∈ C∞c (R,R) we have∫
R
φ(λ)dµ(λ) =

1

π
lim
y↓0

Im

{∫
R
φ(x)f(x+ iy)dx

}
.

2. Conversely, let f be a function analytic over C+ such that f(z) ∈ C+

if z ∈ C+ and for which supy≥ε |iyf(iy)| < +∞ for some ε > 0. Then, f is

the Stieltjes transform of a unique positive finite measure µ such that µ(R) =

limy→+∞ −iyf(iy). If moreover zf(z) ∈ C+ for z in C+ then, µ(R−) = 0. In

particular, f is given by

f(z) =

∫ +∞

0

µ(dλ)

λ− z
and has an analytic continuation on C/R+.

3. Let F be an P × P matrix-valued function analytic on C+ verifying

– Im(F (z)) > 0 if z ∈ C+

– supy>ε ‖iyF (iy)‖ < +∞ for some ε > 0.

Then, F ∈ SP (R), and if µF is the corresponding P × P associated positive

measure, it holds that

µF (R) = lim
y→+∞

−iyF (iy). (4.1)

If moreover Im(zF (z)) > 0, then, F ∈ SP (R+).

We now state a quite useful Lemma.

Lemma 4.1. Let β(z) ∈ S(R+), and consider function β(z) defined by β(z) =

zβ(z2). Then β ∈ S(R). Moroever, it holds that

G(z) =

(
−zIM −

cβ(z)

1− c2β2(z)
R

)−1

∈ SM (R)

G(z) =

(
−zIM −

czβ(z)

1− zc2β2(z)
R

)−1

∈ SM (R+)

(4.2)

and that

G(z) (G(z))
∗ ≤ IM

(Imz)2
, G(z) (G(z))

∗ ≤ IM
(Imz)2

. (4.3)

Finally, matrices G(z) and G(z) are linked by the relation

G(z) = zG(z2) (4.4)

for each z ∈ C+.

Proof. Let τ be the measure carried by R+ corresponding to the Stieltjes trans-

form β(z). We first prove that β(z) is a Stieltjes transform. We first remark that if

z ∈ C+, then z2 ∈ C−R+. β analytic on C−R+ thus implies that β(z) is analytic

on C+. Moreover, it is clear that

Imβ(z) = Im

∫
R+

zd τ(λ)

λ− z2
=

∫
R+

Imz(λ+ |z|2)d τ(λ)

|λ− z2|2
> 0, when Imz > 0.



March 3, 2020 10:8 WSPC/INSTRUCTION FILE revised-version˙2

21

To evaluate β(z) for z ∈ C+, we write∣∣∣∣∫
R+

zd τ(λ)

λ− z2

∣∣∣∣ ≤ ∫
R+

d τ(λ)∣∣λ
z − z

∣∣ .
Using that

∣∣λ
z − z

∣∣ ≥ ∣∣Im(λz − z)
∣∣ ≥ Imz for z ∈ C+ and λ ≥ 0, we get that

|β(z)| ≤
∫
R+

d τ(λ)

Imz
=
τ(R+)

Imz
.

From this and Proposition 4.1, we obtain that β(z) ∈ S(R).

To prove (4.2), it is first necessary to show that G is analytic on C+. For this,

we first check that m(z) = 1− c2β2(z) 6= 0 for z ∈ C+. Indeed, write β(z) = x+ iy

with y > 0, then m(z) = 1− c2x2 + c2y2 − 2cxyi. Hence, if x = 0 we have m(z) =

1 + c2y2 > 0, and if x 6= 0 then 2xy 6= 0 since y > 0. In order to establish that

matrix

(
−zIM −

cβ(z)

1− c2β2(z)
R

)
is invertible on C+, we verify that

Im

(
−zIM −

cβ(z)

1− c2β2(z)
R

)
< 0 (4.5)

on C+. It is easy to check that

Im

(
−zIM −

cβ(z)

1− c2β2(z)
R

)
= −Imz IM −

cImβ(z)(1 + c2|β(z)|2)

|1− c2β2(z)|2
R < −Imz IM .

Therefore, Imz > 0 and Imβ(z) > 0 imply (4.5). The imaginary part of G(z) is

given by

Im(G(z)) = −G(z)Im

(
−zIM −

cβ(z)

1− c2β2(z)
R

)
(G(z))

∗
> Imz

(
G(z) (G(z))

∗)
> 0.

Therefore, ImG(z) > 0 if z ∈ C+. We finally remark that limy→+∞−iyG(iy) = IM ,

which implies that supy>ε ‖iyG(iy)‖ < +∞ for each ε > 0. Proposition 4.1 even-

tually implies that G ∈ SM (R). Moreover, if τG is the underlying M ×M positive

matrix valued measure, (4.1) leads to τG(R) = IM .

We prove similarly the analyticity of G(z) on C+. We first check that 1 −
zc2β2(z) 6= 0 if z ∈ C+, or equivalently that |1 − zc2β2(z)| 6= 0 if z ∈ C+. We

remark that

|1− zc2β2(z)| = |zβ(z)||c2β(z)− 1

zβ(z)
| > Imz Imβ(z) Im

(
c2β(z)− 1

zβ(z)

)
.

(4.6)

As β ∈ S(R+), it holds that Im
(
c2β(z)− 1

zβ(z)

)
> 0 if z ∈ C+. Therefore, 1 −

zc2β2(z) 6= 0 if z ∈ C+. As above, we verify that

Im

(
−zIM −

czβ(z)

1− z(cβ(z))2
R

)
= −Imz IM − Im

(
czβ(z)

1− z(cβ(z))2

)
R < −Imz IM .

(4.7)
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For this, we remark that

Im

(
czβ(z)

1− z(cβ(z))2

)
=

c

|1− z(cβ(z))2|2
(
Im(zβ(z)) + |zcβ(z)|2Imβ(z)

)
> 0

if z ∈ C+, which, of course, leads to (4.7). Therefore, matrix(
−zIM −

czβ(z)

1− z(cβ(z))2
R

)
is invertible if z ∈ C+, and G is analytic on C+. More-

over, we obtain immediately that

Im(G(z)) = G(z)

(
Imz IM + Im

(
czβ(z)

1− z(cβ(z))2

)
R

)
(G(z))∗ > Imz (G(z)G(z)∗) > 0

(4.8)

Im(zG(z)) = G(z)Im

(
czβ(z)

1− z(cβ(z))2

)
R(G(z))∗ > 0

for z ∈ C+. As above, it holds that limy→+∞−iyG(iy) = I and that

supy>ε ‖iyG(iy)‖ < +∞ for each ε > 0. This implies that G ∈ SM (R+), and that

if τG represents the associated M ×M matrix-valued measure, then τG(R+) = I.

In order to establish (4.3), we follow [15, Lemma 3.1]. More precisely, we remark

that

ImG(z) = Imz

∫
R+

dτG(λ)

|λ− z|2
<
τG(R+)

Imz
=

I

Imz
.

Therefore, (4.8) leads to (G(z)G(z)∗) ≤ I
(Imz)2

. The other statement of (4.3) is

proved similarly and this completes the proof. �

Lemma 4.2. We consider a sequence (βN )N≥1 of elements of S(R+) whose asso-

ciated positive measures (τN )N≥1 satisfy for each N ≥ 1

τN (R+) =
1

M
TrRN (4.9)

as well as ∫
R+

λ d τN (λ) = cN
1

M
TrRN

1

M
TrR2

N . (4.10)

Then, it exist nice constants ω, κ such that

ImβN (z) ≥ κ Imz

(ω2 + |z|2)
(4.11)

and ∣∣∣1− z (cNβN (z))
2
∣∣∣ ≥ κ (Imz)3

(ω2 + |z|2)2
(4.12)

for each z ∈ C+ and for each N ≥ 1. Moreover, if βN (z) is defined by βN (z) =

z βN (z2), then, we also have

ImβN (z) ≥ κ (Imz)
3

(ω2 + |z|4)
(4.13)
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and ∣∣∣1− (cNβN (z))
2
∣∣∣ ≥ κ (Imz)6

(ω2 + |z|4)2
(4.14)

for each z ∈ C+ and for each N ≥ 1.

Proof. We first establish (4.11). ImβN (z) is given by

ImβN (z) = Imz

∫
R+

d τN (λ)

|λ− z|2
.

For each ω > 0, it is clear that∫
R+

d τN (λ)

|λ− z|2
≥
∫ ω

0

d τN (λ)

|λ− z|2
≥ τN ([0, ω])

2(λ2 + |z|2)
.

Assumption (2.7) and (4.10) imply that the sequence (τN )N≥1 is tight. For each

ε > 0, it thus exists ω > 0 for which τN (]ω,+∞[) < ε for each N , or equivalently,

τN ([0, ω]) > τN (R+) − ε. As τN (R+) = 1
MTr(RN ) > a, we choose ε = a/2, and

obtain that the corresponding ω verifies τN ([0, ω]) > a/2 for each N . This completes

the proof of (4.11). We now verify (4.12). For this, we use (4.6). As Im
(

1
zβN (z)

)
< 0,

it holds that Im
(
c2NβN (z)− 1

zβN (z)

)
≥ c2N ImβN (z). Therefore, we obtain that∣∣∣1− z (cNβN (z))
2
∣∣∣ ≥ c2N Imz (ImβN (z))

2
(4.15)

which implies (4.12).

We finally verify (4.13) and (4.14). For this, we first express βN (z) as

βN (z) = zβN (z2) =

∫
R+

z

λ− z2
d τN (λ)

which leads immediately to

ImβN (z) = Imz

∫
R+

λ+ |z|2

|λ− z2|2
d τN (λ) ≥ Imz |z|2

∫
R+

1

|λ− z2|2
d τN (λ)

≥ (Imz)3

∫
R+

1

|λ− z2|2
d τN (λ).

We observe that for ω > 0, then,∫
R+

1

|λ− z2|2
d τN (λ) ≥

∫ ω

0

1

|λ− z2|2
d τN (λ) ≥ 1

2(ω2 + |z|4)
τN ([0, ω]).

As justified above, it is possible to choose ω for which τN ([0, ω]) ≥ a
2 for each N .

This leads to (4.13).

We now remark that |1− c2Nβ2
N | = |βN || 1

βN
− c2NβN |. As ImβN > 0 on C+, it

holds that ∣∣∣∣ 1

βN
− c2NβN

∣∣∣∣ ≥ ∣∣∣∣Im( 1

βN
− c2NβN

)∣∣∣∣ ≥ c2N ImβN .
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Using that |βN | ≥ ImβN , we eventually obtain that

|1− c2Nβ2
N | ≥ c2N (ImβN )

2

which, in turn, implies (4.14). �

5. Expression of matrix E{Q} obtained using the integration by

parts formula

We now express E{Q(z)} using the integration by parts formula and deduce

from this an approximate expression of E(Q(z)). For this, we have first to es-

tablish some useful properties of E{Q(z)} that follow from the invariance prop-

erties of the probability distribution of the observations (yn)n=1,...,N . In the fol-

lowing, for k, l ∈ {1, 2, . . . , L}, we denote by Qk,l
pp and Qk,l

ff the M × M ma-

trices whose entries are given by
(
Qk,l

pp

)
m,n

= (Qpp)(k−1)M+m,(l−1)M+n and(
Qk,l

ff

)
m,n

= (Qff )(k−1)M+m,(l−1)M+nfor each m,n ∈ {1, 2, . . . ,M}.

Lemma 5.1. The matrices E{Qpp} and E{Qff} are block diagonal, i.e. E
(
Qk,l

pp

)
=

E{Qk,l
ff } = 0 if k 6= l, and

TrE{Qpp}(IL ⊗R) = TrE{Qff}(IL ⊗R), (5.1)

E{Qpf} = E{Qfp} = 0. (5.2)

Proof. To prove (5.2), we consider the new set of vectors zk = e−ikθyk and

construct the matrices Zp, Zf in the same way as Yp and Yf . It is clear that

sequence (zn)n∈Z has the same probability distribution that (yn)n∈Z. Zp and Zf
can be expressed as

Zp =

e
−iθIM . . . 0

...
. . .

...

0 . . . e−LiθIM

Yp

1 . . . 0
...

. . .
...

0 . . . e−(N−1)iθ

 ,

Zf = e−Liθ

e
−iθIM . . . 0

...
. . .

...

0 . . . e−LiθIM

Yf

1 . . . 0
...

. . .
...

0 . . . e−(N−1)iθ

 .

Therefore, it holds that

ZfZ
∗
pZpZ

∗
f =

e
−iθIM . . . 0

...
. . .

...

0 . . . e−LiθIM

YfY
∗
p YpY

∗
f

e
iθIM . . . 0

...
. . .

...

0 . . . eLiθIM

 .

Similarly to Q we define matrix QZ =
(
−zIML

1
N ZfZ

∗
p

1
N ZpZ

∗
f −zIML

)−1

and obtain immediately
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that

E{QZ
pp} =

e
−iθIM . . . 0

...
. . .

...

0 . . . e−LiθIM

E{Qpp}

e
iθIM . . . 0

...
. . .

...

0 . . . eLiθIM

 .

Since E{QZ
pp} = E{Qpp}, then for any M ×M block E{Qpp

j,k}, we have

E{Qpp
j,k} = e−jiθE{Qpp

j,k}ekiθ = e(k−j)iθE{Qpp
j,k}.

This proves that E{Qpp
j,k} = 0 if k 6= j as expected. A similar proof leads to the

conclusion that E{Qff} is block diagonal. Moroever, the equality E{QZ
fp} = E{Qfp}

implies that

E{QZ
fp} = e−Liθ

e
−iθIM . . . 0

...
. . .

...

0 . . . e−LiθIM

E{Qfp}

e
iθIM . . . 0

...
. . .

...

0 . . . eLiθIM

 .

Therefore, each M × M block Qfp
j,k of Qfp verifies E{Qfp

j,k} =

e−(L+j−k)iθE{Qfp
j,k}. As j − k ∈ {−(L − 1), . . . , L − 1}, this implies that

E{Qfp
j,k} = 0. This leads immediately to E{Qfp} = 0. We obtain similarly that

E{Qpf} = 0.

To prove (5.1) we consider the sequence z defined by zn = y−n+N+2L for each

n. Again, the distribution of zn will remain the same and it is easy to see that Zp
and Zf are given by

Zf =

 0 . . . IM
...

...

IM . . . 0

Yp

0 . . . 1
...

...

1 . . . 0

 ,

Zp =

 0 . . . IM
...

...

IM . . . 0

Yf

0 . . . 1
...

...

1 . . . 0

 .

From this, we obtain that

E{QZ
pp} =

 0 . . . IM
...

...

IM . . . 0

E{Qff}

 0 . . . IM
...

...

IM . . . 0

 .

As E{QZ
pp} = E{Qpp}, this immediately implies that E{Qff

j,j} = E{Qpp
L−j,L−j},

and, as a consequence, that E{TrQpp(IL ⊗R)} = E{TrQff (IL ⊗R)}, as expected.

�

In order to present the following approximation of E(QN (z)), we introduce some

useful notations. αN (z) is the function defined by

αN (z) =
1

ML
Tr (E{QN (z)(IL ×RN )}) . (5.3)
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αN is clearly an element of S(R+). In order to evaluate its associated positive

measure µN , we denote by µ̂N the positive measure defined by

dµ̂N (λ) =
1

ML

ML∑
i=1

f̂∗i (IL ⊗R)f̂i δλ̂i
, (5.4)

where we recall that (λ̂i)i=1,...,ML and (f̂i)i=1,...,ML represent the eigenvalues and

eigenvectors of WfW
∗
pWpW

∗
f . We remark that µ̂N is carried by R+ and that its

mass µ̂N (R+) coincides with 1
MTrRN . Then, measure µN is defined by∫

R+

φ(λ) dµN (λ) = E
(∫

R+

φ(λ) dµ̂N (λ)

)
(5.5)

and satisfies µN (R+) = 1
MTrRN . We also define αN (z) as the function

αN (z) = zαN (z2) (5.6)

which, due to the identity Qpp(z) = zQ(z2), is also given by

αN (z) =
1

ML
E {TrQN,pp(z)(IL ⊗RN )} . (5.7)

Lemma 4.1 implies that αN ∈ S(R) and that the M ×M matrix-valued functions

SN (z) and SN (z) defined by

SN (z) = −
(
zIM +

cNzαN (z)

1− c2NzαN (z)2
RN

)−1

(5.8)

and

SN (z) = −
(

cNα(z)

1− c2Nα2(z)
R+ z

)−1

= zSN (z2) (5.9)

belong to SM (R+) and SM (R) respectively. We are now in position to introduce

the main result of this section.

Theorem 5.1. The matrix E(QN (z)) can be written as

E{QN (z)} = IL ⊗ SN (z)− EN (z) (IL ⊗ SN (z)) , (5.10)

where EN (z) is an error term such that∣∣∣∣ 1

ML
TrEN (z)FN

∣∣∣∣ ≤ κ
1

N2
P1(|z|)P2(

1

Imz
) (5.11)

for each z ∈ C+ and for each deterministic ML×ML sequence of matrices (FN )N≥1

such that supN≥1 ‖FN‖ ≤ κ.

In order to establish Theorem 5.1, we express E{Q(z)} for z ∈ C+ by using

the integration by parts formula (see Proposition 2.1), and deduce from that the

expression (5.10) of E{Q(z)}. The properties of the error term EN (z) is finally de-

duced from the results of section 3.
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We recall that matrix M is defined by (2.3). In order to express E{Q(z)} for

z ∈ C+, we use the identity

zQ(z) = −I2ML + Q(z)M = −I2ML +

N∑
j=1

Q(z)

(
0 wf,jw

∗
p,j

wp,jw
∗
f,j 0

)
. (5.12)

For every m1,m2 = 1, . . . ,M , i1 = 1, . . . , 2L and i2 = 1, . . . , L we denote by Âm1m2
i1i2

the 2N × 2N matrix defined by

Âm1m2
i1i2

=

(
Âm1m2
i1i2

(pp) Âm1m2
i1i2

(pf)

Âm1m2
i1i2

(fp) Âm1m2
i1i2

(ff)

)
, (5.13)

where the 4 N ×N blocks are given by

(Âm1m2
i1i2

(pf))jk =
(
Q
(

0
wp,j

))m1

i1
(w∗f,k)m2

i2
,

(Âm1m2
i1i2

(pp))jk =
(
Q
(

0
wp,j

))m1

i1
(w∗p,k)m2

i2
,

(Âm1m2
i1i2

(ff))jk = (Q (
wf,j

0 ))
m1

i1
(w∗f,k)m2

i2
,

(Âm1m2
i1i2

(fp))jk = (Q (
wf,j

0 ))
m1

i1
(w∗p,k)m2

i2
.

(5.14)

We also define matrix Am1m2
i1i2

by Am1m2
i1i2

= E{Âm1m2
i1i2

}. (5.12) implies that

zE{Qm1m2
i1i2

(z)} = −δi1,i2δm1,m2
+ TrAm1m2

i1i2
(pf)1i2≤L + TrAm1m2

i1i2−L(fp)1i2>L.

(5.15)

In the reminder of this paragraph, we evaluate for each i1, i2,m1,m2 the elements

of matrix Am1m2
i1i2

using (2.9) and (3.12). As we shall see, each element of Am1m2
i1i2

can

be written as a functional of matrix E{Q} plus an error term whose contribution

vanishes when N → +∞. Plugging these expressions of Am1m2
i1i2

into (5.15) will

establish an approximate expression of E{Q}. As the calculations are very tedious,

we just indicate how each element (Am1m2
i1i2

(ff))j,k of matrix Am1m2
i1i2

(ff) can be
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evaluated. By using integration by parts formula (2.9) and (3.12) we obtain

E

{(
Q

(
wf,j

0

))m1

i1

(w∗f,k)m2
i2

}
=

L∑
i3=1

∑
m3

E{Qm1m3
i1i3

Wm3

i3+L,jW
m2

i2+L,k}

=

L∑
i3=1

∑
i′,j′

m′,m3

E{Wm3

i3+L,jW
m′

i′,j′} × E

∂
(
Qm1m3
i1i3

W
m2

i2+L,k

)
∂W

m′

i′,j′

 =
1

N

L∑
i3=1

∑
i′,j′

m′,m3

Rm3m′

× δi3+L+j,i′+j′E

{
Qm1m3
i1i3

δm2,m′δi2+L,i′δk,j′ +W
m2

i2+L,k

∂Qm1m3
i1i3

∂W
m′

i′,j′

}

=
1

N

L∑
i3=1

M∑
m3=1

E
{
Qm1m3
i1i3

Rm3m2
δi3,i2−(j−k)

}
− 1

N

∑
i3,j
′

m3,m
′

L∑
i′=1

Rm3m′δi3+L+j,i′+j′

× E
{
W

(f)m2

i2,k

(
Q
(wf,j′

0

))m1

i1
Qm′m3

i′+Li3

}
− 1

N

∑
i3,j
′

m3,m
′

2L∑
i′=L+1

Rm3m′δi3+L+j,i′+j′

× E
{
W

(f)m2

i2,k

(
Q
(

0
wp,j′

))m1

i1
Qm′m3

i′−Li3

}
=

1

N

L∑
i3=1

E
{((

Qpp

Qfp

)
(IL ⊗R)

)m1m2

i1i3

×δi3,i2−(j−k)

}
− 1

N

∑
m′,j′

L∑
i3,i′=1

δi3+L+j,i′+j′E
{(

Âm1m2
i1i2

(ff)
)
j′,k

(Qfp(IL ⊗R))m
′m′

i′i3

}

− 1

N

∑
m′,j′

L∑
i3,i′=1

δi3+j,i′+j′E
{(

Âm1m2
i1i2

(pf)
)
j′,k

(Qpp(IL ⊗R))m
′m′

i′i3

}
.

Now we define for every i1 = 1, . . . , 2L, i2 = 1, . . . , L and m1,m2 = 1, . . . ,M the

2N × 2N matrix Bm1m2
i1i2

with N ×N blocks(
Bm1m2
i1i2

(fp)
)
j,k

=
1

N
E
{(

Qpp

Qfp

)
(IL ⊗R)

}m1,m2

i1,i2−(j−k)−L
11≤i2−(j−k)−L≤L,(

Bm1m2
i1i2

(ff)
)
j,k

=
1

N
E
{(

Qpp

Qfp

)
(IL ⊗R)

}m1,m2

i1,i2−(j−k)
11≤i2−(j−k)≤L,(

Bm1m2
i1i2

(pp)
)
j,k

=
1

N
E
{(

Qpf

Qff

)
(IL ⊗R)

}m1,m2

i1,i2−(j−k)
11≤i2−(j−k)≤L,(

Bm1m2
i1i2

(pf)
)
j,k

=
1

N
E
{(

Qpf

Qff

)
(IL ⊗R)

}m1,m2

i1,i2−(j−k)+L
11≤i2−(j−k)+L≤L.

For every ML × ML block matrix D, we define the sequence

(τ (M)(D)(l))l=−L+1,...,L−1 as

τ (M)(D)(l) =
1

ML
TrD(J

ε(l)
L ⊗ IM ) =

1

ML

M∑
m=1

∑
i−i′=l

Dm,m
i,i′ (5.16)
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and the N ×N Toeplitz matrix T (M)
N,L (D) given by

T (M)
N,L (D) =

L−1∑
l=−L+1

τ (M)(D)(l)J
∗ε(l)
N . (5.17)

In other words, the entries of T (M)
N,L (D) are defined by the relation[

T (M)
N,L (D)

]
j1,j2

= τ (M)(D)(j1 − j2) 1−(L−1)≤j1−j2≤L−1. (5.18)

We observe that if D is block diagonal, i.e. if Dm1,m2

i1,i2
= 0 for each m1,m2 when

i1 6= i2, then, matrix T (M)
N,L (D) coincides with the diagonal matrix T (M)

N,L (D) =(
1
MLTrD

)
IN . It clear that

1

N

L∑
i3=1

E
{((

Qpp

Qfp

)
(IL ⊗R)

)m1m2

i1i3
δi3,i2−(j−k)

}
=
(
Bm1m2
i1i2

(ff)
)
j,k
.

In order to rewrite the term

1

N

∑
m′,j′

L∑
i3,i′=1

δi3+L+j,i′+j′ × E
{(

Âm1m2
i1i2

(ff)
)
j′,k

(Qfp(IL ⊗R))m
′m′

i′i3

}
in a more convenient way, we put l = i′ − i3, and remark that

1

N

∑
m′,j′

L∑
i3,i′=1

δi3+L+j,i′+j′ × E
{(

Âm1m2
i1i2

(ff)
)
j′,k

(Qfp(IL ⊗R))m
′m′

i′i3

}
=

ML

N

∑
m′

L−1∑
l=−(L−1)

E

{(
Âm1m2
i1i2

(ff)
)
L+j−l,k

1

ML

∑
i′−i3=l

(Qfp(IL ⊗R))m
′m′

i′i3

}
.

Using the definition (5.16), this can be rewritten as

1

N

∑
m′,j′

L∑
i3,i′=1

δi3+L+j,i′+j′ × E
{(

Âm1m2
i1i2

(ff)
)
j′,k

(Qfp(IL ⊗R))m
′m′

i′i3

}
=

cN

L−1∑
l=−(L−1)

E
{(

Âm1m2
i1i2

(ff)
)
L+j−l,k

τM (Qfp(IL ⊗R)) (l)

}
.

We introduce j′ = L+ j − l, and using (5.18), we notice that

1

N

∑
m′,j′

L∑
i3,i′=1

δi3+L+j,i′+j′ × E
{(

Âm1m2
i1i2

(ff)
)
j′,k

(Qfp(IL ⊗R))m
′m′

i′i3

}
=

cN E


N∑
j′=1

[
T (M)
N,L (Qfp(IL ⊗R))

]
L+j,j′

(
Âm1m2
i1i2

(ff)
)
j′,k

 =

cNE
{(

JLNT
(M)
N,L (Qfp(IL ⊗R))Âm1m2

i1i2
(ff)

)
j,k

}
.
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We obtain similarly that

1

N

∑
m′,j′

L∑
i3,i′=1

δi3+j,i′+j′E
{(

Âm1m2
i1i2

(pf)
)
j′,k

(Qpp(IL ⊗R))m
′m′

i′i3

}
=

cNE
{(
T (M)
N,L (Qpp(IL ⊗R))Âm1m2

i1i2
(pf)

)
j,k

}
.

Therefore, matrix Am1m2
i1i2

(ff) is also given by(
Am1m2
i1i2

(ff)
)
j,k

=
(
Bm1m2
i1i2

(ff)
)
j,k
− cNE

{(
JLNT

(M)
N,L (Qfp(IL ⊗R))Âm1m2

i1i2
(ff)

)
j,k

}
− cNE

{(
T (M)
N,L (Qpp(IL ⊗R))Âm1m2

i1i2
(pf)

)
j,k

}
.

Writing Qfp and Qpp as Qfp = E{Qfp} + Q◦fp = Q◦fp (see (5.2)) and Qpp =

E{Qpp}+ Q◦pp, we obtain that(
Am1m2
i1i2

(ff)
)
j,k

=
(
Bm1m2
i1i2

(ff)
)
j,k
−cNE

{(
T (M)
N,L (Qpp(IL ⊗R))Am1m2

i1i2
(pf)

)
j,k

}
− cNE

{(
JLNT

(M)
N,L (Q◦fp(IL ⊗R))Âm1m2

i1i2
(ff)

)
j,k

}
− cNE

{(
T (M)
N,L (Q◦pp(IL ⊗R))Âm1m2

i1i2
(pf)

)
j,k

}
.

We define the N ×N matrix ∆m1m2
i1i2

(ff) by

∆m1m2
i1i2

(ff) = −cNE
{
JLNT

(M)
N,L (Q◦fp(IL ⊗R))Âm1m2

i1i2
(ff)

}
− cNE

{
T (M)
N,L (Q◦pp(IL ⊗R))Âm1m2

i1i2
(pf)

}
.

Dropping the indices i1, i2, m1, m2, we eventually obtain that

Aff = Bff − cNE
{
T (M)
N,L (Qpp(IL ⊗R))

}
Apf + ∆ff .

Using similar calculations, it is possible to establish that:

Apf = Bpf − cNE
{
T (M)
N,L (Qff (IL ⊗R))

}
Aff + ∆pf ,

Afp = Bfp − cNE
{
T (M)
N,L (Qpp(IL ⊗R))

}
App + ∆fp,

App = Bpp − cNE
{
T (M)
N,L (Qff (IL ⊗R))

}
Afp + ∆pp,

where ∆pf , ∆fp, and ∆pp are defined as

∆pf = −cNE
{
T (M)
N,L (Q◦pf (IL ⊗R))J∗LN Âpf

}
− cNE

{
T (M)
N,L (Q◦ff (IL ⊗R))Âff

}
,

∆fp = −cNE
{
JLNT

(M)
N,L (Q◦fp(IL ⊗R))Âfp

}
− cNE

{
T (M)
N,L (Q◦pp(IL ⊗R))Âpp

}
,

∆pp = −cNE
{
T (M)
N,L (Q◦pf (IL ⊗R))J∗LN Âpp

}
− cNE

{
T (M)
N,L (Q◦ff (IL ⊗R))Âfp

}
.
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By Lemma 5.1, matrices E{Qff} and E{Qpp} are block diagonal. Therefore, matri-

ces E{T (M)
N,L (Qff (IL⊗R))} and E{T (M)

N,L (Qpp(IL⊗R))} reduce to 1
MLE{TrQff (IL⊗

R)} IN and 1
MLE{TrQpp(IL ⊗ R)} IN respectively. As E{TrQff (IL ⊗ R)} =

E{TrQpp(IL ⊗R)} (see (5.1)), we eventually obtain that IN
cN
ML

E {TrQpp(IL ⊗R)} IN
cN
ML

E {TrQpp(IL ⊗R)} IN IN

A = B + ∆. (5.19)

Using (5.7), this can be written as(
IN cN αN IN

cN αN IN IN

)
A = B + ∆.

Lemma 4.1 implies that

1− (cNα(z))
2 6= 0

if z ∈ C+. This implies that the matrix governing the linear system (5.19) is invert-

ible for z ∈ C+. Matrix H given by

H =

(
IN cNα(z) IN

cNα(z) IN IN

)−1

.

is thus well defined for each z ∈ C+. The blocks of H are of course given by

Hpp = Hff =
1

1− c2Nα(z)
2 IN ,

Hpf = Hfp = − cNα(z)

1− c2Nα(z)
2 IN .

(5.19) implies that A = HB + H∆. (5.15) implies that we only need to evaluate

matrices Apf and Afp. We obtain that these matrices are given by

Apf = HppBpf + HpfBff + Hpp∆pf + Hpf∆ff ,

Afp = HfpBpp + HffBfp + Hfp∆pp + Hff∆fp.

This and definition (5.14) of matrix Am1m2
i1i2

lead immediately to(
E
{

Q
(

0 WfW
∗
p

WpW
∗
f 0

)})m1m2

i1i2
= TrAm1m2

i1i2
(pf)1i2≤L + TrAm1m2

i1i2−L(fp)1i2>L =

1

1− c2Nα2
Tr
(
Bpf − cNαBff + ∆pf − cNα∆ff

)m1m2

i1i2
1i2≤L

+
1

1− c2Nα2
Tr
(
Bfp − cNαBpp + ∆fp − cNα∆pp

)m1m2

i1i2−L
1i2>L.

It is easy to notice that Tr (Bfp)
m1m2

i1i2
= Tr (Bpf )

m1m2

i1i2
= 0, and Tr (Bpp)

m1m2

i1i2
=

E{(QΠff (I2L⊗R))
m1m2

i1i2+L}, Tr (Bff )
m1m2

i1i2
= E{(QΠpp(I2L⊗R))

m1m2

i1i2
}, where
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Πff =
(

0 0
0 IML

)
and Πpp =

(
IML 0

0 0

)
. Hence, using that E{Qpf} = E{Qfp} = 0,

we obtain that(
E
{

Q
(

0 WfW
∗
p

WpW
∗
f 0

)})m1m2

i1i2
= − cNα

1− c2Nα2

(
E{QΠpp(I2L ⊗R)}

+E{QΠff (I2L⊗R)}
)m1m2

i1i2
+Em1m2

i1i2
= − cNα

1− c2Nα2

(
E{Q(I2L⊗R)}

)m1m2

i1i2
+Em1m2

i1i2
,

where Em1m2
i1i2

represents the remaining terms depending on the entries of matrix

∆m1m2
i1i2

. Using the identity (5.12), we obtain that

zE{Q}+ I2ML = E
{

Q
(

0 WfW
∗
p

WpW
∗
f 0

)}
= − cNα

1− c2Nα2
E{Q}(I2L ⊗R) + E ,

(5.20)

which immediately leads to

−E{Q}
(

cNα

1− c2Nα2
(I2L ⊗R) + z

)
= I2ML − E

or, equivalently,

E{Q} (I2L ⊗ S)
−1

= I2ML − E ,

where we recall that S is defined by (5.9). As E{Q} is block diagonal, (5.20) implies

that matrix E is also block diagonal, i.e. Efp = Epf = 0. Moreover, it holds that

E{Q(z)} = I2L ⊗ S(z)− E(z) (I2L ⊗ S(z)) . (5.21)

This allows to evaluate E{Q(z)} by identification of the first diagonal blocks of the

left and right hand sides of (5.21). We thus obtain immediately that

E{Q(z2)} = IL ⊗ S(z2)− Epp(z)
(
IL ⊗ S(z2)

)
(5.22)

for each z ∈ C+, where we recall that S(z) is given by(5.8). Therefore, Epp(z) only

depends on z2. As the image of C+ by the transformation z → z2 is C − R+, we

obtain that Epp(z) = E(z2) for some function E analytic in C−R+. This discussion

leads to

E{Q(z)} = IL ⊗ S(z)− E(z) (IL ⊗ S(z)) (5.23)

for each z ∈ C− R+.

In the following, we prove (5.11). For this, we establish following result.

Proposition 5.1. For each deterministic sequence of ML × ML matrices

(F1,N )N≥1 such that supN≥1 ‖F1,N‖ ≤ κ, then∣∣∣∣ 1

ML
Tr(Epp(z)F1,N )

∣∣∣∣ ≤ κ 1

N2
P1(|z2|)P2(

1

Imz2
) (5.24)

holds for each z ∈ C+ for which Imz2 > 0, where P1 and P2 are 2 nice polynomials.
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Proof. We define FN as the 2ML× 2ML matrix FN =

(
F1,N 0

0 0

)
and remark

that
1

ML
TrEF =

1

ML
Tr(Epp(z)F1,N ) can be written as

1

ML
TrEF =

1

1− c2α2

∑
i1,i2
m1,m2

( (
Tr∆m1m2

i1i2
(pf)− cαTr∆m1m2

i1i2
(ff)

)
1i2≤L

+
(
Tr∆m1m2

i1i2−L(fp)− cαTr∆m1m2

i1i2−L(pp)
)
1i2>L

)
Fm2m1
i2i1

. (5.25)

As matrix F verifies Fm2,m1

i2,i1
= 0 if i2 > L,

1

ML
TrEF is reduced to the first term

of the right hand side of (5.25) that we now evaluate.

∑
i1,i2
m1,m2

Tr∆m1m2
i1i2

(pf)Fm2m1
i2i1

1i2≤L = c
∑
i1,i2
m1,m2

∑
j,k

E
{
T MN,L(Q◦ff (IL⊗R))jk

(
Q (

wf,k

0 )
)m1

i1

×
(
w∗f,j

)m2

i2
Fm2m1
i2i1

+(T MN,L(Q◦pf (IL⊗R))J∗LN )jk

(
Q
(

0
wp,k

) )m1

i1

(
w∗f,j

)m2

i2
Fm2m1
i2i1

}
1i2≤L

= cTrE
{
T MN,L(Q◦ff (IL⊗R))

(
Wf

0

)∗
FQ

(
Wf

0

)
+T MN,L(Q◦pf (IL⊗R))J∗LN

(
Wf

0

)∗
FQ

(
0
Wp

)}
= cTrE

{
T MN,L(Q◦ff (IL ⊗R)) (ΠpfW )

∗
FQ (ΠpfW )

+ T MN,L(Q◦pf (IL ⊗R))J∗LN (ΠpfW )
∗
FQ (ΠfpW )

}
.

Similar calculations lead to the following expression of
1

ML
TrEF :

1

ML
TrEF =

c

(1− c2Nα2)

1

ML
TrE

{
T MN,L(Q◦ff (IL ⊗R)) (ΠpfW )

∗
FQ (ΠpfW )

+T MN,L(Q◦pf (IL⊗R))J∗LN (ΠpfW )
∗
FQ (ΠfpW )−cαT MN,L(Q◦pp(IL⊗R)) (ΠpfW )

∗
FQ (ΠfpW )

− cαJLNT MN,L(Q◦fp(IL ⊗R)) (ΠpfW )
∗
FQ (ΠpfW )

}
. (5.26)
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We now evaluate the right hand side of (5.26). The Schwartz inequality leads to∣∣∣∣ 1

ML
TrE

{
T MN,L(Q◦ff (IL ⊗R)) (ΠpfW )

∗
FQ (ΠpfW )

}∣∣∣∣
=

∣∣∣∣∣
L−1∑

l=−L+1

E
{
τ (M)(Q◦ff (IL ⊗R))(l)

1

ML
Tr
(
J
∗ε(l)
N (ΠpfW )

∗
FQ (ΠpfW )

)}∣∣∣∣∣
=

∣∣∣∣∣
L−1∑

l=−L+1

E
{ 1

ML
Tr(Q◦ff (IL ⊗R)(J

ε(l)
L ⊗ IM ))

1

ML
Tr
(
J
∗ε(l)
N (ΠpfW )

∗
FQ (ΠpfW )

)◦}∣∣∣∣∣
≤

L−1∑
l=−L+1

Var

{
1

ML
Tr(Qff (IL ⊗R)(J

ε(l)
L ⊗ IM ))

}1/2

×Var

{
1

ML
Tr
(
J
∗ε(l)
N (ΠpfW )

∗
FQ (ΠpfW )

)}1/2

.

Using Corollary 3.1, we obtain that

Var

{
1

ML
Tr(Qff (IL ⊗R)(J

ε(l)
L ⊗ IM ))

}
≤ 1

N2
P1(|z2|)P2

(
1

Imz2

)
and that

Var

{
1

ML
Tr
(
J
∗ε(l)
N (ΠpfW )

∗
FQ (ΠpfW )

)}
≤ κ2 1

N2
P1(|z2|)P2

(
1

Imz2

)
.

Since L does not grow with N , this implies immediately that∣∣∣∣ 1

ML
TrE

{
T MN,L(Q◦ff (IL ⊗R)) (ΠpfW )

∗
FQ (ΠpfW )

}∣∣∣∣ ≤ κ 1

N2
P1(|z2|)P2

(
1

Imz2

)
holds. It can be shown similarly that the 3 other normalized traces can be upper

bounded by the same kind of term. It remains to control the terms 1
1−(cN αN )2

and αN

1−(cN αN )2 . For this, we use Lemma 4.2 for the choice βN (z) = αN (z). It is

sufficient to verify that the measures (µN )N≥1 associated to functions (αN (z))N≥1

verify (4.9) and (4.10). For each N , it holds that∫ +∞

0

dµN (λ) = E
{∫ +∞

0

d µ̂N (λ)
}

=
1

M
TrRN

and∫ +∞

0

λ dµN (λ) = E
(∫ +∞

0

λ d µ̂N (λ)

)
= E

(
1

ML
Tr((IL ⊗R)WfW

∗
pWpW

∗
f )

)
.

A straightforward calculation leads to E
{

1
MLTr(WfW

∗
pWpW

∗
f )
}

= cN
M2 TrRNTrR2

N .

Therefore, (4.12) implies that

1

|1− z(cNαN (z))2|
≤ P1(|z|)P2

(
1

Imz

)



March 3, 2020 10:8 WSPC/INSTRUCTION FILE revised-version˙2

35

for each z ∈ C+, and if z2 ∈ C+, it holds that

1

|1− z2(cNαN (z2))2|
≤ P1(|z2|)P2

(
1

Imz2

)
.

As αN (z) = zαN (z2), this is equivalent to

1

1− (cN αN )2
≤ P1(|z2|)P2

(
1

Imz2

)
.

Finally, we remark that |αN (z)| ≤ 1
MTrRN

1
Imz ≤ b

1
Imz for each z ∈ C+. Therefore,

if z2 ∈ C+, it holds that |αN (z2)| ≤ b 1
Imz2 and that |αN (z)| = |z||αN (z2)| verifies

|αN (z)| ≤ b|z| 1

Imz2
≤ b(1 + |z|2)

1

Imz2
.

This completes the proof of Proposition 5.1. �

Proposition 5.1 immediately leads to the following Corollary.

Corollary 5.1. For each sequence (FN )N≥1 of deterministic ML×ML matrices

such that supN≥1 ‖FN‖ ≤ κ we have∣∣∣∣ 1

ML
Tr [(E{QN (z)} − IL ⊗ SN (z))FN ]

∣∣∣∣ ≤ κ 1

N2
P1(|z|)P2

(
1

Imz2

)
(5.27)

for each z ∈ C+. In particular, it holds that∣∣∣∣ 1

ML
Tr [(E{QN (z)} − IL ⊗ SN (z))]

∣∣∣∣ ≤ κ 1

N2
P1(|z|)P2

(
1

Imz2

)
. (5.28)

Proof. (5.22) implies that∣∣∣∣ 1

ML
Tr
[(
E{QN (z2)} − IL ⊗ SN (z2)

)
FN
]∣∣∣∣ =

∣∣∣∣ 1

ML
TrEpp(z)

(
IL ⊗ SN (z2)

)
FN

∣∣∣∣
As Epp(z) = E(z2) and ‖SN (z2)‖ ≤ 1

Imz2 if z2 ∈ C+, the application of Proposition

5.1 to matrix F1,N = SN (z2)FN implies that∣∣∣∣ 1

ML
Tr
[(
E{QN (z2)} − IL ⊗ SN (z2)

)
FN
]∣∣∣∣ ≤ κ 1

N2
P1(|z2|)P2

(
1

Imz2

)
for each z such that z2 ∈ C+. Exchanging z2 by z eventually establishes (5.27).

This, in turn, completes the proof of Theorem 5.1.

6. Deterministic equivalent of E{Q}

6.1. The canonical equation

Proposition 6.1. If z ∈ C+, there exists a unique solution of the equation

tN (z) =
1

M
TrRN

(
−zIM −

zcN tN (z)

1− zc2N t2N (z)
RN

)−1

(6.1)
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satisfying tN (z) ∈ C+ and ztN (z) ∈ C+. Function z → tN (z) is an element of

S(R+), and the associated positive measure, denoted by µN , verifies

µN (R+) =
1

M
TrRN ,

∫
R+

λ dµN (λ) = cN
1

M
TrRN

1

M
TrR2

N . (6.2)

Moreover, it exists nice constants β and κ such that

1∣∣∣1− z (cN tN (z))
2
∣∣∣ ≤ κ (β2 + |z|2)2

(Imz)
3 (6.3)

for each N . Finally, the M ×M valued function TN (z) defined by

TN (z) = −
(
zIM +

zcN tN (z)

1− zc2N t2N (z)
RN

)−1

(6.4)

belongs to SM (R+). The associated M×M positive matrix-valued measure, denoted

νTN , verifies

νTN (R+) = IM (6.5)

as well as

µN =
1

M
TrRNν

T
N . (6.6)

Proof. As N is assumed to be fixed in the statement of the Proposition, we

omit to mention that tN , TN , µN , . . . depend on N in the course of the proof. We

first prove the existence of a solution such that z → t(z) is an element of S(R+).

For this, we use the classical fixed point equation scheme. We define t0(z) = − 1
z ,

which is of course an element of S(R+), and generate sequence (tn(z))n≥1 by the

formula

tn+1(z) =
1

M
TrR

(
−zIM −

zctn(z)

1− zc2t2n(z)
R

)−1

.

We establish by induction that for each n, tn ∈ S(R+), and that its associated

measure µn verifies µn(R+) = 1
MTrR and∫ +∞

0

λµn(dλ) = c
1

M
Tr(R)

1

M
Tr(R2). (6.7)

Thanks to (2.7), this last property will imply that sequence (µn)n≥1 is

tight. We assume that tn indeed satisfies the above conditions, and prove

that tn+1(z) also meets these requirements. Lemma 4.1 implies that function

Tn(z) =

(
−zIM −

zctn(z)

1− zc2t2n(z)
R

)−1

is an element of SM (R+). According

to Proposition 4.1, to prove that tn+1(z) ∈ S(R+), we need to check that

Imtn+1(z), Imztn+1(z) > 0 if z ∈ C+, as well as that limy→+∞ iytn+1(iy) exists. As
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Tn ∈ SM (R+) and tn+1(z) = 1
MTrRTn(z), it is clear that Imtn+1(z), Imztn+1(z) >

0. Finally, it holds that

−iytn+1(iy) =
1

M
TrR

(
IM +

ciytn(iy)

iy − (ciytn(iy))2
R

)−1

.

Since tn(z) is a Stieltjes transform we have −iytn(iy) → µn(R+), which implies

that −iytn+1(iy)→ 1
MTrR, i.e. that µn+1(R+) = 1

MTrR.

We finally check that µn+1 satisfies (6.7). For this, we follow [16].∫ +∞

0

λµn+1(dλ) = lim
y→+∞

<
(
−iy(iy

1

M
TrRTn(iy) +

1

M
TrR)

)
.

We can express Tn as

Tn = −1

z

(
IM +

ctn
1− zc2t2n

R

)−1

= −1

z
+
R

z

ctn
1− zc2t2n

−
(

ctn
1− zc2t2n

)2

R2Tn,

from which it follows that

−z
(

1

M
Tr(zRTn(z)) +

1

M
TrR)

)
= − cztn

1− zc2t2n
1

M
TrR2 +

(
cztn

1− zc2t2n

)2
1

M
TrR3Tn.

Since −iytn(iy) → 1
MTrR and tn(iy) → 0 we can conclude that

−iy(iy 1
MTrRTn(iy) + 1

MTrR)→ c
M2 TrRTrR2 as expected.

We now prove that sequence tn converges towards a function t ∈ S(R+) verifying

equation (6.1). For this we evaluate θn = tn+1 − tn

θn =
1

M
TrR(Tn − Tn−1) =

1

M
TrRTn

zc(tn − tn−1)(1 + zc2tntn−1)

(1− zc2t2n)(1− zc2t2n−1)
RTn−1

= θn−1
zc(1 + zc2tntn−1)

(1− zc2t2n)(1− zc2t2n−1)

1

M
TrRTnRTn−1.

We denote by fn(z) the term defined by

fn(z) =
zc(1 + zc2tntn−1)

(1− zc2t2n)(1− zc2t2n−1)

1

M
TrRTnRTn−1. (6.8)

Lemma 4.1 implies that ‖Tk‖ ≤ 1
Imz and that |tk| ≤ b

Imz for each k ≥ 1 and each

z ∈ C+. Therefore, it holds that∣∣∣∣zc(1 + zc2tntn−1)
1

M
TrRTnRTn−1

∣∣∣∣ ≤ κ( |z|
(Imz)2

(
1 +

|z|
(Imz)2

))
.

Moreover, it is clear that for each k, |1 − zc2t2k| ≥ (1 − c2 |z|
(Imz)2 ). For each ε > 0

small enough, we consider the domain Dε defined by

Dε = {z ∈ C+,
|z|

(Imz)2
< ε}. (6.9)
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Then, for z ∈ Dε, it holds that

1

|1− zc2t2n|
1

|1− zc2t2n−1|
≤ 1

(1− c2ε)2

and that

|fn(z)| ≤ κ

(1− c2ε)2

(
ε+ ε2

)
.

We choose ε in such a way that κ
(1−c2ε)2

(
ε+ ε2

)
< 1/2. Then, for each z ∈ Dε, it

holds that

|θn| ≤
1

2
|θn−1|.

Therefore, for each z in Dε, (tn(z))n≥1 is a Cauchy sequence. We denote by t(z)

its limit. (tn(z))n≥1 is uniformly bounded on every compact set of C − R+. This

implies that (tn(z))n≥1 is a normal family on C − R+. We consider a converging

subsequence extracted from (tn(z))n≥1. The corresponding limit t∗(z) is analytic

over C−R+. If z ∈ Dε, t∗(z) must be equal to t(z). Therefore, the limits of all con-

verging subsequences extracted from (tn(z))n≥1 must coincide on Dε, and therefore

on C − R+. This implies that tn(z) converges uniformly on each compact subset

towards a function which is analytic C − R+, and that we also denote by t(z). It

is clear that t(z) verifies (6.1) and that t ∈ S(R+) and verifies (6.2). Moroever,

Lemma 4.1 implies that T ∈ SM (R+), while (6.6) and (6.5) are obtained immedi-

ately.

As (6.2) holds, (6.3) is a consequence of the application of Lemma 4.2 to the

function βN (z) = tN (z).

We now prove that if z ∈ C+ and t1(z) and t2(z) are 2 solutions of (6.1) such

that ti(z) and zti(z) belong to C+, i = 1, 2, then t1(z) = t2(z). In order to prove

this, we first establish the following useful Lemma.

Lemma 6.1. If z ∈ C+ and if t(z) verifies the conditions of Proposition 6.1, then,

it holds that

1− u(z) > 0 (6.10)

and

det(I−D) > 0, (6.11)

where

D =

(
u(z) v(z)

|z|2v(z) u(z)

)
, (6.12)

u(z) = c
|czt(z)|2 1

MTr(RT (z)(T (z))∗R)

|1− z(ct(z))2|2
, (6.13)

v(z) = c
1
MTr(RT (z)(T (z))∗R)

|1− z(ct(z))2|2
. (6.14)
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Proof. Using the equation t(z) = 1
MTrRT (z), we obtain immediately after some

algebra that(
Im(t(z))

Im(z)
Im(zt(z))

Im(z)

)
= D

(
Im(t(z))

Im(z)
Im(zt(z))

Im(z)

)
+

(
1
MTr(RT (z)(T (z))∗)

0

)
. (6.15)

The first component of (6.15) implies that

(1− u(z))
Im(t(z))

Im(z)
= v(z)

Im(zt(z))

Im(z)
+

1

M
Tr(RT (z)(T (z))∗).

Therefore, it holds that (1− u(z)) > 0. Plugging the equality

Im(t(z))

Im(z)
=

v(z)

1− u(z)

Im(zt(z))

Im(z)
+

1

1− u(z)

1

M
Tr(RT (z)(T (z))∗)

into the second component of (6.15) leads to(
1− u(z)− |z|

2v2(z)

1− u(z)

)
Im(zt(z))

Im(z)
=
|z|2v(z)

1− u(z)

1

M
Tr(RT (z)(T (z))∗) > 0

and to (6.11).

To complete the proof of the uniqueness, we assume that equation (6.1) has

2 solutions t1(z) and t2(z) such that ti(z) and zti(z) belong to C+ for i = 1, 2.

The proof of Lemma 4.1 (see in particular (4.6)) implies that for i = 1, 2, then

1 − z(cti(z))
2 6= 0 and matrix −zI − zcti(z)

1− zc2t2i (z)
R is invertible. We denote by

T1(z) and T2(z) the matrices defined by (6.4) when t(z) = t1(z) and t(z) = t2(z)

respectively. ui(z) and vi(z), i = 1, 2, are defined similarly from (6.13) and (6.14)

when t(z) = t1(z) and t(z) = t2(z). Using that ti(z) = 1
MTr(RTi(z)) for i = 1, 2,

we obtain immediately that

t1(z)− t2(z) = (u1,2(z) + zv1,2(z)) (t1(z)− t2(z)),

where

u1,2(z) = c
czt1(z)czt2(z) 1

MTr(RT1(z)RT2(z))

(1− z(ct1(z))2) (1− z(ct2(z))2)
(6.16)

and

v1,2(z) = c
1
MTr(RT1(z)RT2(z))

(1− z(ct1(z))2) (1− z(ct2(z))2)
. (6.17)

In order to prove that t1(z) = t2(z), it is sufficient establish that 1 − u1,2(z) −
zv1,2(z) 6= 0. For this, we prove the following inequality:

|1− u1,2(z)− zv1,2(z)| >
√

(1− u1(z))− |z|v1(z)
√

(1− u2(z))− |z|v2(z) (6.18)

which, by Lemma 6.1, implies 1 − u1,2(z) − zv1,2(z)) 6= 0. For this, we remark

that the Schwartz inequality leads to |u1,2(z)| ≤
√
u1(z)

√
u2(z) and |v1,2(z)| ≤√

v1(z)
√
v2(z). Therefore,

|1− u1,2(z)− zv1,2(z)| ≥ 1−
√
u1(z)

√
u2(z)−

√
|z|v1(z)

√
|z|v2(z).
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We now use the inequality
√
ab−

√
cd ≥

√
a− c

√
b− d, (6.19)

where a, b, c, d are positive real numbers such that a ≥ c and b ≥ d. (6.19)

for a = b = 1 and c = u1(z), d = u2(z) implies that 1 −
√
u1(z)

√
u2(z) ≥√

1− u1(z)
√

1− u2(z). Therefore, it holds that

|1− u1,2(z)− zv1,2(z)| ≥
√

1− u1(z)
√

1− u2(z)−
√
|z|v1(z)

√
|z|v2(z).

(6.19) for a = 1 − u1(z), b = 1 − u2(z), c = |z|v1(z) and d = |z|v2(z) eventually

leads to (6.18). This completes the proof of the uniqueness of the solution of (6.1)

and Proposition 6.1. �

Remark 6.1. (6.10) and (6.11) are still valid if z belongs to R−∗. To check this,

it is sufficient to remark if z = x ∈ R−∗, the fundamental equation (6.15) is still

valid, but Im(t(z))
Im(z) and Im(zt(z))

Im(z) have to be replaced by t
′
(x) and (xt(x))

′
where

′
denotes the differentiation operator w.r.t. x. The same conclusions are obtained

because t
′
(x) > 0 and (xt(x))

′
> 0 if x ∈ R−∗.

6.2. Convergence

In this paragraph, we establish that the empirical eigenvalue distribution ν̂N of

matrix Wf,NW
∗
p,NWp,NW

∗
f,N has almost surely the same deterministic behaviour

than the probability measure νN defined by

νN =
1

M
TrνTN , (6.20)

where we recall that νTN represents the positive matrix valued measure associated

to TN (z). For this, we first establish the following Proposition.

Proposition 6.2. For each sequence (FN )N≥1 of deterministic ML×ML matrices

such that supN≥1 ‖FN‖ ≤ κ, then,

1

ML
Tr [(E{QN (z)} − IL ⊗ TN (z))FN ]→ 0 (6.21)

holds for each z ∈ C− R+.

Proof. Corollary 5.1 implies that

1

ML
Tr(E{QN} − (IL ⊗ SN ))FN = O

(
1

N2

)
.

We have therefore to show that 1
MLTr (IL ⊗ (SN − TN ))FN → 0. It is easy to check

that

1

ML
Tr (IL ⊗ (S − T ))F =

1

ML
Tr(IL⊗S)

(
zcNα

1− zc2Nα2
− zcN t

1− zc2N t2

)
(IL⊗RT )F

=
zcN (α− t)(1 + zc2Nαt)

(1− zc2Nα2)(1− zc2N t2)

1

ML
Tr(IL ⊗ SRT )F. (6.22)
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We express α− t as α− 1
MTrRS + 1

MTrR(S − T ), and deduce from (6.22) that

1

ML
Tr (IL ⊗ (S − T ))F =

(
α− 1

M
TrRS

)
zcN (1 + zc2Nαt)

(1− zc2Nα2)(1− zc2N t2)

× 1

ML
Tr(IL⊗SRT )F+

1

M
TrR(S−T )

zcN (1 + zc2Nαt)

(1− zc2Nα2)(1− zc2N t2)

1

ML
Tr(IL⊗SRT )F.

(6.23)

(5.27) implies that α− 1
MTrRS = Oz( 1

N2 ). Therefore, in order to establish (6.21),

it is sufficient to prove that 1
MTrR(S − T ) → 0. For this, we take F = IL ⊗ R in

(6.23) and get that

1

M
TrR(S(z)− T (z)) = fN (z)

1

M
TrR(S(z)− T (z)) +Oz(

1

N2
) (6.24)

where fN (z) is defined by

fN (z) =
zcN (1 + zc2Nαt)

(1− zc2Nα2)(1− zc2N t2)

1

M
Tr(RS(z)RT (z)).

fN (z) is similar to the term defined in (6.8). Using the arguments of the proof

of Proposition 6.1, we obtain that it is possible to find ε > 0 for which,

supN≥N0
|fN (z)| < 1

2 for each z ∈ Dε for some large enough integer N0.

We recall that Dε is defined by (6.9). We therefore deduce from (6.24) that

1
MTrR(S(z) − T (z)) → 0 and

1

ML
Tr (IL ⊗ (S(z)− T (z)))F converge towards 0

for each z ∈ Dε. As functions z → 1

ML
Tr (IL ⊗ (SN (z)− TN (z)))FN are holomor-

phic on C−R+ and are uniformly bounded on each compact subset of C−R+, we

deduce from Montel’s theorem that
1

ML
Tr (IL ⊗ (SN (z)− TN (z)))FN converges

towards 0 for each z ∈ C− R+. �

We deduce the following Corollary.

Corollary 6.1. The empirical eigenvalue distribution ν̂N of Wf,NW
∗
p,NWp,NW

∗
f,N

verifies

ν̂N − νN → 0 (6.25)

weakly almost surely.

Proof. Proposition 6.2 implies that E{ 1
MLTrQN (z)} − 1

MTr(TN (z)) → 0 for

each z ∈ C−R+. The Poincaré-Nash inequality and the Borel Cantelli Lemma imply

that 1
MLTr(QN (z))− E{ 1

MLTrQN (z)} → 0 a.s. for each z ∈ C− R+. Therefore, it

holds that

1

ML
Tr(QN (z))− 1

M
Tr(TN (z))→ a.s. (6.26)
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for each z ∈ C−R+. Corollary 2.7 of [16] implies that ν̂N − νN → 0 weakly almost

surely provided we verify that (ν̂N )N≥1 is almost surely tight and that (νN )N≥1 is

tight. It is clear that∫
R+

λ d ν̂N (λ) =
1

ML
TrWf,NW

∗
p,NWp,NW

∗
f,N ≤ ‖WN‖4,

where we recall that

WN =

(
Wp,N

Wf,N

)
.

It holds that ‖WN‖ ≤
√
b ‖Wiid,N‖ where Wiid,N is defined by (3.1). As ‖Wiid,N‖ →

(1 +
√
c∗) almost surely (see [26]), we obtain that 1

MLTrWf,NW
∗
p,NWp,NW

∗
f,N is

almost surely bounded for N large enough. This implies that (ν̂N )N≥1 is almost

surely tight. As for sequence (νN )N≥1, we have shown that supN
∫
R+ λ dµN (λ) <

+∞. As µN = 1
MTrRNν

T
N , the condition RN > aI for each N leads to∫
R+

λ dµN (λ) ≥ a
∫
R+

λ d νN (λ).

Therefore, it holds that supN
∫
R+ λ d νN (λ) < +∞, a condition which implies that

(νN )N≥1 is tight. �

7. Detailed study of νN .

In this section, we study the properties of νN . (2.7) implies that µN and νN are

absolutely continuous one with respect each other. Hence, they share the same

properties, and the same support denoted SN in the following. We thus study µN
and deduce the corresponding results related to νN . As in the context of other

models, µN can be characterized by studying the Stieltjes transform tN (z) near

the real axis. In the following, we denote by M the number of distinct eigenvalues

(λl,N )l=1,...,M of RN arranged in the decreasing order, and by (ml,N )l=1,...,M their

multiplicities. It of course holds that
∑M̄
l=1ml,N = M .

7.1. Properties of t(z) near the real axis.

In this paragraph, we establish that if x0 ∈ R+∗, then, limz→x0,z∈C+ t(z) exists

and is finite. It will be denoted by t(x0) in order to simplify the notations. More-

over, when c ≤ 1, limz→0,z∈C+∪R∗ |t(z)| = +∞, and limz→0,z∈C+∪R∗ zt(z) = 0.

The results of [35] will imply that measure µN is absolutely continuous w.r.t. the

Lebesgue measure, and that the corresponding density is equal to 1
π Im(t(x)) for

each x ∈ R+∗. When c > 1, a Dirac mass appears at 0.

We first address the case where x0 6= 0, and, in order to establish the existence

of limz→x0,z∈C+ t(z), we prove the following properties:
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• If (zn)n≥1 is a sequence of C+ converging towards x0, then |t(zn)|n≥1 is

bounded

• If (z1,n)n≥1 and (z2,n)n≥1 are two sequences of C+ converging towards x0

and verifying limzi,n→x0 = ti for i = 1, 2, then t1 = t2.

Lemma 7.1. If x0 ∈ R+∗, and if (zn)n≥1 is a sequence of C+ such that

limn→+∞ zn = x0, then the set |t(zn)|n≥1 is bounded.

Proof. We assume that |t(zn)| → +∞. Equation (6.1) can be written as

t(zn) =
1

M

M∑
l=1

ml λl

−zn(1 + ct(zn)λl

1−z (ct(zn))2 )
. (7.1)

As x0 6= 0, the condition |t(zn)| → +∞ implies that it exists l0 for which

1 +
ct(zn)λl0

1− z (ct(zn))2
→ 0

or equivalently

znct(zn)− 1

ct(zn)
→ λl0 .

As |t(zn)| → +∞, it holds that znct(zn)→ λl0 , a contradiction because |znct(zn)| →
+∞. �

Lemma 7.2. Consider (z1,n)n≥1 and (z2,n)n≥1 two sequences of C+ converging

towards x0 ∈ R+∗ and verifying limzi,n→x0 t(zi,n) = ti for i = 1, 2. Then, it holds

that t1 = t2.

Proof. The statement of the Lemma is obvious if x0 does not belong to S.

Therefore, we assume that x0 ∈ S − {0}. We first observe that if limn→+∞ zn = x0

(zn ∈ C+) and t(zn)→ t0, then

1− x0 (ct0)2 6= 0, (7.2)

1 +
ct0 λl

1− x0 (ct0)2
6= 0, l = 1, . . . ,M. (7.3)

Indeed, if (7.2) does not hold, Eq. (7.1) leads to t0 = 0, a contradiction because

1− x0 (ct0)2 was assumed equal to 0. Similarly, if (7.3) does not hold, the limit of

t(zn) cannot be finite. Therefore, matrix T0 defined by

T0 = −
(
x0

[
I +

ct0
1− x0 (ct0)2

R

])−1

(7.4)

is well defined, and it holds that T (zn)→ T0 and that t0 = 1
MTrRT0. In particular,

for i = 1, 2, T (zi,n) → Ti where Ti is defined by (7.4) when t0 = ti, i = 1, 2, and
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ti = 1
MTrRTi. Using the equation (6.1) for z = zi,n, we obtain immediately that(

t(z1,n)− t(z2,n)

z1,nt(z1,n)− z2,nt(z2,n)

)
=

(
u0(z1,n, z2,n) v0(z1,n, z2,n)

z1,nz2,nv0(z1,n, z2,n) u0(z1,n, z2,n)

)
×
(

t(z1,n)− t(z2,n)

z1,nt(z1,n)− z2,nt(z2,n)

)
+

(
(z1,n − z2,n) 1

MTrT (z1,n)RT (z2,n)

0

)
, (7.5)

where u0(z1, z2) and v0(z1, z2) are defined by

u0(z1, z2) = c
cz1t(z1)cz2t(z2) 1

MTr(RT (z1)RT (z2))

(1− z1(ct(z1))2) (1− z2(ct(z2))2)
(7.6)

and

v0(z1, z2) = c
1
MTr(RT (z1)RT (z2))

(1− z1(ct(z1))2) (1− z2(ct(z2))2)
(7.7)

for zi ∈ C+, i = 1, 2. Taking the limit, we obtain that(
t1 − t2

x0(t1 − t2)

)
=

(
u0(x0, x0) v0(x0, x0)

x2
0v0(x0, x0) u0(x0, x0)

) (
t1 − t2

x0(t1 − t2)

)
,

where u0(x0, x0) and v0(x0, x0) are defined by replacing zi, t(zi), T (zi) by x0, ti, Ti
in (7.6, 7.7) for i = 1, 2. If the determinant (1− u0(x0, x0))2 − x2

0v0(x0, x0)2 6= 0 of

the above linear system is non zero, it of course holds that t1 = t2.

We now consider the case where (1 − u0(x0, x0))2 − x2
0v0(x0, x0)2 = 0. We

denote by ui(x0) and vi(x0), i = 1, 2 the limits of u(zi,n) and v(zi,n), i = 1, 2 when

n→ +∞. We recall that u(z) and v(z) are defined by (6.13) and (6.14) respectively.

It is clear that ui(x0) and vi(x0) coincide with (6.13) and (6.14) when (z, t(z), T (z))

are replaced by (x0, ti, Ti) respectively. (6.11) thus implies that

(1− ui(x0))2 − x2
0vi(x0)2 ≥ 0 (7.8)

for i = 1, 2. Using the Schwartz inequality and (6.19) as in the uniqueness proof of

the solutions of Eq. (6.1) (see Proposition 6.1), it is easily seen that

|(1− u0(x0, x0))2 − x2
0(v0(x0, x0))2| ≥ (1−

√
u1(x0)

√
u2(x0))2 − x2

0v1(x0)v2(x0)

≥ (1− u1(x0))(1− u2(x0))− x2
0v1(x0)v2(x0)

≥
√

(1− u1(x0))2 − x2
0v1(x0)2

√
(1− u2(x0))2 − x2

0v2(x0)2 ≥ 0. (7.9)

Therefore, (1 − u0(x0, x0))2 − x2
0v0(x0, x0)2 = 0 implies that the Schwartz in-

equalities and the inequalities (6.19) used to establish (7.9) are equalities. Hence,

it holds that |u0(x0, x0)|2 = u1(x0)u2(x0), or equivalently | 1
MTr(RT1RT2)| =

( 1
MTr(RT1T

∗
1R))1/2( 1

MTr(RT2T
∗
2R))1/2. This implies that T1 = aT ∗2 for some

constant a ∈ C. Moreover, as ti = 1
MTr(RTi) for i = 1, 2, it must hold that

t1 = at∗2. (7.9) follows from (6.19) {a = b = 1, c = u1(x0), d = u2(x0)} and

{a = (1 − u1(x0))2, b = (1 − u2(x0))2, c = x2
0v

2
1 , d = x2

0v
2
2}. Since all these terms
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are positive real numbers,
√
ab −

√
cd =

√
a− c

√
b− d if and only if ad = bc. It

gives us

u1(x0) = u2(x0),

(1− u1(x0))2x2
0v2(x0)2 = (1− u2(x0))2x2

0v1(x0)2.
(7.10)

Since x0 6= 0 and v1(x0) > 0, the inequality (1− u1(x0))2 − x2
0v1(x0)2 ≥ 0 implies

that u1(x0) 6= 1. Hence, u1(x0) < 1 and (7.10) implies that v1(x0) = v2(x0). From

the definition of ui and vi one can notice that ui(x0) = c2x2
0|ti|2vi(x0). Which gives

us immediately |t1|2 = |t2|2 and, as a consequence, |a| = 1. Using once again the

fact that v1(x0) = v2(x0) and T1 = aT ∗2 , we obtain that

|a|2 1
MTr(T ∗2RRT2)

|1− x0c2a2(t∗2)2|2
=

1
MTr(RT2T

∗
2R)

|1− x0c2t22|2
.

The numerators of both sides are equal and non zero, from what follows that the

denominators are also equal, i.e.

|1− x0c
2a2(t∗2)2| = |1− x0c

2t22|.

We remark that if w and z satisfy |1−w| = |1−z| and |w| = |z|, then, either w = z,

either w = z̄. We use this remark for w = x0c
2t22 and z = x0c

2a2(t∗2)2. If w = z, it

holds that a2(t∗2)2 = t22 ⇒ t21 = t22 and since Imti ≥ 0 we conclude t1 = t2. If w = z̄,

we have a2(t∗2)2 = (t∗2)2. If t2 = 0 then it also holds that t1 = 0. Otherwise, we have

a = ±1. If a = 1, the condition Imti ≥ 0, leads to the conclusion that t1 and t2 are

real and coincide. We finally consider the case a = −1. We recall T1 = aT ∗2 = −T ∗2 .

Therefore, it holds that

x0IM −
x0t
∗
2

1− x0c2(t∗2)2
R = −x0IM −

x0t
∗
2

1− x0c2(t∗2)2
R,

which is impossible, since x0 6= 0. This completes the proof of Lemma (7.2). �

Lemmas 7.2 and 7.1, and their corresponding proofs imply the following result.

Proposition 7.1. For each x > 0, limz→x,z∈C+ t(z) = t(x) exists. More-

over, 1 − x(ct(x))2 6= 0, and matrix (I + ct(x)
1−x(ct(x))2 R) is invertible.

Therefore, limz→x,z∈C+ T (z) = T (x) where T (x) represents matrix T (x) =(
−x(I + ct(x)

1−x(ct(x))2 R)
)−1

. Moreover, t(x) is solution of the equation

t(x) =
1

M
Tr(RT (x)). (7.11)

If u(x) and v(x) represent the terms defined by (6.13) and (6.14) for z = x, then

it holds that

1− u(x) > 0 (7.12)

and

(1− u(x))2 − x2(v(x))2 ≥ 0 (7.13)
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for each x 6= 0. Moreover, the inequality (7.13) is strict if x ∈ R+ −S. If moreover

Im(t(x)) > 0, then, we have

1− u(x)− xv(x) = 0. (7.14)

Proof. It just remains to justify (7.12), (7.13), and (7.14). As function z → t(z)

is analytic on C − S, x → t(x) is differentiable on R+ − S. As (t(x))
′
> 0 and

(xt(x))
′
> 0 hold on R+ − S, the arguments used in the context of Remark 6.1

are also valid on R+ − S, thus justifying (7.12) and the strict inequality in (7.13).

1 − u(x) ≥ 0 and inequality (7.13) also hold on S − {0} by letting z → x, z ∈ C+

in Proposition 6.1. As v(x) > 0 for each x 6= 0, the strict inequality (7.12) is a

consequence of (7.13).

In order to prove (7.14), we use the second component of (6.15), and remark

that it implies that

Im(t(x)) = (u(x) + xv(x)) Im(t(x)).

Therefore, Im(t(x)) > 0 leads to (7.14). �

We also add the following useful result which shows that the real part of t(x) is

negative for each x > 0.

Proposition 7.2. For each x ∈ R+∗, it holds that Re(t(x)) < 0.

Proof. It is easily checked that(
Re(t(z)

Re(zt(z))

)
=

(
u(z) −v(z)

−|z|2v(z) u(z)

) (
Re(t(z)

Re(zt(z))

)
+

(
−Re(z) 1

MTr(RT (z)(T (z))∗)

−|z|2 1
MTr(RT (z)(T (z))∗

)
(7.15)

for each z ∈ C − S. Moreover, as all the terms coming into play in (7.15) have a

finite limit when z → x when x 6= 0, (7.15) remains valid on R∗. For z = x, the

first component of (7.15) leads to

Re(t(x))(1− u(x) + xv(x)) = −x 1

M
Tr(RT (x)T (x)∗). (7.16)

Proposition 7.1 implies that 1−u(x) > 0, when x ∈ R∗. Therefore, 1−u(x)+xv(x)

is strictly positive as well, and it holds that

Re(t(x)) = −x 1

1− u(x) + xv(x)

1

M
Tr(RT (x)T (x)∗). (7.17)

Therefore, x > 0 implies that Re(t(x)) < 0 as expected. �

We now study the behaviour of t(z) when z → 0. We first establish that

limz→0,z∈C+∪R∗ |t(z)| = +∞, and then that limz→0,z∈C+∪R∗ zt(z) = 0 if c ≤ 1

and is strictly negative if c > 1. We recall that t(x) for x > 0 is defined by

t(x) = limz→x,z∈C+ t(z). For this, we establish various lemmas.
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Lemma 7.3. It holds that limz→0,z∈C+∪R∗ |t(z)| = +∞.

Proof. We assume that the statement of the Lemma does not hold, i.e. that it

exists a sequence of elements of C+ ∪ R∗ (zn)n≥1 such that limn→+∞ zn = 0 and

t(zn)→ t0. (6.1) and (7.11) imply that

znt(zn) = − 1

M

M∑
l=1

mlλl

1 + ct(zn)λl

1−zn(ct(zn))2

. (7.18)

1 + ct(zn)λl

1−zn(ct(zn))2 clearly converges towards 1 + ct0λl. As the left hand side of (7.18)

converges towards 0, for each l, 1 + ct0λl cannot vanish. Therefore, matrix I+ ct0R

is invertible, and taking the limit of (7.18) gives

1

M
TrR(I + ct0R)−1 = 0.

As Im 1
MTrR(I + ct0R)−1 cannot be zero if t0 is not real, t0 must be real. We now

use the observation that |zn|v(zn) ≤ 1 for each n (see Lemma 6.1 and Proposition

7.1 if zn ∈ C+ ∪ R+∗, and Remark 6.1 if zn ∈ R−∗). As |1 − zn(ct(zn))2|2 → 1,

|zn|v(zn) bounded implies that |zn| 1
MTr(RT (zn)RT (zn)∗) is bounded. It is easy to

check that

|zn|
1

M
Tr(RT (zn)RT (zn)∗) =

1

|zn|
1

M
Tr(R(I + ct0R)−1R(I + ct0R)−1) +O(1).

Therefore, the boundedness of |zn| 1
MTr(RT (zn)RT (zn)∗) implies that 1

MTr(R(I +

ct0R)−1R(I + ct0R)−1) = 0 which is of course impossible. �

Lemma 7.4. Consider a sequence (zn)n≥1 of elements of C+ ∪ R∗ such that

limn→+∞ zn = 0. Then, the set (znt(zn))n≥1 is bounded.

Proof. We assume that (znt(zn))n≥1 is not bounded. Therefore, one can extract

from (zn)n≥1 a subsequence, still denoted (zn)n≥1, such that limn→+∞ |znt(zn)| =
+∞. Then,

ct(zn)

1− zn(ct(zn))2
=

1
1

ct(zn) − znt(zn)
→ 0.

Therefore,

− 1

M
TrR

(
I +

ct(zn)

1− zn(ct(zn))2
R

)−1

→ − 1

M
TrR.

This is a contradiction because the above term coincides with znt(zn) which cannot

converge towards a finite limit. �

Lemma 7.5. Assume that (z1,n)n≥1 and (z2,n)n≥1 are sequences of elements of

C+ ∪ R∗ such that limn→+∞ zi,n = 0 and limn→+∞ zi,nt(zi,n) = δi for i = 1, 2.

Then, δ1 = δ2.
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Proof. We first remark that |t(zi,n)| → +∞ for i = 1, 2. Equation (6.1) implies

immediately that

zt(z) =

(
zct(z)− 1

ct(z)

)
1

M
TrR

(
R+

1

ct(z)
− zct(z)

)−1

. (7.19)

As 1
ct(zi,n) → 0, zi,nct(zi,n) − 1

ct(zi,n) → cδi for i = 1, 2. If δi 6= 0, Eq. (7.19)

thus implies that c 1
MTrR

(
R+ 1

ct(zi,n) − zi,nct(zi,n)
)−1

converges towards 1, which

implies that matrix R − cδiI is invertible. Therefore, either δi = 0, either δi is a

solution of the equation

1 = c
1

M
TrR(R− cδiI)−1 (7.20)

or equivalently, δi verifies

δi = cδi
1

M
TrR(R− cδiI)−1. (7.21)

We note that the solutions of this equation are real, so that δi ∈ R for i = 1, 2. Eq.

(7.5) leads to

z1,nt(z1,n)− z2,nt(z2,n) = z1,nz2,nv0(z1,n, z2,n)(t(z1,n)− t(z2,n))

+ u0(z1,n, z2,n)(z1,nt(z1,n)− z2,nt(z2,n)).

It is straightforward to check that z1,nz2,nv0(z1,n, z2,n)(t(z1,n) − t(z2,n)) → 0 and

that u0(z1,n, z2,n)→ u0(0, 0) = c 1
MTrR(R − cδ1I)−1R(R − cδ2I)−1. Therefore, we

obtain that

δ1 − δ2 = u0(0, 0)(δ1 − δ2). (7.22)

We recall that |u0(z1,n, z2,n)| ≤
√
u(z1,n)

√
u(z2,n) ≤ 1. Moreover, we observe that

u(zi,n)→ ui(0) = c 1
MTrR(R − cδiI)−1R(R − cδiI)−1 and that 0 < ui(0) ≤ 1. The

Schwartz inequality leads to

|u0(0, 0)| ≤
√
u1(0)

√
u2(0) ≤ 1. (7.23)

If the Schwartz inequality (7.23) is strict, |u0(0, 0)| < 1, and δ1 = δ2. We now

assume that u0(0, 0) =
√
u1(0)

√
u2(0) = 1. This implies that

R− cδ1I = κ(R− cδ2I)

for some real constant κ, or equivalently, λl−cδ1 = κ(λl−cδ2) for each l = 1, . . . ,M .

If R is not a multiple of I, κ must be equal to 1, since otherwise, we would have

λl = λl′ for each l, l′. κ = 1 implies immediately that δ1 = δ2. We finally consider

the case where R = σ2I. Then, (7.21) implies that δi is solution of δi
σ2c

σ2−cδi = δi,

i.e. δi = 0 or

δi = σ2

(
1

c
− 1

)
. (7.24)
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We now check that δ1 = 0, δ2 = σ2
(

1
c − 1

)
or δ2 = 0, δ1 = σ2

(
1
c − 1

)
is impossi-

ble. If this holds, u1(0) and u2(0) cannot be both equal to 1, and |u0(0, 0)| < 1.

Therefore, (7.22) leads to a contradiction, and δ1 = δ2 is equal either to 0, either

to σ2
(

1
c − 1

)
. �

Lemmas 7.4 and 7.5 imply the following corollary.

Corollary 7.1. If c ≤ 1, it holds that

lim
z→0,z∈C+∪R∗

zt(z) = 0 (7.25)

and that

µ({0}) = 0. (7.26)

Proof. Lemmas 7.4 and 7.5 lead to the conclusion that limz→0,z∈C+∪R∗ zt(z) = δ

where δ is either equal to 0, either coincides with a solution of the equation (7.21).

In order to precise this, we remark that t(x) > 0 if x < 0 implies that δ ≤ 0.

Therefore, δ coincides with a non positive solution of equation (7.21). If c ≤ 1, it is

clear that (7.21) has no strictly negative solutions. Therefore, (7.25) is established.

(7.26) is a direct consequence of the identity

µ({0}) = lim
z→0,z∈C+∪R∗

−zt(z).

�
In order to address the case where c > 1 and to precise the behaviour of Im(t(z))

when z → 0, z ∈ C+ ∪ R∗ if c ≤ 1, we have to evaluate z(t(z))2 when z → 0. The

following Lemma holds.

Lemma 7.6.

• If c = 1, it holds that limz→0,z∈C+∪R∗ |z(t(z))2| = +∞.

• If c < 1,

lim
z→0,z∈C+∪R∗

z(t(z))2 = − 1

c(1− c)
. (7.27)

• If c > 1, the assumption limz→0,z∈C+∪R∗ zt(z) = δ = 0 implies that

limz→0,z∈C+∪R∗ z(t(z))
2 = − 1

c(1−c) , a contradiction because the above limit

is necessarily negative. Hence, δ is non zero and coincides with the strictly

negative solution of Eq. (7.21), and µ({0}) = −δ.

Proof. (6.1) implies that

z(t(z))2 = − 1

M
TrR

(
I

t(z)
+

c

1− z(ct(z))2
R

)−1

. (7.28)

We assume in the course of this proof that δ = 0 (if c ≤ 1, this property holds).

We first establish the first item of Lemma 7.6. We assume that c = 1 and that

there exists a sequence (zn)n∈C+∪R∗ such that zn → 0 and znt(zn)2 → α. As
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|t(zn)| → +∞, (7.28) leads to α = α − 1, a contradiction. Therefore, if c = 1,

limz→0,→C+∪R∗ |zt(z)2| = +∞ as expected.

We now establish the 2 last items. For this, we establish that if c 6= 1, then,

|zt(z)2| is bounded when z ∈ C+ ∪ R∗ and z is close from 0. For this, we assume

the existence of a sequence (zn)n≥1 of elements of C+ ∪ R∗ such that zn → 0 and

|znt(zn)2| → +∞. Then, it holds that

1 = − 1

M
TrR

(
znt(zn)I +

cznt(zn)2

1− zn(ct(zn))2
R

)−1

.

As |znt(zn)2| → +∞, cznt(zn)2

1−zn(ct(zn))2 → −
1
c . Condition znt(zn) → 0 thus implies

that c = 1, a contradiction. Using again (7.28), we obtain immediately that if

zn(t(zn))2 → α, then α = − 1
c(c−1) . As |zt(z)2| remains bounded when z ∈ C+ ∪R∗

is close from 0, this implies that limz→0,z∈C+∪R∗ z(t(z))
2 = − 1

c(1−c) as expected.

Taking z ∈ R−∗ leads to the conclusion that the above limit is negative. When

c > 1, this is a contradiction because − 1
c(1−c) is positive. Therefore, if c > 1, δ, the

limit of zt(z), cannot be equal to 0. Hence, δ coincides with the strictly negative

solution of (7.21) and µ({0}) = −δ > 0. This completes the proof of the Lemma. �

Putting all the pieces together, we obtain the following characterization of µN .

Theorem 7.1. The density fN (x) of µN w.r.t. the Lebesgue measure is a continu-

ous function on R+∗, and is given by fN (x) = 1
π Im(tN (x)) for each x > 0. If cN ≤ 1,

µN is absolutely continuous, and if cN > 1, then dµN (x) = fN (x)dx+ µN ({0})δ0.

0 belongs to SN , and the interior S◦N of SN is given by

S◦N = {x ∈ R+, Im(t(x)) > 0}. (7.29)

If moreover cN < 1, it holds that

fN (x) ' 1

π

1√
x cN (1− cN )

(7.30)

when x→ 0+, while if cN = 1,

fN (x) ' 1

π

√
3

2

(
1

M
TrR−1

)−1/3
1

x2/3
. (7.31)

Proof. t(z) is not analytic in a neighbourhood of 0, hence, 0 ∈ S. As

limz→x,z∈C+ t(z) = t(x) exists for x 6= 0, Theorem 2.1 of [35] implies that ifA ⊂ R+∗

is a Borel set of zero Lebesgue measure, then µ(A) =
∫
A f(x)dx = 0. The continuity

of f on R+∗ is a also a consequence of [35].

We now prove (7.30). For this, we remark that (7.27) implies that

lim
x→0,x>0

x(t(x))2 = − 1

c(1− c)
. (7.32)
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As Im(t(x)) ≥ 0 for each x 6= 0, (7.32) implies that t(x) ' i√
x
√
c(1−c

when x→ 0+,

or equivalently that 1
π Im(t(x)) ' 1

π
1√

x c(1−c)
.

It remains to establish (7.31). For this, we first prove that

lim
x→0,x>0

x2(t(x))3 =

(
1

M
TrR−1

N

)−1

. (7.33)

For this, we write (7.11) as

1

M
TrR

(
−xt(x)I +

1

1− 1
x(t(x))2

R

)−1

= 1. (7.34)

As c = 1, xt(x) → 0 and |x(t(x))2| → +∞ when x → 0, x > 0. The left hand side

of (7.34) can be expanded as

1

M
TrR

(
−xt(x)I +

1

1− 1
x(t(x))2

R

)−1

= 1− 1

x(t(x))2

+
1

M
TrR−1 xt(x) + xt(x)ε1(x) +

1

x(t(x))2
ε2(x),

where ε1(x) and ε2(x) converge towards 0 when x → 0, x > 0. Therefore, (7.34)

implies that

1

M
TrR−1 xt(x)− 1

x(t(x))2
= xt(x)ε̃1(x) +

1

x(t(x))2
ε̃2(x),

where ε̃1(x) and ε̃2(x) converge towards 0 when x → 0, x > 0. This leads immedi-

ately to (7.33). As function x→ x2(t(x))3 is continuous on R+∗, it holds that

lim
x→0,x>0

x2/3t(x) = e2ikπ/3

(
1

M
TrR−1

)−1/3

,

where k is equal to 0, 1 or 2. If k = 0, the real part of t(x) must be positive if x is

close enough from 0. Lemma 7.2 thus leads to a contradiction. If k = 2, Im(t(x)) < 0

for x small enough, a contradiction as well. Hence, k is equal to 1. Therefore,

lim
x→0,x>0

x2/3Im(t(x)) = sin 2π/3

(
1

M
TrR−1

)−1/3

. (7.35)

This completes the proof of (7.31). �

We now show that function x → t(x) and x → f(x) possess a power series

expansion in a neighbourhood of each point of S◦N . More precisely:

Proposition 7.3. If x0 > 0 and Im(t(x0)) > 0, then, t and f can be expanded as

t(x) =

+∞∑
k=0

ak(x− x0)k, f(x) =

+∞∑
k=0

bk(x− x0)k
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when |x− x0| is small enough.

Proof. As in [35] and [13], the proof is based on the holomorphic implicit

function theorem (see [9]). We denote t(x0) by t0. Then, Eq. (7.11) at point x0 can

be written as h(x0, t0) = 0 where function h(z, t) is defined by

h(z, t) = t− 1

M
Tr

(
R

(
−z(I +

ct

1− z(ct)2
R)

)−1
)
.

As x0 > 0 and Im(t0) > 0, function (z, t)→ h(z, t) is holomorphic in a neighbour-

hood of (x0, t0). It is easy to check that(
∂h

∂t

)
x0,t0

= 1− u0(x0, x0)− x2
0v0(x0, x0), (7.36)

where we recall that functions u0 and v0 are given by (7.6) and (7.7). Following the

proof of Lemma 7.2, we obtain immediately that 1− u0(x0, x0)− x2
0v0(x0, x0) = 0

implies that T (x0) = aT (x0)∗, and that t0 = at∗0 for some a ∈ C. The arguments of

the above proof then lead to the conclusion that t0 = t∗0, a contradiction because

Im(t(x0)) > 0. Hence,
(
∂h
∂t

)
x0,t0

6= 0. The holomorphic implicit function theorem

thus implies that it exists a function z → t̃(z), holomorphic in a neigbourhood N

of x0, verifying t̃(x0) = t0 and h(z, t̃(z)) = 0 for each z ∈ N . Moreover, condition

Im(t0) = Im(t̃(x0)) > 0 implies that Im(t̃(z)) > 0 and Im(zt̃(z)) > 0 if |z − x0| < ε

for ε small enough. Therefore, if z ∈ C+ and |z − x0| < ε, it must hold that

t̃(z) = t(z) (see Proposition 6.1). Hence, t(x) = limz→x,z∈C+ t(z) must coincide

with t̃(x) when |x − x0| < ε. As t̃(z) is holomorphic in a neighbourhood of x0,

function x→ t(x) can be expanded as

t(x) =

+∞∑
k=0

ak(x− x0)k

when |x−x0| < ε. This immediately implies that f possesses a power series expan-

sion in the interval (x0 − ε, x0 + ε). �

We finally use the above results in order the study measure νN associated to

the Stieltjes transform

tN,ν(z) =
1

M
TrTN (z).

As νN and µN are absolutely continuous one with respect each other, dνN (x) can

also be written as dνN (x) = gN (x)dx+ νN ({0})δ0. Using the identity

1

M
Tr

[
−z
(
I +

ct(z)

1− z(ct(z))2
R

)
T (z)

]
= 1.

we obtain immediately that

tν(z) = −1

z
− c(t(z))2

1− z(ct(z))2
. (7.37)
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If x > 0, tν(x) = limz→x,z∈C+ tν(z) exists, and is given by the righthandside of

(7.37) when z = x. Hence, for x > 0, g(x) = 1
π Im(tν(x)), i.e.

g(x) = − 1

π

c Im((t(x))2)

|1− x(ct(x))2|2
. (7.38)

If c > 1, |zt(z)2| → +∞ if z → 0. (7.37) thus implies that νN ({0}) = limz→0−ztν(z)

coincides with 1 − 1
c , which, of course, is not surprising. We now evaluate the

behaviour of g when x→ 0, x > 0 and c ≤ 1.

Proposition 7.4. If c < 1, it holds that

g(x) 'x→0
1

π

1√
c (1− c)

1

M
Tr(R−1)

1√
x

(7.39)

while if c = 1, it holds that

g(x) 'x→0
1

π

√
3

2

(
1

M
Tr(R−1)

)2/3
1

x2/3
. (7.40)

Proof. Using Eq. (7.28), we obtain after some algebra that

z(t(z))2 +
1

c(1− c)
'z→0

1

M
TrR−1 1

c2(1− c)3

1

t(z)
.

As t(x) 'x→0,x>0
i√

x
√
c(1−c)

, we get that

Im((t(x))2) ' −i 1

M
TrR−1 1

1− c
1

(c(1− c))3/2

1√
x
.

Therefore, (7.38) immediately leads to (7.39). (7.40) is an immediate consequence

of (7.35). �

Proposition 7.4 means in practice that if cN ≤ 1, a number of eigenvalues of

matrix Wf,NW
∗
p,NWp,NW

∗
f,N are close from 0. Moreover, the rate of convergence

of gN towards +∞ is higher if cN = 1, showing that in this case, the proportion of

eigenvalues close to 0 is even larger than if cN < 1.

We finally mention that tν(x) and g(x) possess a power expansion around each-

point x0 ∈ S◦. This is an obvious consequence of Proposition 7.3 and of the above

expressions of tν(x) and of g(x) in terms of t(x).

7.2. Characterization of SN .

We denote by wN (z) the function defined by

wN (z) = − (1− z(cN tN (z))2)

cN tN (z)
= zcN tN (z)− 1

cN tN (z)
. (7.41)

It is clear that w is analytic on C − S, that Im(w(z)) > 0 if z ∈ C+, that w(x) =

limz→x,z∈C+ w(z) exists for each x ∈ R∗, and that the limit still exists if x = 0. If we
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denote this limit by w(0), then, it holds that w(0) = 0 if c ≤ 1 and that w(0) = cδ

if c > 1, where we recall that δ is defined as the solution of (7.20). Moreover, w(x)

is real if and only if t(x) is real. Therefore, the interior So of S is also given by

So = {x ∈ R+, Im(w(x)) > 0}. (7.42)

Moreover, as t(x)′ and (xt(x))′ are strictly positive if x ∈ R − S, the derivative

w′(x) of w(x) w.r.t. x is also strictly positive on R− S. Using the equation t(z) =
1
MTrRT (z), we obtain immediately that t(z) can be expressed in terms of w(z) as

t(z) =
1

z
w(z)

1

M
TrR (R− w(z)I)

−1
. (7.43)

(7.41) implies that

1 + ct(z)w(z)− z(ct(z))2 = 0. (7.44)

Plugging (7.43) into (7.44), we obtain immediately that wN (z) verifies the equation

φN (wN (z)) = z, (7.45)

where φN (w) is defined by

φN (w) = cNw
2 1

M
TrRN (RN − wI)

−1

(
cN

1

M
TrRN (RN − wI)

−1 − 1

)
. (7.46)

Observe that (7.45) holds not only on C − S, but also for each x ∈ S. Therefore,

it holds that φ(w(x)) = x for each x ∈ R. For each x ∈ R − S, it thus holds that

φ
′
(w(x))w

′
(x) = 1. Therefore, as w

′
(x) > 0 if x ∈ R−S, w(x) satisfies φ

′
(w(x)) > 0

for each x ∈ R− S. This implies that if x ∈ R− S, then w(x) is a real solution of

the polynomial equation φ(w) = x for which φ
′
(w) > 0. Moreover, Proposition 7.2

implies that if x ∈ R+−S, then, t(x) = Re(t(x)) is strictly negative. Eq. (7.43) for

z = x thus leads to the conclusion that if x > 0 does not belong to S, then w(x)

also verifies w(x) 1
MTrR (R− w(x)I)

−1
< 0. If x < 0, then, t(x) is this time strictly

positive and w(x) still verifies w(x) 1
MTrR (R− w(x)I)

−1
< 0. This discussion leads

to the following Proposition.

Proposition 7.5. If x ∈ R− S, then w(x) verifies the following properties:

φ(w(x)) = x, φ
′
(w(x)) > 0, w(x)

1

M
TrR (R− w(x)I)

−1
< 0. (7.47)

As shown below, if x ∈ R − S, the properties (7.47) characterize w(x) among

the set of all solutions of the equation φ(w) = x and allow to identify the support

as the subset of R+ for which the equation φ(w) = x has no real solution satisfying

the conditions (7.47). These results follow directly from an elementary study of

function w → φ(w).

We first consider the case c ≤ 1, and identify the values of x > 0 for which the

equation φ(w(x)) = x has a real solution verifying (7.47), and those for which such

a solution does not exist. It is easily seen that if x > 0, all the real solutions of the
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equation φ(w) = x are strictly positive. Therefore, the third condition in (7.47) is

equivalent to 1
MTrR (R− w(x)I)

−1
< 0. We denote ω1,N < ω2,N < . . . < ωM,N the

(necessarily real) M roots of 1
MTrRN (RN − wI)−1 = 1

cN
and by µ1,N < µ2,N <

. . . < µM−1,N the roots of 1
MTrRN (RN −wI)−1 = 0. As c ≤ 1, it is easily seen that

ω1 ≥ 0, and that ω1 < λM < µ1 < ω2 < λM−1 < . . . < µM−1 < ωM < λ1. It is clear

that 1
MTrR(R−wI)−1 < 0 if and only if w ∈ (λM , µ1)∪. . .∪(λ2, µM−1)∪(λ1,+∞).

For x > 0, the equation φ(w) = x is easily seen to be a polynomial equation

of degree 2M + 1. Therefore, φ(w) = x has 2M + 1 solutions. For each x > 0,

this equation has at least 2M − 1 real solutions that cannot coincide with w(x) if

x ∈ (S◦)c:

• M solutions belong to ]ω1, λM [, . . . , ]ωM , λ1[. None of these solutions may

correspond to w(x) if x ∈ (S◦)c because 1
MTrR(R − wI)−1 > 0 at these

points.

• On each interval ]λM , µ1[, . . . , ]λ2, µM−1[, the equation φ(w) = x has a real

solution at which φ′ is negative. Therefore, φ(w) = x has M − 1 extra real

solutions that are not equal to w(x) if x ∈ (S◦)c.

As φN (w) → +∞ if w → λ1,N , w > λ1,N and that φN (w) → +∞ if w → +∞,

it exists at least one point in ]λ1,N ,+∞[ at which φ
′

N vanishes. This point is

moreover unique because otherwise, φN (w) = x would have more than 2M + 1

solutions for certain values of x. We denote by w+,N this point, and remark

that if x > x+,N = φN (w+,N ), φN (w) = x has 2M + 1 real solutions: the

2M − 1 solutions that were introduced below, and 2 extra solutions that belong

to ]λ1, w+[ and ]w+,+∞[ respectively. Therefore, w(x) is real, and it is easily seen

that w(x) coincides with the solution that belongs to ]w+,+∞[. This implies that

]x+,+∞[⊂ R− S.

If φ
′
(w) does not vanish on ]λM , µ1[∪ . . .∪]λ2, µM−1[, for each x ∈]0, x+[, φ is

decreasing on these intervals. Therefore, none of the real solutions of φ(w) = x

match with the properties of w(x) when x ∈ R+ − S. Therefore, w(x) must be a

complex number: φ(w) = x has thus 2M − 1 real solutions, and a pair of complex

conjugate roots: w(x) is the positive imaginary part solution. In this case, x ∈ S◦,
and the support S coincides with [0, x+].

We illustrate such a behaviour when M = 3. In the context of Fig. 1, the support

is reduced to the single interval [0, x+] because φ
′
(w) 6= 0 for w ∈ [λ3, µ1]∪ [λ2, µ2].

In order to precise the support when φ
′

vanishes in ]λM , µ1[∪ . . .∪]λ2, µM−1[,

we need to characterize the corresponding zeros. For this, we first justify that φ
′

cannot have a multiplicity 2 zero. Assume for example that φ
′

has a multiplicity 2

zero in ]λM+1−l, µl[, and denote by wl this zero. Then, if xl = φ(wl), the equation

φ(w) = xl has 2M − 1 simple real roots, and the multiplicity 3 root wl. Therefore,
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.

µ1

ω1

ω2 ω3µ2

λ1λ3 λ2

x+

.

Fig. 1. Typical representation of φ (w) as a function of w for M = 3. There is no local maximum
on [λ3, µ1] and on [λ2, µ2], so that S = [0, x+].

the equation φ(w) = xl has 2M + 2 roots (counting multiplicities), a contradiction.

We now establish the following useful result.

Proposition 7.6. The number of local extrema of φN in ]λM , µ1[∪ . . .∪]λ2, µM−1[

is an even number, say 2q, with 0 ≤ q ≤M − 1. If q ≥ 1, we denote the arguments

of these extrema by w+
1,N < w−2,N < w+

2,N < . . . < w+
q−1,N < w−q,N , then x+

1,N =

φN (w+
1,N ), x−2,N = φN (w−2,N ), . . . , x+

q−1,N = φN (w+
q−1,N ), x−q,N = φN (w−q,N ) verify

x+
1,N < x−2,N < x+

2,N < . . . < x+
q−1,N < x−q,N . (7.48)

Moreover, for each l, the interval ]λM−(l−1), µl[ contains at most one interval

[w+
p,N , w

−
p+1,N ], and x+

p,N (resp. x−p+1,N ) is a local minimum (resp. local maximum)

of φN .

Proof. We establish that if w1, w2 ∈ {w+
1 , w

−
2 , . . . , w

+
q−1, w

−
q } such that w1 >

w2, the images x1 = φ(w1) and x2 = φ(w2) are also satisfy x1 > x2. The goal is to

show that ratio (x1 − x2)/(w1 − w2) is always positive. For more convenience we

put fn = cN
M TrRN (RN − wnIM )−1 = cN

M

∑M̄
1

λimi

λi−wn
for n = 1, 2. With this and

(7.46) we can rewrite

xn = φ(wn) = w2
nfn(fn − 1) = w2

npn(pn − 1), (7.49)
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where pn = 1 − fn. Let us notice that extremes w1 and w2 are by definition such

that f1 and f2 are negative. Using directly (7.49) for x1 and x2 we can write

x1 − x2

w1 − w2
=

(w2
1p

2
1 − w2

2p
2
2)− (w2

1p1 − w2
2p2)

w1 − w2

= (w1p1 + w2p2)
w1p1 − w2p2

w1 − w2
− w2

1p1 − w2
2p2

w1 − w2
. (7.50)

With the definition of f1,2 the first term of (7.50) can be expanded as

w1p1 − w2p2

w1 − w2
= 1 +

c

M

M̄∑
l=1

λimi

w1 − w2

(
w2

λi − w2

− w1

λi − w1

)

= 1− c

M

M̄∑
1

λ
2

imi

(λi − w1)(λi − w2)
.

And similarly the second one as

w2
1p1 − w2

2p2

w1 − w2
= (w1 + w2) +

c

M

M̄∑
1

λimi

w1 − w2

(
w2

2

λi − w2

− w2
1

λi − w1

)

= (w1+w2)

1− c

M

M̄∑
1

λ
2

imi

(λi − w1)(λi − w2)

+w1w2
c

M

M̄∑
1

λimi

(λi − w1)(λi − w2)
.

Putting the last two equation in (7.50) we obtain

x1 − x2

w1 − w2
= (w1p1 + w2p2 − w1 − w2)

1− c

M

M̄∑
1

λ
2

imi

(λi − w1)(λi − w2)


− w1w2

c

M

M̄∑
1

λimi

(λi − w1)(λi − w2)
= −(w1f1 + w2f2)

×

1− c

M

M̄∑
1

λ
2

imi

(λi − w1)(λi − w2)

− w1w2
c

M

M̄∑
1

λimi

(λi − w1)(λi − w2)
.

Now we recall that −fn is positive as well as w1, w2 > 0 from what we have

−(w1f1 + w2f2) > 0. That allows us to use the inequality

1

(λi − w1)(λi − w2)
≤ 1

2

(
1

(λi − w1)2
+

1

(λi − w2)2

)
and to write

x1 − x2

w1 − w2
≥ −(w1f1 + w2f2)

1− c

2M

M̄∑
1

λ
2

imi

(λi − w1)2
− c

2M

M̄∑
1

λ
2

imi

(λi − w2)2


− w1w2

c

M

M̄∑
1

λimi

(λi − w1)(λi − w2)
.
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It is easy to check that c
M

∑ λ
2
imi

(λi−w)2
= f(w) + wf ′(w). Using this we can rewrite

last inequality as

x1 − x2

w1 − w2
≥ −1

2
(w1f1 + w2f2) (2− f1 − w1f

′
1 − f2 − w2f

′
2)

− w1w2
c

M

M̄∑
1

λimi

(λi − w1)(λi − w2)
. (7.51)

Taking the derivatives of the expression (7.49), we obtain that φ′(wn) = 2wnf
2
n −

2wnfn + 2w2
nfnf

′
n − w2

nf
′
n. By definition, w1,2 are extremes of function φ(w), i.e.

φ′(w1,2) = 0. This gives immediately fn +wnf
′
n− 1 =

wnf
′
n

2fn
. After putting this into

(7.51) and regrouping terms we obtain

x1 − x2

w1 − w2
≥ 1

4
(w1f1 + w2f2)

(
w1f

′
1

f1
+
w2f

′
2

f2

)
− w1w2

c

M

M̄∑
1

λimi

(λi − w1)(λi − w2)

=
1

4
(w2

1f
′
1 + w2

2f
′
2) +

1

4
w1w2

(
f ′1
f2

f1
+ f ′2

f1

f2

)
− w1w2

c

M

M̄∑
1

λimi

(λi − w1)(λi − w2)
.

Finally, we denote by I1, I2, I3 the three terms of the r.h.s and show that I1+ 1
2I3 and

I2 + 1
2I3 can be presented as the sum of positive terms. Using again the definition

of f1,2 we expand I1 + 1
2I3 as

1

4

w2
1f
′
1 + w2

2f
′
2 − 2w1w2

c

M

M̄∑
1

λimi

(λi − w1)(λi − w2)


=

c

4M

∑
λimi

( w2
1

(λi − w1)2
+

w2
2

(λi − w2)2
− 2w1w2

(λi − w1)(λi − w2)

)
=

c

4M

∑
λimi

(
w1

λi − w1

− w2

λi − w2

)2

.

Similarly, I2 + 1
2I3 can be written as

1

4
w1w2

f ′1 f2

f1
+ f ′2

f1

f2
− 2

c

M

M̄∑
1

λimi

(λi − w1)(λi − w2)


= w1w2

c

4M

∑
λimi

(
f2/f1

(λi − w1)2
+

f1/f2

(λi − w2)2
− 2

(λi − w1)(λi − w2)

)

= w1w2
c

4M

∑
λimi

(√
f2/f1

λi − w1

−
√
f1/f2

λi − w2

)2

.

This shows that x1 − x2 > 0, and that (7.48) holds. It remains to justify that

each interval (]λM−(l−1), µl[)l=1,...,M−1 contains at most one interval [w+
p,N , w

−
p+1,N ].

Assume that the interval ]λM−(l−1), µl[ contains 2 intervals [w+
p1,N

, w−p1+1,N ] and
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[w+
p2,N

, w−p2+1,N ] with p1 < p2. Then, it also holds that [w+
p1+1,N , w

−
p1+2,N ] ⊂

]λM−(l−1), µl[. x
+
p1,N

is necessarily a local minimum because x+
p1,N

< x−p1+1,N

while x−p1+1,N must be a local maximum. The same property holds for x+
p1+1,N

and x−p1+2,N . However, this contradicts the property x−p1+1,N < x+
p1+1,N . This com-

pletes the proof of Proposition 7.6. �

Proposition 7.6 allows to identify the support SN .

Corollary 7.2. When cN ≤ 1, the support SN is given by

SN = [0, x+
1,N ] ∪ [x−2,N , x

+
2,N ] ∪ . . . [x−q,N , x+,N ]. (7.52)

Proof. If x belongs to the interior of the righthandside of (7.52), φ(w) = x has

only 2M − 1 real solutions. This implies that the 2 remaining roots are complex

valued, i.e. that x ∈ S◦. This leads to the conclusion that

]0, x+
1,N [∪]x−2,N , x

+
2,N [∪ . . .]x−q,N , x+,N [⊂ S◦

and that

[0, x+
1,N ] ∪ [x−2,N , x

+
2,N ] ∪ . . . [x−q,N , x+,N ] ⊂ S.

Conversely, if x ∈ R+ −
(

[0, x+
1,N ] ∪ [x−2,N , x

+
2,N ] ∪ . . . [x−q,N , x+,N ]

)
, the equation

φ(w) = x has 2M + 1 real solutions, which implies that w(x) is real. Therefore,

R+ −
(

[0, x+
1,N ] ∪ [x−2,N , x

+
2,N ] ∪ . . . [x−q,N , x+,N ]

)
⊂ R+ − S

or equivalently,

S ⊂ [0, x+
1,N ] ∪ [x−2,N , x

+
2,N ] ∪ . . . [x−q,N , x+,N ].

This completes the proof of Corollary (7.2). �

We illustrate the above behaviour when M = 3. In the context of Fig. 2, φ
′

vanishes on [λ3, µ1] and not on [λ2, µ2]. The support thus coincides with S =

[0, x+
1 ] ∪ [x−2 , x+].

When matrix RN is reduced to RN = σ2I, i.e. M = 1 and λ1 = σ2, the support of

course coincides with SN = [0, x+,N ], and x+,N is given by

x+,N = σ4cN

(
1 +

1
1+
√

1+8cN
2

)2 (
cN +

1 +
√

1 + 8cN
2

)
. (7.53)

Moreover, w+,N is equal to

w+,N = σ2

(
1 +

1 +
√

1 + 8cN
2

)
. (7.54)

(7.53) and (7.54) are in accordance with the results of [22].
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.

λ2

µ1

ω1

ω2 ω3µ2

x+

λ1λ3

x1,+

x2,−

.

Fig. 2. Typical representation of φ (w) as a function of w for M = 3. There are 2 local extrema
on [λ3, µ1] and no local maximum on [λ2, µ2], so that S = [0, x+1 ] ∪ [x−2 , x+].

We now briefly address the case cN > 1. The behaviour of φN is essen-

tially the same as if cN ≤ 1, except that the first root ω1,N of the equation
1
MTrRN (RN − wI)−1 = 1

cN
is now strictly negative. As φN (0) = 0, this implies

that it exists w−,N ∈ (ω1,N , 0) for which φ
′

N (w−,N ) = 0. Moreover, this point is

unique, otherwise, the equation φN (w) = x would have more than 2M + 1 roots

for certain values of x > 0. x−,N = φN (w−,N ) > 0 is thus a local maximum of φN
whose argument is strictly negative. We also notice that φN (w) > 0 if 0 < w < λM .

Apart these differences, the behaviour of φN for w > λM remains the same as if

cN ≤ 1. In particular, Proposition 7.6 still holds true. However, we remark that

if 0 < x < x−,N , the equation φN (w) = x has still 2M − 1 real solutions that

are strictly positive, and 2 extra real roots, the smallest one being less than w−,N
and the other one being negative and largest that w−,N . This implies that wN (x)

is real. We also notice that wN (x) coincides with the smallest extra negative root

because it satisfies conditions (7.47). Hence, the interval ]0, x−,N [ is included into

R+ − SN . If φ
′

N does not vanish on ]λM , µ1[∪ . . .∪]λ2, µM−1[, for x ∈]x−,N , x+,N [,

the equation φN (w) = x has only 2M − 1 real solutions that do not satisfy condi-

tions (7.47) and 2 extra complex conjugates solutions. Therefore, ]x−,N , x+,N [⊂ S◦N
and [x−,N , x+,N ] ⊂ SN . Conversely, ]0, x−,N [∪]x+,N ,+∞[⊂ R+−SN , which implies

that SN ⊂ {0}∪[x−,N , x+,N ]. As it was established above that {0} ⊂ SN , we deduce
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that SN = {0} ∪ [x−,N , x+,N ] if φ
′

N does not vanish on ]λM , µ1[∪ . . .∪]λ2, µM−1[.

If φ
′

N vanishes on ]λM , µ1[∪ . . .∪]λ2, µM−1[, i.e. if q ≥ 1 (we recall that q is defined

in Proposition 7.6), the support is given by

SN = {0} ∪ [x−,N , x
+
1,N ] ∪ [x−2,N , x

+
2,N ] ∪ . . . [x−q,N , x+,N ]. (7.55)

To justify this, we just need to establish that x−,N < x+
1,N , and to use the same

arguments as in the proof of Corollary 7.2. To justify x−,N < x+
1,N , we put w1 =

w−,N , w2 = w+
1,N , and follow step by step the arguments used to evaluate φ(w2)−

φ(w1) > 0. We notice that in contrast with the context of the proof of Corollary

7.2, w1 < 0 and f1 > 0. However, f1w1 is still negative, so that −(w1f1 + w2f2) is

still positive. This allows to conclude that all the inequalities used in the course of

the proof of Corollary 7.2 remain valid, except the evaluation of the term I2 + I3/2

that needs the following simple modification: we express I2 + I3/2 as

−w1w2
c

4M

∑
λimi ×

(
−f2/f1

(λi − w1)2
+
−f1/f2

(λi − w2)2
+

2

(λi − w1)(λi − w2)

)
.

As −f2/f1 and −f1/f2 are positive, it holds that

I2 + I3/2 = −w1w2
c

4M

∑
λimi

(√
−f2/f1

λi − w1
+

√
−f1/f2

λi − w2

)2

.

Therefore, I2 + I3/2 > 0, and φ(w2)− φ(w1) > 0 holds.

In order to unify the cases cN ≤ 1 and cN > 1, we define x−,N for cN ≤ 1 by

x−,N = 0, and summarize the above discussion by the following result.

Theorem 7.2. The support SN is given by

SN = {0}IcN>1 ∪ [x−,N , x
+
1,N ] ∪ [x−2,N , x

+
2,N ] ∪ . . . [x−q,N , x+,N ]. (7.56)

We now establish that sequences (w+,N )N≥1 and (x+,N )N≥1 are bounded. In

other words, for each N , the support SN is included into a compact interval that

does not depend on N .

Lemma 7.7.

sup
N≥1

w+,N < +∞, sup
N≥1

x+,N < +∞. (7.57)

Proof. In order to prove this lemma, we use that w+,N > λ1,N and that

φ
′

N (w+,N ) = 0. It is easy to check that

φ
′

N (w) = 2c2Nw
1

M
TrR(wI −R)−1 − (cNw)2 1

M
TrR(wI −R)−2

− 2c2Nw

(
1

M
TrR(wI −R)−1

)2

− 2(cNw)2 1

M
TrR(wI−R)−2 1

M
TrR(wI−R)−1.

For w > b > λ1,N , it is clear that ‖(wI − R)−1‖ ≤ 1
w−b . Writing that

w 1
MTrR(wI − R)−1 = 1

MTrR + 1
MTrR2(wI − R)−1 and w2 1

MTrR(wI − R)−2 =
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1
MTrR+w

(
1
MTrR(wI −R)−2

)
− 1

MTrR2(wI −R)−1, we obtain immediately that

φ
′

N (w) can be written as

φ
′

N (w) = c2N
1

M
TrR+ δN (w),

where δN (w) verifies |δN (w)| ≤ δ(w) and w → δ(w) is a rational function of w that

does not depend on N and which converges towards 0 when w → +∞. Therefore,

for each η > 0, it exists w1 > b such that φ
′

N (w) > c2N
1
MTrR− η for each w ≥ w1.

As cN → c∗ and that 1
MTrR ≥ a, we obtain that φ

′

N (w) >
c2∗
2 a for w ≥ w1. As

φ
′

N (w+,N ) = 0, we deduce from this that w+,N < w1. As w1 does not depend on

N , this establishes that supN≥1 w+,N < +∞. To prove that x+,N is bounded, we

observe that x+,N = φN (w+,N ) < φN (w1). As w1 > b, it is easily seen that

φN (w1) < 2c2Nw
2
1

(
b

(w1 − b)2
+

b

(w1 − b)

)
.

Therefore, sequences (φN (w1))N≥1 and (x+,N )N≥1 are bounded. This completes

the proof of Lemma 7.7. �

We finally provide a sufficient condition under which the support is reduced to

SN = [0, x+,N ] if cN < 1 and to SN = {0} ∪ [x−,N , x+,N ] if cN > 1. More precisely,

the following result holds.

Proposition 7.7. Assume that there exists κ > 0 such that for each M large

enough, the following condition holds:

|λk,N − λl,N | ≤ κ
(
|k − l|
M

)1/2

(7.58)

for each pair (k, l), 1 ≤ k ≤ l ≤M . Then, for each M large enough, SN = [0, x+,N ]

if cN ≤ 1 and to SN = {0} ∪ [x−,N , x+,N ] if cN > 1.

Proof. We assume that (7.58) holds, and that S does not coincide with [0, x+]

or S = {0} ∪ [x−, x+] , i.e. φ
′
(w) vanishes at a point w0 such that λ1 < w0 < λM

and 1
MTrR(R− w0I)−1 < 0. After some algebra, we obtain that w0 satisfies:

1

M
Tr
(
R(R− w0I)−1

)2
=

− 1
MTrR(R− w0I)−1

1− 2c 1
MTrR(R− w0I)−1

.

As 1
MTrR(R− w0I)−1 < 0, this implies that

1

M
Tr
(
R(R− w0I)−1

)2
=

1

M

M∑
k=1

(
λk

λk − w0

)2

< − 1

M
TrR(R− w0I)−1

≤ 1

M

M∑
k=1

λk
|λk − w0|

.
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Jensen’s inequality leads to
(

1
M

∑M
k=1

λk

|λk−w0|

)2

≤ 1
M

∑M
k=1

(
λk

λk−w0

)2

. Therefore,

we obtain that 1
M

∑M
k=1

λk

|λk−w0| < 1, and that

1

M

M∑
k=1

(
λk

λk − w0

)2

< 1. (7.59)

We assume that λj0 < w0 < λj0+1. Then, hypothesis (2.7) and condition (7.58)

imply that (
λk

λk − w0

)2

>
a2

κ2

M

(|k − j0|+ 1)
.

Hence, it must hold that

a2

κ2

M∑
k=1

1

(|k − j0|+ 1)
< 1

for each M large enough, a contradiction because
∑M
k=1

1
(|k−j0|+1) is easily seen to

be an unbounded term. �

8. No eigenvalues outside the support.

In this paragraph, we establish the following result:

Theorem 8.1. Assume that there exists ε > 0, κ1 ∈ R, κ2 ∈ R ∪ {+∞}, κ2 > κ1

and an integer N0 such that

(κ1 − ε, κ2 + ε) ∩ SN = ∅ ∀N ≥ N0. (8.1)

Then with probability one, no eigenvalues of Wf,NW
∗
p,NWp,NW

∗
f,N appears in

[κ1, κ2] for all N large enough.

We first remark that it is sufficient to consider the case where κ2 < +∞.

To justify this claim, we recall that ∪N≥1SN is a compact subset (see Lemma

7.7), and notice that ‖Wf,NW
∗
p,NWp,NW

∗
f,N‖ ≤ ‖WN‖4 where matrix WN is de-

fined by (2.5). Moreover, (3.1) implies that almost surely, for N large enough,

‖WN‖2 ≤ b (1 + δ+
√
c∗)

2 where δ > 0. Therefore, almost surely, the largest eigen-

value of Wf,NW
∗
p,NWp,NW

∗
f,N is, for each N large enough, upperbounded by the

nice constant b2 (1 + δ +
√
c∗)

4. This justifies that it is sufficient to assume that

κ2 < +∞ in the following.

In order to establish Theorem 8.1, we use the Haagerup-Thornbjornsen approach

([15], see also [7]). The crucial step of the proof is the following Proposition.

Proposition 8.1. ∀z ∈ C+, we have for N large enough,

E
{

1

ML
TrQN (z)

}
=

1

M
TrTN (z) +

1

N2
rN (z), (8.2)
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where rN is holomorphic in C+ and satisfies

|rN (z)| ≤ P1(|z|)P2

(
1

Imz

)
(8.3)

for each z ∈ C+, where P1 and P2 are nice polynomials.

Proof. To prove (8.2) we write

E
{

1

ML
TrQN (z)

}
− 1

M
TrTN (z) =

1

ML
Tr [E {QN (z)} − IL ⊗ SN (z)]

+
1

M
Tr [SN (z)− TN (z)] .

As (5.28) holds, it is sufficient to establish that∣∣∣∣ 1

M
Tr[SN (z)− TN (z)]

∣∣∣∣ ≤ 1

N2
P1(|z|)P2(Im−1z) (8.4)

for some nice polynomial P1 and P2. In the following, we denote by sN (z) the

function defined by

sN (z) =
1

M
TrRNSN (z). (8.5)

It is clear that sN ∈ S(R+). Moreover, if µN,s represents the associated positive

measure, then we have

µN,s(R+) =
1

M
TrRN ,

∫
R+

λ dµN,s(λ) = cN
1

M
TrRN

1

M
TrR2

N (8.6)

(8.6) can be proved using the arguments of the proof of Proposition 6.1.

As 1
MTr[SN (z) − TN (z)] is given by (6.23) for F = I, (8.4) appears equivalent

to the property∣∣∣∣ 1

M
Tr[RN (SN (z)− TN (z))]

∣∣∣∣ = |sN (z)− tN (z)| ≤ 1

N2
P1(|z|)P2(Im−1z). (8.7)

In order to prove (8.7), we define the following functions that appear formally

similar to functions u(z) and v(z) defined by (6.13) and (6.14):

uα(z) = c
|czα(z)|2 1

MTr(RS(z)S∗(z)R)

|1− z(cα(z))2|2
,

vα(z) = c
1
MTr(RS(z)S∗(z)R)

|1− z(cα(z))2|2
,

ut,α(z) = c
|cz|2t(z)α(z) 1

MTr(RS(z)T (z)R)

(1− z(cα(z))2)(1− z(ct(z))2)
, (8.8)

vt,α(z) = c
1
MTr(RS(z)T (z)R)

(1− z(cα(z))2)(1− z(ct(z))2)
. (8.9)
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Using equation t(z) = 1
MTrRT (z) and the definition of s(z) and S(z), we obtain

easily that (
(s(z)− t(z))
z(s(z)− t(z))

)
= Dt,α(z)

(
(s(z)− t(z))
z(s(z)− t(z))

)
+

(
ε1(z)

ε2(z)

)
holds, where

ε1(z) = (α(z)− s(z))(zvt,α(z) + ut,α(z)),

ε2(z) = z(α(z)− s(z))(zvt,α(z) + ut,α(z)),

Dt,α(z) =

(
ut,α(z) vt,α(z)

z2vt,α(z) ut,α(z)

)
.

This can also be written as

(I−Dt,α(z))

(
(s(z)− t(z))
z(s(z)− t(z))

)
=

(
ε1(z)

ε2(z)

)
. (8.10)

The application of (5.27) to F = IL ⊗R leads to α(z)− s(z) = Oz(N−2). In order

to verify that (εi(z))i=1,2 are Oz(N−2) as well, we have to control ut,α and vt,α.

As t(z), α(z), ‖T (z)‖ and ‖S(z)‖ are Oz(1) terms, it is sufficient to evaluate the

denominator of the right handside of (8.8). As the mass and the first moment of µ

and µ (the measure associated to α(z)) both verify the conditions of Lemma 4.2,

this Lemma implies that (1− z(ct(z))2)−1 = Oz(1) and (1− z(cα(z))2)−1 = Oz(1).

Therefore, we have checked that (εi(z))i=1,2 are Oz(N−2) terms.

In order to evaluate s(z) − t(z), it is of course necessary to show that matrix

I−Dt,α(z) is invertible on C+, and to control the action of its inverse on the vector

(ε1(z), ε1(z))T . We define matrix Dα by

Dα(z) =

(
uα(z) vα(z)

z2vα(z) uα(z)

)
and establish the following result.

Lemma 8.1. For each z ∈ C+, it exist nice constants κ and β such that

det(I −D(z)) ≥ κ (Imz)
8

(|β|2 + |z|2)4
. (8.11)

Moreover, it exist 2 nice polynomials P1 and P2 for which

1− uα(z) > 0 (8.12)

and

det(I −Dα(z)) ≥ κ (Imz)
8

(|β|2 + |z|2)4
(8.13)

for each z ∈ BN , where BN is defined as

BN =

{
z ∈ C+,

1

MN
P1(|z|)P2

(
1

Imz

)
≤ 1

}
. (8.14)
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Finally, for each z ∈ BN , it holds that

det(I −Dt,α(z)) ≥ κ (Imz)
8

(|β|2 + |z|2)4
. (8.15)

Proof. To evaluate det(I − D(z)), we use the calculations of the proof of

Lemma 6.1. In particular, we have

(I −D(z))

(
Imt(z)

Imzt(z)

)
= Imz

(
1
MTrRT (z)T ∗(z)

0

)
. (8.16)

This implies that

1− u(z) =
Imz

Imt(z)
· 1

M
TrRT (z)T ∗(z) +

Imzt(z)

Imt(z)
v(z) ≥ Imz

Imt(z)
· 1

M
TrRT (z)T ∗(z).

By applying Cramer’s rule to (8.16), we obtain that

det(I −D(z)) =
Imz

Imt(z)
· 1

M
TrRT (z)T ∗(z)(1− u(z)) ≥

(
Imz

Imt(z)
· 1

M
TrRT (z)T ∗(z)

)2

.

(8.17)

It is clear that Imt(z) ≤ |t(z)| ≤ 1
MTrR (Imz)

−1 ≤ b (Imz)
−1

. Therefore, it holds

that
Imz

Imt(z)
≥ 1

b (Imt(z))
2
. We now evaluate 1

MTrRT (z)T ∗(z). For this, we remark

that

1

M
TrRT (z)T ∗(z) =

1

M
TrRT (z)T ∗(z)RR−1 ≥ 1

b

1

M
Tr(RT (z)T ∗(z)R). (8.18)

Jensen’s inequality implies that 1
MTr(RT (z)T ∗(z)R) ≥

∣∣ 1
MTrRT (z)

∣∣2 = |t(z)|2 ≥
(Im t(z))

2
. Therefore, the application of Lemma 4.2 to β(z) = t(z) implies that(

Imz

Imt(z)
· 1

M
TrRT (z)T ∗(z)

)2

≥ κ (Imz)
8

(|β|2 + |z|2)4

for some nice constants κ and β. (8.11) thus follows from (8.17).

We now establish (8.12) and (8.13), and denote by ε(z) the function ε(z) =

α(z) − s(z). Using the equation s(z) = 1
MTrRS(z), and calculating Im s(z) and

Im zs(z), we obtain immediately that

(I−Dα(z))

(
Imα(z)

Imzα(z)

)
= Imz

( 1

M
TrRS(z)S∗(z)

0

)
+

(
Imε(z)

Imzε(z)

)
. (8.19)

The first component of (8.19) leads to

1− uα =
Imz

Imα
· 1

M
TrRSS∗ +

Imε

Imα
+

Imzα

Imα
vα ≥

Imz

Imα
· 1

M
TrRSS∗ +

Imε

Imα
.

(8.20)
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Using the same arguments as above, we obtain that
1

M
TrRSS∗ ≥ 1

b |s(z)|
2 ≥

1
b (Ims(z))

2
. As (8.6) holds, we can apply Lemma 4.2 to β(z) = s(z) and obtain as

above that

Imz

Ims(z)
· 1

M
TrRS(z)S∗(z) ≥ κ (Imz)

4

(|β|2 + |z|2)2

for some nice constants β and κ. We remark that
Imε

Imα
≥ − |ε|Imα . Therefore, by

Lemma 4.2 applied to β(z) = α(z), it holds that
Imε

Imα
≥ −κ1|ε|β

2
1+|z|2
Imz for some

nice constants κ1 and β1. As |ε(z)| ≤ 1
N2Q1(|z|)Q2( 1

Imz ) for some nice polynomials

Q1 and Q2,we obtain that

1− uα ≥
Imz

Imα
· 1

M
TrRSS∗ +

Imε

Imα
≥ Imz

Imα
· 1

M
TrRSS∗ − |ε|

Imα
≥ 1

2

κ (Imz)
4

(|β|2 + |z|2)2

(8.21)

if z belongs to the set B1,N defined by

κ (Imz)
4

(|β|2 + |z|2)2
− 1

N2
Q1(|z|)Q2(

1

Imz
)κ1

β2
1 + |z|2

Imz
≥ 1

2

κ (Imz)
4

(|β|2 + |z|2)2
.

The set B1,N is clearly defined in the same way than BN , but from 2 other nice

polynomials P1,1 and P2,1.

Using the Cramer rule, we obtain that det(I−Dα) can be written as

det(I−Dα) =

(
Imz

Imα
· 1

M
TrRSS∗ +

Imε

Imα

)
(1− uα) +

Imzε

Imα
vα.

Plugging (8.21) in the last equation, we get that the inequality

det(I−Dα) ≥

(
1

2

κ (Imz)
4

(|β|2 + |z|2)2

)2

− |z| |ε|
Imα

vα

holds for each z ∈ B1,N . As vα = Oz(1), we obtain that(
κ (Imz)

4

(|β|2 + |z|2)2

)2

− |z| |ε|
Imα

vα ≥

(
1

4

κ (Imz)
4

(|β|2 + |z|2)2

)2

for each z ∈ B2,N , where B2,N is defined as BN from 2 nice polynomials P1,2

and P2,2. We put P1(|z|) = P1,1(|z|) + P1,2(|z|) and P2(1/Imz) = P2,1(1/Imz) +

P2,2(1/Imz), and consider the set BN defined by (8.14). It is clear that BN ⊂
B1,N ∩ B2,N , and that (8.12) and (8.13) hold if z ∈ BN .
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It remains to establish (8.15). For this, we remark that the inequalities

|det(I−Dt,α(z))| ≥ |1− ut,α(z)|2 − |z|2|vt,α(z)|2 ≥ (1− |ut,α(z)|)2

− |z|vα(z) · |z|v(z) ≥ (1−
√
u(z)uα(z))2− |z|vα(z) · |z|v(z) ≥ (1− u(z))(1− uα(z))

− |z|vα(z) · |z|v(z) ≥
√

((1− u(z))2 − |z|2v(z))((1− uα(z))2 − |z|2vα(z))

=
√

det(I−D(z)) det(I−Dα(z))

hold for each z ∈ BN . Therefore, (8.15) follows from (8.11) and (8.13). This com-

pletes the proof of Lemma 8.1. �

Solving (8.10), we obtain immediately that it exists 2 nice polynomials Q1 and

Q2 such that,

|sN (z)− tN (z)| ≤ 1

MN
Q1(|z|)Q2

(
1

Imz

)
holds for each z ∈ BN . If z ∈ BcN , we use the argument in [15]. More precisely,

if z ∈ BcN , the inequality 1 < 1
MN P1(|z|)P2(1/Imz) holds. As |sN (z) − tN (z)| ≤

2 1
MTrRN

1
Imz on C+, we deduce that

|sN (z)− tN (z)| ≤ 2b
1

MN
P1(|z|)P2(1/Imz)

Imz

for each z ∈ BcN . This, in turn, leads to the conclusion that sN (z)−tN (z) = Oz( 1
N2 )

for each z ∈ C+. This establishes (8.7) and 1
MTr(TN (z) − SN (z)) = Oz( 1

N2 ) as

expected. This completes the proof of Proposition 8.1. �
We now follow [8] and [15] and use the following Lemma.

Lemma 8.2. Let φ be a compactly supported real valued smooth function defined

on R+, i. e. φ ∈ C∞c (R+,R+). Then,

E
{

1

ML
Trφ(WfW

∗
pWpW

∗
f )

}
−
∫
SN

φ(λ)dµN (λ) = O
(

1

N2

)
.

Proof. Due to Proposition 4.1 we can write

E
{

1

ML
Trφ(WfW

∗
pWpW

∗
f )

}
=

1

π
lim
y↓0

Im

{∫
R+

φ(x)E
{

1

ML
TrQ(x+ iy)

}
dx

}
as well as∫

SN
φ(λ)dµN (λ) =

1

π
lim
y↓0

Im

{∫
R+

φ(x)E
{

1

ML
TrT (x+ iy)

}
dx

}
Using Proposition 8.1, we obtain

E
{

1

ML
Trφ(WfW

∗
pWpW

∗
f )

}
−
∫
SN

φ(λ)dµN (λ)

=
1

N2

1

π
lim
y↓0

Im

{∫
R+

φ(x)rN (x+ iy)dx

}
. (8.22)



March 3, 2020 10:8 WSPC/INSTRUCTION FILE revised-version˙2

69

Since the function rN (z) = Oz(1), we can use the result which was proved in [7,

Section 3.3] and obtain

lim sup
y↓0

∣∣∣∣∫
R+

φ(x)rN (x+ iy)dx

∣∣∣∣ ≤ κ
for some nice constant κ. This and (8.22) complete the proof. �

In order to establish Theorem 8.1, we introduce a function φ ∈ C∞c such that

0 ≤ φ(λ) ≤ 1 and

φ(λ) =

{
1, for λ ∈ [κ1, κ2],

0, for λ ∈ R− (κ1 − ε, κ2 + ε).

Since for N large enough (κ1 − ε, κ2 + ε) ∩ SN = ∅ then
∫
SN φ(λ)dµN (λ) = 0 and

according to Lemma 8.2

E
{

1

ML
Trφ(WfW

∗
pWpW

∗
f )

}
= O

(
1

N2

)
.

Now we show that

Var

{
1

ML
Trφ(WfW

∗
pWpW

∗
f )

}
= O

(
1

N4

)
.

For this we use again the Poincare-Nash inequality

Var{Trφ(WfW
∗
pWpW

∗
f )} ≤

∑
E
{(∂Trφ(WfW

∗
pWpW

∗
f )

∂W
m1

i1,j1

)∗
E{Wm1

i1,j1
W

m2

i2,j2}

×
∂Trφ(WfW

∗
pWpW

∗
f )

∂W
m2

i2,j2

}
+
∑

E

{
∂Trφ(WW ∗)

∂Wm1
i1,j1

E{Wm1
i1,j1

W
m2

i2,j2}

(
∂Trφ(WW ∗)

∂Wm2
i2,j2

)∗}
.

We only evaluate the first term of the r.h.s. of the inequality, denoted by ψ, because

the second is similar. For this we write first

∂Trφ(WfW
∗
pWpW

∗
f )

∂W
m1

i1,j1

= Tr

(
φ′(WfW

∗
pWpW

∗
f )
∂WfW

∗
pWpW

∗
f

∂W
m1

i1,j1

)

=

{
1 ≤ i1 ≤ L, (WpW

∗
f φ
′(WfW

∗
pWpW

∗
f )Wf )m1

i1j1
,

L+ 1 ≤ i1 ≤ 2L, (φ′(WfW
∗
pWpW

∗
f )W ∗fWfWp)

m1

i1−L,j1 .

Plugging this into (3.2) we obtain

ψ =

L∑
i1,i2=1

∑
j1,j2,m1,m2

( 1

N
E
{(
WpW

∗
f φ
′(WfW

∗
pWpW

∗
f )Wf

)∗m1

i1j1
Rm1m2

δi1+j1,i2+j2

×
(
WpW

∗
f φ
′(WfW

∗
pWpW

∗
f )Wf

)m2

i2,j2

}
+

1

N
E
{(
φ′(WfW

∗
pWpW

∗
f )WfW

∗
pWp

)∗m1

i1j1

×Rm1m2
δi1+j1,i2+j2

(
φ′(WfW

∗
pWpW

∗
f )WfW

∗
pWp

)m2

i2,j2

})
.
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Following the proof of Lemma 3.1, we obtain

Var{Trφ(WfW
∗
pWpW

∗
f )} ≤ C

N
E{TrW ∗f φ

′(WfW
∗
pWpW

∗
f )WfW

∗
pWpW

∗
f

× φ′(WfW
∗
pWpW

∗
f )Wf}+

C

N
E{TrWfW

∗
pWpW

∗
pWpW

∗
f

(
φ′(WfW

∗
pWpW

∗
f )
)2}.
(8.23)

To evaluate the first term ψ1 of the r.h.s of (8.23) we denote η(λ) = (φ′(λ))2λ and

write

1

N
E
{

TrW ∗f φ
′(WfW

∗
pWpW

∗
f )WfW

∗
pWpW

∗
f φ
′(WfW

∗
pWpW

∗
f )Wf

}
≤ 1

N
E
{
‖Wf‖2Tr(η(WfW

∗
pWpW

∗
f ))
}
.

We recall that (3.1) implies that ‖Wf‖2 ≤ b‖Wiid‖2. Therefore, it holds that

ψ1 ≤
κ

N
E{‖Wiid‖21‖Wiid‖≤(1+

√
c∗)2+δTr(η(WfW

∗
pWpW

∗
f ))}

+
κ

N
E{‖Wiid‖21‖Wiid‖>(1+

√
c∗)2+δTr(η(WfW

∗
pWpW

∗
f ))}

≤ κ

N
E{Tr(η(WfW

∗
pWpW

∗
f ))}+ κE1/2{‖Wiid‖41‖Wiid‖>(1+

√
c∗)2+δ}

× E1/2

{(
1

N
Tr(η(WfW

∗
pWpW

∗
f ))

)2
}
.

Lemma 8.2 implies that 1
NE{Tr(η(WfW

∗
pWpW

∗
f ))} = O(N−2). Throughout the

proof of Lemma 3.1, we get that E‖Wiid‖41‖Wiid‖>(1+
√
c∗)2+δ = O(N−k) for all k.

Since function φ′ ∈ C∞c , there exists a nice constant κ such that |φ′(λ)| < κ for

all λ and φ′(λ) = 0 for all λ > b + 2ε. We deduce from this that it exists a nice

constant κ such that ‖η(Wf,NW
∗
p,NWp,NW

∗
f,N )‖ < κ for each N . From what about

we conclude that ψ1 = O(N−2).

As for the second term (ψ2) of the r.h.s of (8.23), we write

ψ2 =
κ

N
E
{

TrW ∗pWpW
∗
pWpW

∗
f

(
φ′(WfW

∗
pWpW

∗
f )
)2
Wf

}
≤ κE

{
‖Wp‖2

1

N
Tr
(
φ′(WfW

∗
pWpW

∗
f )
)2
WfW

∗
pWpW

∗
f

}
.

It is easy to see that ψ2 can be evaluated as ψ1, leading to the conclusion that

ψ2 = O(N−2). Therefore, we have checked that

Var{Trφ(WfW
∗
pWpW

∗
f )} = O

(
1

N2

)
.

Now we can complete the proof of Theorem 8.1 as in [8]. For this we apply the
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classical Markov inequality and combine what above

P

{
1

ML
Trφ(WfW

∗
pWpW

∗
f ) >

1

N4/3

}
≤ N8/3E

{(
1

ML
Trφ(WfW

∗
pWpW

∗
f )

)2
}

= N8/3

(
Var

{
1

ML
Trφ(WfW

∗
pWpW

∗
f )

}
+

(
E
{

1

ML
Trφ(WfW

∗
pWpW

∗
f )

})2
)

= O
(

1

N4/3

)
.

Applying Borel-Cantelli lemma, we obtain that almost surely, the inequality

1

ML
Trφ(WfW

∗
pWpW

∗
f ∗) ≤

1

N4/3

holds for each N large enough. By the very definition of function φ, the number of

eigenvalues of matrix WfW
∗
pWpW

∗
f lying in the interval [κ1, κ2] is upper bounded

by Trφ(WfW
∗
pWpW

∗
f ) ≤ 1

N1/3 . Since this number of eigenvalues is an integer, we

conclude that with probability one there is no eigenvalues in the interval [κ1, κ2]

for each N large enough. �

We finally illustrate the above results by the following numerical experiment.

M,N,L are given by M = 500, N = 1500 and L = 2 so that cN = 2/3. The eigen-

values of matrix RN are defined by λk,N = 1/2 + π
4 cos

(
π(k−1)

2M

)
for k = 1, . . . ,M .

Matrix RN verifies 1
MTr(RN ) ' 1. Fig. 3 represents the histogram of the eigen-

values of a realization of Wf,NW
∗
p,NWp,NW

∗
f,N as well as the graph of the density

gN (x). We notice that the histogram and the graph of gN are in accordance, and

that, as expected, no eigenvalue of Wf,NW
∗
p,NWp,NW

∗
f,N lies outside the support

of gN .

9. Recovering the behaviour of the empirical eigenvalue

distribution ν̂N using free probability tools

The purpose of this paragraph is to show that it is possible to use free probability

tools in order to characterize the limiting behaviour of the empirical eigenvalue dis-

tribution ν̂N of matrix Wf,NW
∗
p,NWp,NW

∗
f,N . As the present paper is not focused

on these kind of approach, we present briefly the following results and leave the

details to the reader.

The free probability approach is based on the following observations:

• Up to the zero eigenvalue, the eigenvalues of Wf,NW
∗
p,NWp,NW

∗
f,N coincide

with the eigenvalues of W ∗f,NWf,NW
∗
p,NWp,N

• The matrices W ∗f,NWf,N and W ∗p,NWp,N are almost surely asymptotically

free. Therefore, the eigenvalue distribution of W ∗f,NWf,NW
∗
p,NWp,N con-

verges towards the free multiplicative convolution product of the limit dis-

tributions of W ∗f,NWf,N and W ∗p,NWp,N . These two distributions appear
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Fig. 3. Histogram of the eigenvalues and graph of gN (x) for M = 500, N = 1500, L = 2.

to coincide both with the limit distribution of the well known random ma-

trix model 1
NX

∗
N (IL ×RN )XN where XN is a ML×N complex Gaussian

random matrix with unit variance i.i.d. entries.

In the following, we follow the definitions of asymptotic freeness provided in [18]

(see in particular section 4.3) which need the existence of certain limit distributions.

This is in contrast with the approach developed in the previous sections more fo-

cused on the behaviour of deterministic equivalents. We however mention that more

recent free probability works (see e.g. [29] and the references therein, [6]) allow to

avoid the introduction of limit distributions, and would allow to recover the previ-

ous results on the deterministic equivalent νN of ν̂N .

In order to be in accordance with [18], we thus formulate in this section the

following assumption:

Assumption 9.1. The empirical eigenvalue distribution ωN = 1
M

∑M
k=1 δλk,N

of

matrix RN converges towards a limit distribution ω.

We remark that hypothesis 2.7 implies that ω is compactly supported. Moreover,

it can be shown that measures (µN )N≥1 and (νN )N≥1 both converge weakly towards
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limits denoted µ and ν in this section. We also notice that Lemma 7.7 implies that µ

and ν are compactly supported. It is also easily checked that the Stieltjes transform

t(z) of µ verifies the equation

t(z) = −1

z

∫
R+

τ dω(τ)

1 +
c∗τt(z)

1− zc2∗t2(z)

, (9.1)

while the Stieltjes transform tν of ν is given by

tν(z) = −1

z
− c∗t(z)

2

1− z(c∗t(z))2
. (9.2)

We recall that c∗ represents the limit of cN = ML
N . In the following, we establish

that (9.1) and (9.2) can be obtained using free probability technics.

Before going further, we first recall the main useful definitions introduced in

[18].

Definition 9.1. Consider a finite family of sequences of N × N possibly random

matrices ((Xi,N )N≥1)i=1,...,r. Then (Xi,N )i=1,...,r is said to have an almost sure joint

limit if for each non commutative polynomial P (x1, . . . , xr) in r indeterminates,

then 1
NTrP (X1,N , . . . , Xr,N ) converges almost surely towards γ(P ) where γ is a

deterministic distribution defined on the set of all non commutative polynomials in

r indeterminates (i.e. γ is a linear form such that γ(1) = 1).

We remark that if r = 1 and (X1,N )N≥1 are Hermitian matrices, the above

condition is equivalent to the existence of a limit empirical eigenvalue distribution.

Definition 9.2. Consider p families (X
(1)
i,N )i=1,...,r1 , . . . , (X

(p)
i,N )i=1,...,rp of N × N

possibly random matrices. Then, X(1), . . . , X(p) are said to be almost surely asymp-

totically free if the 2 following conditions hold:

• For each q = 1, . . . , p, (X
(q)
i,N )i=1,...,rq has an almost sure joint limit

• ∀m, i1, · · · , im ∈ {1, 2, . . . , p} with i1 6= i2 6= · · · 6= im, and for each non

commutative polynomials (Pj)j=1,...,m in (rij )j=1,...,m indeterminates such

that 1
NTr(Pj(X

ij
1,N , . . . , X

ij
rij ,N

))→ 0 a.s. it holds that

1

N
Tr(P1(Xi1

1,N , . . . , X
i1
ri1 ,N

) · · ·Pm(Xim
1,N , . . . , X

im
rim ,N

))→ 0 a.s.

We remark that when each family X(q) is reduced to a single sequence (X
(q)
N )N≥1

of N ×N Hermitian, or similar to hermitian matrices b, the almost sure freeness of

X(1), . . . , X(p) holds if

Definition 9.3.

bin the sense that X
(q)
N = U

(q)
N H

(q)
N (U

(q)
N )−1 for some N ×N Hermitian matrix H

(q)
N
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• For each q = 1, . . . , p, (X
(q)
N )N≥1 has a limit eigenvalue distribution

• ∀m, i1, · · · , im ∈ {1, 2, . . . , p} with i1 6= i2 6= · · · 6= im, and for each

polynomials (Pj)j=1···m in one indeterminate such that 1
NTr(Pj(X

ij
N ))→ 0

a.s. it holds that

1

N
Tr(P1(X

(i1)
N )P2(X

(i2)
N ) · · ·Pm(X

(im)
N ))→ 0 a.s. (9.3)

We also recall the definition of the S transform of a probability measure, and

recall that the S transform of the free multiplicative convolution product of two

probability measures is the product of their S transforms.

Definition 9.4. Given a compactly supported probability measure µ carried by

R+, we define ψµ(z) as the formal power series defined by

ψµ(z) =
∑
k≥1

zk
∫
tkdµ(t) =

∫
zt

1− zt
dµ(t) (9.4)

Let χµ be the unique function analytic in a neighbourhood of zero, satisfying

χµ(ψµ(z)) = z (9.5)

for |z| small enough. Then, we define the S transform of µ as the function Sµ(z)

defined in a neighbourhood of zero by

Sµ(z) = χµ(z)
1 + z

z
. (9.6)

Moreover, if µ1 and µ2 are two compactly supported probability measures carried

by R+, the S-transform Sµ1�µ2
of µ1 � µ2 satisfies

Sµ1�µ2
= Sµ1

Sµ2
. (9.7)

We are now in position to state the main result of this section.

Proposition 9.1. Matrices W ∗f,NWf,N and W ∗p,NWp,N are almost surely asymp-

totically free.

Proof. We first notice that it possible to replace matrices Wf and Wp by finite

rank perturbations because the very definition of almost sure asymptotic freeness

is not affected by finite rank perturbations. We thus exchange Wp and Wf by

W̃p = 1√
N
Ỹp and W̃f = 1√

N
Ỹf where Ỹp and Ỹf are defined by

Ỹp =


y1 . . . . . . . . . . . . . . . yN
y2 . . . . . . . . . . . . yN y1

y3 . . . . . . . . . yN y1 y2

... . . . . . .
...

...
...

...

yL . . . yN y1 y2 . . . yL−1

 ,
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Ỹf =


yL+1 . . . . . . . . . . . . . . . yN y1 . . . yL
yL+2 . . . . . . . . . . . . yN y1 . . . yL yL+1

yL+3 . . . . . . . . . yN y1 . . . yL yL+1 yL+2

... . . . . . .
...

... . . .
...

...
...

...

y2L . . . yN y1 . . . yL yL+1 yL+2 . . . y2L−1

 .

In other words, vectors yN+1, . . . , yN+L−1, . . . , yN+2L−1 are replaced by vectors

y1, . . . , yL−1, . . . , y2L−1. In order to simplify the notations, we still denote the above

finite rank modifications by Yp, Yf ,Wp,Wf . We define the N ×N matrix Π and the

M ×N matrix Y by

Π =


0 . . . 0 1

1
. . . 0

...
. . .

. . .
...

0 . . . 1 0

 , and Y = (y1, y2, . . . , yN )

and rewrite Yp (and Yf respectively) as

Yp =


Y

YΠ
...

YΠL−1

 , Yf =


YΠL

YΠL+1

...

YΠ2L−1

 .

This allows us to obtain the useful expression for W ∗pWp and W ∗fWf

W ∗pWp =
∑L−1
k=0 Π∗k

(
Y ∗Y

N

)
Πk, (9.8)

W ∗fWf =
∑2L−1
k=L Π∗k

(
Y ∗Y

N

)
Πk. (9.9)

Since N−1Y ∗Y can be written as N−1Y ∗iidRNYiid, where Yiid has i.i.d. Gaussian

entries, the Hermitian matrix N−1Y ∗Y is unitarily invariant. Moreover, Assump-

tion 9.1 implies that N−1Y ∗Y has a limit distribution while it is easily checked that

the family {I,Π∗,Π, . . . ,Π∗2L−1,Π2L−1} has the same property. This and Theorem

4.3.5 in [18] leads to the conclusion that Y ∗Y/N and {I,Π∗,Π, . . . ,Π∗2L−1,Π2L−1}
are almost surely asymptotically free. Proposition 9.1 thus appears to be an imme-

diate consequence of the following Lemma adapted from Lemma 6 in [14]. In order

to make the connections between Lemma 9.1 and Lemma 6 in [14], we use nearly

the same notations than in [14] in the following statement.

Lemma 9.1. We consider a sequence of N × N Hermitian random matrices

(XN )N≥1 and N × N deterministic matrices UN1 ,W
N
1 , . . . , UNm ,W

N
m such that

XN and {UN1 ,WN
1 , . . . , UNm ,W

N
m } are almost surely asymptotically free. Then, if
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UN1 ,W
N
1 , . . . , UNm ,W

N
m satisfy

UNi W
N
i = WN

i U
N
i = IN (9.10)

for each i = 1, . . . ,m as well as 1
NTr(UNi W

N
j ) = δi−j for all i, j = 1 . . .m, then

the random matrices UN1 X
NWN

1 , . . . , UNmX
NWN

m are almost surely asymptotically

free.

Proof. We prove Lemma 9.1 by following step by step the proof from [14]. For

simplicity we omit index N below. Due to (9.10) we have Wi = U−1
i so that matrices

(UiXWi)i=1,...,m are similar to the Hermitian matrix X. We have thus to verify the

2 items of Definition 9.3. The first item is obvious. To check condition (9.3), we

consider any k, indexes i1, · · · , ik with i1 6= · · · 6= ik and polynomials Pj such that
1
nTr(Pj(UijXWij )) → 0 a.s. Using again (9.10) it is clear that Pj(UijXWij ) =

UijPj(X)Wij and, as a consequence, 1
nTr(Pj(X))→ 0 a.s. We define ηN as

ηN =
1

N
Tr(P1(Ui1XWi1)P2(Ui2XWi2) · · · (UikXWik)) =

1

N
Tr(Ui1P1(X)Wi1Ui2P2(X)Wi2 · · ·UikPk(X)Wik) =

1

N
Tr

 k∏
j=1

Wij−1
UijPj(X)

 ,

where i0 = ik. If i1 6= ik then by assumption 1
nTr(Wij−1

Uij ) = 0 for j = 1, . . . ,m.

As we also have 1
nTr(Pj(X))→ 0 a.s, the almost sure asymptotic freeness of X and

{U1,W1, · · · , Um,Wm} leads to the conclusion that ηN → 0 a.s. In the case when

i1 = ik we have WikUi1 = IN and the same conclusion holds. �
By taking X = Y Y ∗

N , Ui = Π∗i−1 and Wi = Πi−1, Lemma 9.1 gives us imme-

diately that Y ∗Y
N ,Π∗(Y

∗Y
N )Π, . . . ,Π∗2L−1(Y

∗Y
N )Π2L−1 are almost surely asymptot-

ically free. Using the expression (9.8, 9.9) of W ∗pWp and W ∗fWf , we obtain that

W ∗pWp and W ∗fWf are almost surely asymptotically free. �

We also deduce that the limit distributions of W ∗pWp and W ∗fWf both coincide

with the additive free convolution product of L copies of the well known limit

distribution of Y ∗Y
N . It is easily seen that the Stieljes transform, denoted tBS(z) in

the following, of this free addditive convolution product is solution of the familiar

equation (see e.g. [1], p. 113)

tBS(z) = − 1

z − c∗
∫ τdω(τ)

1 + τtBS(z)

. (9.11)

In the following, we denote by µBS the corresponding probability measure. It is

clear that (9.11) coincides with the equation verified by the Stieltjes transform of

the limit eigenvalue distribution of the random matrix 1
NX

∗
N (IL × RN )XN where

XN is a ML×N complex Gaussian random matrix with unit variance i.i.d. entries.

We note that this result could also be easily obtained using the Gaussian technics
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developed in [26] in the case where RN is reduced to a multiple of IM .

According to Proposition 9.1, the limit eigenvalue distribution

of W ∗f,NWf,NW
∗
p,NWp,N is µBS � µBS . In the following, we denote by ν̃ this mea-

sure and by f̃(z) its Stieltjes transform. To find an equation satisfied by f̃(z), we

use (9.7). (9.6) and (9.7) give us immediately

χν̃(z) =
1 + z

z
χ2
BS(z).

By replacing here z with ψν̃(z) and taking into account (9.5) we obtain

z =
1 + ψν̃(z)

ψν̃(z)
χ2
BS(ψν̃(z)). (9.12)

We notice that by definition (9.4), we have

ψν̃(z) =

∫
zt

1− zt
dν̃(t) =

∫
dν̃(t)

1− zt
− 1 = −1

z
f̃

(
1

z

)
− 1. (9.13)

Putting this into (9.12) and replacing z with 1
z give us

z2f̃(z)

1 + zf̃(z)
χ2
BS

(
ψν̃

(
1

z

))
= 1.

From this, it is straightforward to obtain the expression of f̃(z). For more conve-

nience, we introduce the function g(z) = χBS(ψν̃(z−1)) which is analytic in the

neighbourhood of infinity. It holds that

f̃(z) =
(
z2g2(z)− z

)−1
. (9.14)

It remains to determine g(z). For this we use (9.13) for ψBS , tBS and replace z

with χBS(z). Then (9.5) gives

z = −1− 1

χBS(z)
tBS

(
1

χBS(z)

)
⇒ tBS(χ−1

BS(z)) = −(1 + z)χBS(z).

To obtain the equation for χBS it is sufficient to use the above expression of

tBS(χ−1
BS(z)), and to plug it in (9.11) with z = χ−1

BS(z). Therefore, we obtain that

(1 + z)χBS(z) =
1

1

χBS(z)
− c∗

∫ τdω(τ)

1− τ(1 + z)χBS(z)

.

After simple algebra we get that

z

(1 + z)χBS(z)
= c∗

∫
τdω(τ)

1− τ(1 + z)χBS(z)
.

We finally replace z by ψν̃(z−1) in the above equation. Using (9.12), it is easy to

see that the l.h.s. is equal to zg(z). To evaluate the r.h.s., we use again (9.12) and
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obtain that ψν̃(z−1) = zg2(z)(1− zg2(z))−1, and that

g(z) =
1

z

∫
R+

c∗τ dω(τ)

1− τg(z)

1− zg2(z)

. (9.15)

We recall that t(z) is solution of the equation

t(z) = −1

z

∫
τdω(τ)

1 +
c∗τt(z)

1− zc2∗t2(z)

. (9.16)

The equations (9.15) and (9.16) are identical up to factor −c∗. Since it can be

shown that Eq. (9.16) has a unique solution on the set of Stieltjes transforms, we

obtain that g(z) = −c∗t(z). Therefore, (9.14) leads to the equation

f̃(z) = − 1

z [1− z(c∗t(z))2]
.

The Stieltjes transform of the limit eigenvalue distribution of WfW
∗
pWpW

∗
f is

clearly equal to 1
c∗

(
f̃(z) + 1−c∗

z

)
. Using the expression (9.2) of tν(z), we obtain

immediately that

1

c∗

(
f̃(z) +

1− c∗
z

)
= tν(z).

We have thus proved that the limit eigenvalue distribution of WfW
∗
pWpW

∗
f can be

evaluated using free probability technics.
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