March 3, 2020 10:8 WSPC/INSTRUCTION FILE revised-version'2

ON THE BEHAVIOUR OF LARGE EMPIRICAL
AUTOCOVARIANCE MATRICES BETWEEN THE PAST AND
THE FUTURE

P. Loubaton
Laboratoire d’Informatique Gaspard Monge, UMR 8049, Université Paris-Est Marne la Vallée
5 Bd. Descartes, Cite Descartes, 77454 Marne la Vallée Cedex 2, France

D. Tieplova

Laboratoire d’Informatique Gaspard Monge, UMR 8049, Université Paris-Est Marne la Vallée
and Dept. of Theoretical Physics, Institute for Low Temperature Physics and Engineering

47 Nauky Ave., Kharkiv, 61103, Ukraine

The asymptotic behaviour of the distribution of the squared singular values of the sample
autocovariance matrix between the past and the future of a high-dimensional complex
Gaussian uncorrelated sequence is studied. Using Gaussian tools, it is established that
the distribution behaves as a deterministic probability measure whose support S is
characterized. It is also established that the squared singular values are almost surely
located in a neighbourhood of S.

Keywords: Large Gaussian random matrices; Autocovariance matrices; Stieltjes trans-
form

1. Introduction.
1.1. The addressed problem and the results.

In this paper, we consider a sequence of integer (M(N))n>1, and positive definite
M(N)x M(N) hermitian matrices (Ry)n>1. For each N, we define an independent
identically distributed sequence (yy)n>1 (depending on N) of zero mean complex
Gaussian M (N)—-dimensional random vectors such that y, = R}\{Q{n where the
components of the M—dimensional vector &, are complex Gaussian standard i.i.d.
random variables (i.e. their real and imaginary parts are i.i.d. and N'(0,1/2) dis-
tributed). If L is a fixed integer, we consider the 2 block-Hankel ML x N matrices
Wp,n and Wy n defined by

Yy Y2 ... YnN-1 YN
Y2 Ys ... YN YN+1

YL Yr+1 --- YN+L—-2 YN+L-1
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and
Yr+1 Yr+2 --- YN—-1+L YN+L
Yr+2 YrL+3 -+ YN+L YN+L+1
1 1 . . . . .
Wen=—=Yrn=—= : : : : : 1.2
fs \/N fs \/N . ( )
Y2 Y2L+1 --- YN+2L—-2 YN+2L—1
If (S\k,N)k:I,‘..,ML are the eigenvalues

of the ML x ML matrix Wg W, Wy nW7 , we study the behaviour of the
empirical eigenvalue distribution

1 ML
N =7 ;%,N

of Wy, NW, nWp v W7 § in the asymptotic regime where M and N converge towards
400 in such a way that
ML

CN:T*)C*,C*>O.

Using Gaussian tools, we evaluate the asymptotic behaviour of the resolvent
Qn(z) = Wy W)y yWyp nWF y —2I) 7", and establish that the sequence (/5)n>1
has the same almost sure asymptotic behaviour than a sequence (vn)n>1 of de-
terministic probability measures. In the following, vy will be referred to as the
deterministic equivalent of Uy. We evaluate the Stieltjes transform of vy, charac-
terize its support, study the properties of its density, and eventually establish that
almost surely, for N large enough, all the eigenvalues of Wy, NWy NWp N W5 are
located in a neighbourhood of the support of vy .

1.2. Motivation

. Yy NY) ”» .. .
Matrix Wy nW x = % represents the traditional empirical estimate of the

autocovariance matrix RJLC| . between the past and the future of y defined as

Yn+L

Yn+L+1
L *
Rf\p,y =E : (y;vyn+1a"~7y:+L71)

Yn+2L—1

This matrix plays a key role in statistical inference problems related to multivariate
time series with rational spectrum. In order to explain this, we consider a M-
dimensional multivariate time series (v, )nez generated as

Uy = Up + Yn, (1.3)
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where (yn)nez is as above a Gaussian "noise” term such that E(y,+xys) = Ro,
for some unknown positive definite matrix R, and where (uy,)nez is a "useful” non
observable Gaussian signal with rational spectrum. w,, can thus be represented as

Tpy1 = Ay + Bwy, u, = Czy, + Dwy, (1.4)

where (wy)nez is a K < M-dimensional white noise sequence (i.e. E(w,1xwj) =
Ik 0,), Ais a deterministic P x P matrix whose spectral radius p(A) is strictly less
than 1, and where B,C, D are deterministic matrices. The P-dimensional Marko-
vian sequence (z,)nez is called the state-space sequence associated to (1.4). The
state space representation (1.4) is said to be minimal if the dimension P of the
state space sequence is minimal. Given the autocovariance sequence (R, n)nez of u
(i.e. Ryn = E(ugqnuj) for each n), the so-called stochastic realization problem of
(un)nez consists in characterizing all the minimal state space representations (1.4)
of u, or equivalently in identifying all the minimum Mac-Millan degree®* matrix-
valued function ®(z) = D + C(2I — A)~!B such that p(A4) < 1 and

Su(eQifrf) _ Z Ru’ne—ZiTrnf _ @(621’77]‘)(1)(621'71')“)* (15)
nez

for each f. Such a function @ is called a minimal degree causal spectral factorization
of S,. We refer the reader to [24] or [37] for more details.

The identification of P and of matrices C' and A is based on the observation
that the autocovariance sequence of u can be represented as

R = E(uny ) = CA™1G (1.6)

for each n > 1, where the 3 matrices (A4, C,G) are unique up to similarity trans-
forms, thus showing that the matrices C' and A associated to a minimal realiza-
tion are uniquely defined (up to a similarity). Moreover, the autocovariance matrix
Rjélzw between the past and the future of u can be written as

RO

— 0w oL)
Flpu = OV V| (1.7)
where matrix Q%) is the ML x P ”observability” matrix

C

CA
o) = , (1.8)

CA.L—l
and matrix C(%) is the P x ML ”controllability” matrix

cB) = (AF1'G, AP 26, . ,G) . (1.9)

2The Mac-Millan degree of a rational matrix-valued function ® is defined as the minimal dimension
of the matrices A for which ®(z) can be represented as D + C(2I — A)~ !B
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For each L > P, the rank of R%}B , temains equal to P, and each minimal rank
(L)
flp,u

. e (L)
particular, if Rf|p,u

OI''/2 coincides with the observability matrix OX) of a pair (C, A). C and A are
immediately obtained from the knowledge of the structured matrix O(X). This dis-

can be written as (1.7) for some particular triple (4, C, G). In

= OI'O* is the singular value decomposition of R%g > matrix

factorization of R

cussion shows that the evaluation of P, C' and A from the autocovariance sequence
of u is an easy problem. We mention that, while C' and A are essentially unique,
there exist in general more than one pair (B, D) for which (1.4) holds because the
minimal degree spectral factorization problem (1.5) has more than 1 solution. We
refer the reader to [24] or [37].

We notice that as (yn)nez in (1.3) is an uncorrelated sequence, it holds that
R, n = E(vp4xv})) coincides with R, ,, for each n > 1. Therefore, P and matrices C
and A can still be identified from the autocovariance sequence of the noisy version v
of . In practice, however, the exact autocovariance sequence (R, ,)r>1 is in general
unknown, and it is necessary to estimate P and (C, A) from the sole knowledge of N
samples v1 = u1 +y1,v2 = Uz +¥Ys,...,vN = uy +yy. For this, P is first estimated
as the number of significant singular values of the empirical estimate RJL"Ip,v of the

= RL  defined by

. L
true matrix R fipu

flpw
pr VYo
flpw — N )
where Vy y and V), v are defined in the same way than Yy x and Y, . If (%p)p=1,...,P
and © = (01,...,0p) are the P largest singular values and corresponding left sin-

gular vectors of matrix R%Iz ,» and if ['is the P x P diagonal matrix with diagonal
entries (9p)p=1,...,p, the ML x P matrix O@) = OI'V/2 is an estimator of an ob-
servability matrix O, O(L) has not necessarily the structure of an observability
matrix, but C' and A can be estimated respectively by the top M x P block C of
OW@) and by the argument A of the minimum of the quadratic fuction

T (04,4 - 0B (05,4~ 0E)) .

down down

where the operator ”down” (resp. "up”) suppresses the last (resp. the first) M rows
from ML x P matrix O%). This approach provides consistent estimates of P, C, A
when N — 400 while M, L and P are fixed parameters. We refer the reader to [11]
for a detailed analysis of this statistical inference scheme.

If M is large and that the sample size N cannot be arbitrarily larger than M,
the ratio M L/N may not be small enough to make reliable the above statistical
analysis. It is thus relevant to study the behaviour of the above estimators in asymp-
totic regimes where M and N both converge towards +oco in such a way that %
converges towards a non zero constant. In this context, the truncated singular value

decomposition of R

Flow does not provide a consistent estimate of an observability
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matrix OF) | and it appears relevant to study the largest singular values and cor-

responding smgular vectors of B when M and N both converge towards o0,

f | v
and to precise how they are related to an observability matrix O,

Without formulating specific assumptions on u, this problem seems very compli-
cated. In the past, a number of works addressed high-dimensional inference schemes
based on the eigenvalues and eigenvectors of the empirical covariance matrix of the
observation (see e.g. [30], [28], [31], [17], [38], [39], [12], [36]) when the useful signal
lives in a low-dimensional deterministic subspace. Using results related to spiked
large random matrix models (see e.g. [4] [5], [33]), based on perturbation technics,
a number of important statistical problems could be addressed using large ran-
dom matrix theory technics. Our ambition is to follow the same kind of approach
to address the estimation problem of P, A,C when u satisfies some low rank as-
sumptions. The first part of this program is to study the asymptotic behaviour of
the singular values of the empirical autocovariance matrix in the absence of sig-
nal Wy nW, N = W As the singular values of Wy yW, \ are the square
roots of the eigenvalues of Wy nW v W), NW] , this is premsely the topic of the
present paper. Using the obtained results it should be possible to use a perturba-
tion approach in order to evaluate the behaviour of the largest singular values and
corresponding left singular vectors in the presence of a useful signal, and to deduce
from this some improved performance schemes for estimating P, C, A.

1.3. On the literature.

The large sample behaviour of high-dimensional autocovariance matrices was com-
paratively less studied than the high-dimensional covariance matrices. We first men-
tion [20] which studied the asymptotic behaviour of the elgenvalue distribution of
the hermitian matrix R, + R* where R, is defined as R, ~ Zn 1 TntrT;, Where
(zn)nez represents a M dimensional non Gaussian i.i.d. sequence, the components
of each vector x, being moreover i.i.d. with zero means and unit variances. In
particular, E(z,z}) = I. It is proved that the empirical eigenvalue distribution of
R, + f%j converges towards a limit distribution independent from 7 > 1. Using
finite rank perturbation technics of the resolvent of the matrix under considera-
tion, the Stieltjes transform of this distribution was shown to satisfy a polynomial
degree 3 equation. Solving this equation led to an explicit expression of the proba-
bility density of the limit distribution. [25] extended these results to the case where
(zn)nez is a non Gaussian linear process z,, = Z;;o(f Ajzp—; where (z,)nez is 1.1.d.,
and where matrices (A;);>¢ are simultaneously diagonalizable. The limit eigenvalue
distribution was characterized through its Stieltjes transform that is obtained by
integration of a certain kernel, itself solution of an integral equation. The proof was
based on the observation that in the Gaussian case, the correlated vectors (zy,)nez
can be replaced by independent ones using a classical frequency domain decorre-
lation procedure. The results were generalized in the non Gaussian case using the
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generalized Lindeberg principle. We also mention [2] (see also the book [3]) where
the existence of a limit distribution of any symmetric polynomial of (]:ZT, Ri)TET
for some finite set T" was proved using the moment method when z is a linear
non Gaussian process. [22] studied the asymptotic behaviour of matrix RTRj when
(Zn)nez represents a M dimensional non Gaussian i.i.d. sequence, the components
of each vector x,, being moreover i.i.d. Using finite rank perturbation technics, it
was shown that the empirical eigenvalue distribution converges towards a limit dis-
tribution whose Stieltjes transform is solution of a degree 3 polynomial equation.
As in [20], this allowed to obtain the expression of the corresponding probability
density function. Using combinatorial technics, [22] also established that almost
surely, for large enough dimensions, all the eigenvalues of RTITH are located in a
neighbourhood of the support of the limit eigenvalue distribution. We finally men-
tion that [23] used the results in [22] in order to study the largest eigenvalues
and corresponding eigenvectors of ]A%T]A%i when the observation contains a certain
spiked useful signal that is more specific than the signals (uy,),ecz that motivated
the present paper.

We now compare the results of the present paper with the content of the above
previous works. We first study a matrix that is more general than RT]:?: While we
do not consider linear processes here, we do not assume that the covariance matrix
of the i.i.d. sequence (Y )nez is reduced to I as in [22]. This in particular implies
that the Stieltjes transform of the deterministic equivalent vy of the empirical
eigenvalue distribution oy of Wy nW v W), NW] \ cannot be evaluated in closed
from. Therefore, a dedicated analysis of the support and of the properties of vy is
provided here. We also mention that in contrast with the above papers, we char-
acterize the asymptotic behaviour of the resolvent of matrix Wy nWy x W, NW7
while the mentionned previous works only studied the normalized trace of the re-
solvent of the matrices under consideration. Studying the full resolvent matrix is
necessary to address the case where a useful spiked signal u is added to the noise y.
We notice that the above papers addressed the non Gaussian case while we consider
the case where y is a complex Gaussian i.i.d. sequence. This situation is of course
simpler in that various Gaussian tools are available, but appears to be relevant
because in the context of the present paper, y is indeed supposed to represent some
additive noise, which, in a number of contexts, is Gaussian.

We finally mention that some of the results of this paper may be obtained by
adapting general recent results devoted to the study of the spectrum of hermi-
tian polynomials of GUE matrices and deterministic matrices (see [6] and [27]). If
we denote by Zy the M x (N 4+ 2L — 1) matrix Zy = (y1,-..,Y~N+2L—1), then
Zn can be written as Zy = R}V/QXN where the entries of Xy are ii.d. com-
plex Gaussian standard variables. Each M x M block ¥n 5, (1 < k,l < L) of
YN = WrnWy yWp nW5  is clearly a polynomial of X, X5 and various M x M
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and M x (N + 2L — 1) deterministic matrices. Assume that M < N +2L — 1. In
order to be back to a polynomial of GUE matrices, it is possible to consider the
L(N +2L—1) x L(N 4+ 2L — 1) matrix ¥y whose (N +2L —1) x (N +2L —1)

blocks are defined by
- b)) 0
YNkl = < A(f)’k’l 0> .

It is clear that apart 0, the eigenvalues of Y coincide with those of Ty. If Xn
isany (N 4+ 2L — 1) x (N + 2L — 1) matrix with i.i.d. complex Gaussian standard
entries whose M first rows coincide with X, then, it is easily seen that each
block of & ~ coincides with a hermitian polynomial of X N, X}(, and deterministic
(N +2L—1) x (N +2L — 1) matrices such as

~ Ry O

Ry = ( ’ O) |
Expressing Xy as the sum of its hermitian and anti-hermitian parts, we are back
to study the behaviour of the eigenvalues of a matrix whose blocks are hermitian
polynomials of 2 independent GUE matrices and of (N +2L — 1) x (N +2L — 1)
deterministics matrices. Extending Proposition 2.2 and Theorem 1.1 in [6] to block
matrices (as in Corollary 2.3 in [27]) would lead to the conclusion that 7x has a
deterministic equivalent vy and that the eigenvalues of Wy yW; W) NnWF v are
located in the neighbourhood of the support of vy. While this last consequence
would avoid the use of the specific approach used in section 8 of the present pa-
per, the existence of vy is not a sufficient information. vy should of course be

characterized through its Stieltjes transform, and we believe that the adaptation of
Proposition 2.2 and Theorem 1.1 in [6] is not the most efficient approach.

1.4. Overview of the paper.

As the entries of matrices W), v and Wy n are correlated, approaches based on
finite rank perturbation of the resolvent Qn(z) of matrix Wy nWy Wy, NWT v,
usually used when independence assumptions hold, are not the most efficient in
our context. We rather propose to use Gaussian tools, i.e. integration by parts
formula in conjunction with the Poincaré-Nash inequality (see e.g. [32]), because
they are robust to correlation of the matrix entries. Moreover, as the entries of
Wy nWy hWy nNWS y are biquadratic functions of y1,...,yn+2r—1, We rather use
the well-known linearization trick that consists in studying the resolvent Q(z) of
the 2M L x 2M L hermitized version

( 0 Wi nW N>
Wy nW5 N 0

of matrix Wy yW, . As is well known, the first M L x M L diagonal block of Qn (2)
coincides with 2Qx(22). Therefore, we characterize the asymptotic behaviour of
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Qn(2), and deduce from this the results concerning @ (z). The hermitized version
is this time a quadratic function of yi,...,ynt2r—1, and the Gaussian calculus
that is needed in order to study Qn(z) appears much simpler than if Qy(z) was
evaluated directly.

In section 3, we evaluate the variance of useful functionals for Qx(z) using the
Poincaré-Nash inequality. In section 4, we establish some useful lemmas related to
certain Stieltjes transforms. In section 5, we use the integration by parts formula
to establish that E(Qn(z)) behaves as Iz, ® Sy(z) where Sy(z) is defined by

—1
cyoy(z
Sn(z) = — (IJZ?V(])\ZIE/()Z)QRN + zIM> ,
where ay(z) is defined by an(2) = 177 TrE(Qn pp(2)) (I ® Ry) where Qu pp(2)
represents the first ML x ML diagonal block of Qn(z). As usual, if A and B are
two n4 X m4 and ng X mp matrices, A ® B represents the nang X mamp matrix
whose np x mp blocks are the matrices 4; jB fori=1,...,nqgand j =1,...,ma4.
We deduce from this that

E(@Qn(2)) = I @ Sn(2) + An(2),

—1
CNZO z
where Sy(z) = — <sz + 1N2N()2RN) ,an(z) = T TEQN(2) (I ©
—cyan(z)
Ry), and where Ay(z) is an error term such that
L an()| < PP (—)
ML TN = N2t “Mm(z)

for each z € C*, where P; and P are 2 polynomials whose degrees and coefficients
do not depend on N. Using this, we prove in section 6 that for each z € C*,

ﬁTrIE On(2) = I @ Tw(2)] Fy — 0,

where (Fn)n>1 is any deterministic sequence of matrices such that supy [|[Fn|| <
+00, and where T (2) is defined by

chtN(z)Z) N) ! )

T =— |27
n(2) (z M+ 1 — 2343 (

tn(z) being the unique solution of the equation

zentn(z) -1
2 ;2 Ry
1 —zext5(2)
such that ¢x(z) and zty(z) belong to CT when z € C*. ty(2) and Ti(z) are
shown to coincide with the Stieltjes transforms of a scalar measure py and of a
M x M positive matrix valued measure v%; respectively (see Section 4 for a formal
definition of a M x M positive matrix valued measure). Recalling that 7y denotes

the empirical eigenvalue distribution of Wi, NWy nWp nW5 , it is proved that

1
tN(Z) = MTrRN <ZIM -
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the measure vy defined by vy = ﬁTI"(l/}l\;) is a probability measure, and that
Uy —vn — 0 weakly almost surely. vy is referred to as the deterministic equivalent
of U . In section 7, we study the properties and the support of vy, or equivalently
of un because the 2 measures are absolutely continuous one with respect to each
other. For this, we study the behaviour of ¢ (2) when z converges towards the real
axis. For each & > 0, the limit of ¢5(2) when z € CT converges towards z exists and
is finite. If ¢y < 1, we deduce from this that vy is absolutely continuous w.r.t. the
Lebesgue measure. The corresponding density gy (z) is real analytic on RT, and
converges towards 400 when z — 0,z > 0. If ¢y < 1, it holds that gy (z) = O(ﬁ)
while gy (z) = O(ﬁ%) if ey =1. If ey > 1, vy contains a Dirac mass at 0 with
weight 1 — % and an absolutely continuous component. In order to analyse the
support of py and vy, we establish that the function wy (z) defined by

1
CNtN (Z)
is solution of the equation ¢y (wy(z)) = z for each z € C—R™ where ¢ (w) is the
function defined by

wy(z) = zenty(z) —

1 _ 1 _
(bN(w) = ch2 MTrRN (RN — wI) ! (CN MTI"RN (RN — ’LUI) ! — 1) .

Moreover, if we define ¢y (x) and wy (z) for > 0 by the limit of tx(z) and wy(2)
when z — z,z € CT, the equality ¢n(wn(2)) = 2 is also valid on RT. We establish
that if = is outside the support of py, then, it holds that
on(wn(z)) =, ¢/(wN(x)) >0, wy(x) %TrRN (Ry — wN(J:)I)_1 < 0.

This property allows to prove that apart {0} when ¢y > 1, the support of uy
is a union of intervals whose end points are the extrema of ¢ whose arguments
verify w 3; TrRy (Ry — wI)™" < 0. A sufficient condition on the eigenvalues of Ry
ensuring that the support of py is reduced to a single interval is formulated. Using
the Haagerup-Thorbjornsen approach ([15]), it is moreover proved in section 8 that
for each N large enough, all the eigenvalues of Wy n Wy Wy ny Wiy liein a
neighbourhood of the support of the deterministic equivalent vy . The above results
do not imply that o converges towards a limit distribution. In order to obtain this
kind of result, some extra assumptions have to be formulated, such as the existence
of a limit empirical eigenvalue distribution for Ry when N — +oc0. If the relevant
conditions are met, vy, and therefore Uy, will converge towards a limit distribution
whose Stieltjes transform can be obtained by replacing in the above results the em-
pirical eigenvalue of Ry by its limit. We do not present the corresponding results
here because we believe that results that characterize the behaviour of vy for each
N large enough are more informative than the convergence towards a limit.

In section 9, we finally indicate that the use of free probability tools is an
alternative approach to characterize the asymptotic behaviour of 7. The results
of section 9 are based on the following observations:
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e Up to the zero eigenvalue, the eigenvalues of Wy yW ) W), NWi N coincide
with the eigenvalues of W Wy W5 W) N

e While the matrices W; yWen and W;} NyWp,n do not satisfy the condi-
tions of the usual asymptotic freeness results, it turns out that they are
almost surely asymptotically free. Therefore, the eigenvalue distribution of
Wi W nW, yWp N converges towards the free multiplicative convolution
product of the limit distributions of W¢ Wy n and W ;W) n. These two
distributions appear to coincide both with the limit distribution of the well
known random matrix model %X}’{, (I ® Ry)X N where Xy isa ML x N
complex Gaussian random matrix with standard i.i.d. entries.

The asymptotic freeness of W Wy n and W W), v appear to be a consequence
of Lemma 6 in [14]. While this approach seems to be simpler than the use of
the Gaussian tools proposed in the present paper, we mention that the above free
probability theory arguments do not allow to study the asymptotic behaviour of the
resolvent of Wy, NW; NWo, NW}‘, ~n- We recall that in order to evaluate the largest
eigenvalues and corresponding eigenvectors of Wy n W y W), NW}"’ n in the presence
of a useful signal, the asymptotic behaviour of the full resolvent in the absence of
signal has to be available.

2. Some notations, assumptions, and useful results.

In the following, it is assumed that L is a fixed integer, and that M and N converge
towards +o0 in such a way that

ML
cN = ~ — Cy, Cy > 0. (2.1)

This regime will be referred to as N — +oco in the following. In the regime (2.1),
M should be interpreted as an integer M = M(N) depending on N. The vari-
ous matrices we have introduced above thus depend on N and will be denoted
RN,Ys N, Yp N, . ... In order to simplify the notations, the dependency w.r.t. N will
sometimes be omitted.

We recall that the resolvent Qn(2) of W v W y W, NWF y is defined by

* * -1
QN(Z) = (WﬁNWp,NWP,NWf,N — ZI) .

As the direct study of Qn(z) is not obvious, we rather introduce the resolvent
Qn(z) of the 2M L x 2M L block matrix

0 WraWiy
My = NN 2.
N (Wp,NW}‘,N 0 (23)

(2.2)

It is well known that Qn(z) can be expressed as

o ZQN(ZQ) QN(ZQ)WLNW*’
Qnv(z) = (WP,NW;,NQW% Qn(22) pN) ’ 24



March 3, 2020 10:8 WSPC/INSTRUCTION FILE revised-version'2

11

where Qn(z) is the resolvent of matrix W), NWiNW W, . As shown below, it
is rather easy to evaluate the asymptotic behaviour of Qx(z) using the Poincaré-
Nash inequality and the integration by part formula (see Propositions 2.2 and 2.1
below). Formula (2.4) will then provide all the necessary information on Qn(z).

In the following, every 2M L x 2M L matrix G will be written as

G., Gor
G- PP p>’
<Gfp Gg

where the 4 matrices (Gij); jeip,s} are ML x M L. Sometimes, the blocks will be
denoted G(pp), G(pf), ...

We denote by Wy the 2M L x N matrix defined by

_ WP,N
Wy = (Wf,N> . (2.5)

Its elements (W/™)i<ar j<nm<nm satisfy

m m’ \* 1
E{Wu( i’,j’) }: ﬁRmm’,N5i+j,i/+j/v

where W/, represents the element which lies on the (m + M (i — 1))-th line and

j-th column for 1 < m < M, 1 < i < 2L and 1 < j < N. Similarly, QZ;;”{
where 1 < my,me < M and 1 < iy,is < 2L, represents the entry (my + M (i —
1)), (ma+M(ig—1)) of Q. Foreach j = 1,..., N, {w; }}L |, {wy ; 172, and {wy;} 1,
are the column of matrices W, W,, and W; respectively. For each 1 < ¢ < 2L and
1 < m < M, f" represents the vector of the canonical basis of C2ML with 1 at
the index m + (i — 1)M and zeros elsewhere. In order to simplify the notations,
we mention that if ¢ < L, vector f]” may also represent the vector of the canonical
basis of CML with 1 at the index m + (i — 1) M and zeros elsewhere. Vector e; with
1 < j < N represents the j —th vector of the canonical basis of CV. Also for any

integer K, Jg is the K x K ”shift” matrix defined by
(JK)ij = 6j—ia- (2.6)

In order to short the notations, for each integer | € Z, we define the symbol (1)
by e(l) = 1if 1 > 0 and €(1) = «|I| if I < 0. Consequently, for each [, matrix Ji is
equal to J}( if I > 0 and to J}k{l” if 1 <0.

If Ais a matrix, then ||A|| and ||A| r represent its spectral norm and Frobenius

norm respectively. If morever A is a square matrix, Im(A) is the Hermitian matrix
defined by Im(A) = Agf* . We recall that if A and B are two ng xm4 and ng Xxmpg
matrices, A ® B represents the nang X mamp matrix whose ng X mpg blocks are

the matrices A; ;B fori=1,...,nqgand j =1,...,ma.
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The sequence of covariance matrices (Ry)ny>1 of M-dimensional vectors
(Yn)n=1,....n is supposed to verify

al <Ry <bl (2.7)

for each N, where @ > 0 and b > 0 are two constants. A1y > Aoy > ... > AN
represent the eigenvalues of Ry arranged in the decreasing order and f1 n,..., far,n
denote the corresponding eigenvectors. Hypothesis (2.7) is obviously equivalent to
Am,ny > a and Ay < b for each N.

The eigenvalues and eigenvectors of matrix Wy nW) yW, NW7 v are denoted

5\17N >...> 5\ML7N and fLN, . .,fML,N respectively.

By a nice constant, we mean a positive deterministic constant which does not
depend on the dimensions M and N nor of the complex variable z. In the fol-
lowing, x will represent a generic nice constant whose value may change from
one line to the other. A nice polynomial P(z) is a polynomial whose degree
and coefficients are nice constants. Finally, if (an)n>1 is a sequence of posi-
tive real numbers and if  is a domain of C, we will say that a sequence of
functions (fn(z))n>1 verifies fn(z) = O,(an) for z € Q if there exists two
nice polynomials P; and P, such that |fy(z)] < aNP1(|z\)P2(Hle|) for each
z € Q. If Q = C*, we will just write fx(z) = O.(axn) without mentioning
the domain. We notice that if P;, P, and @1, Q2 are nice polynomials, then
Pi(lz) Pal k) + Qi (2D Qa (k) < (P + Qu)(|2)(Ps + Qo) (), from which
we conclude that if the sequences (f1,n)n>1 and (f2,n)n>1 are O (an) on Q, then
it also holds fi n(z) + fo,n(2) = O,(an) on Q.

C° (R, R) represents the set of all C* real valued compactly supported functions
defined on R.

If £ is a random variable, we denote by £° the zero mean random variable defined
by
3 (2.8)

We finally recall the two Gaussian tools that will be used in the sequel in order
to evaluate the asymptotic behaviour of Qn(z) and Qn(2).

Proposition 2.1. (Integration by parts formula.) Let £ = [¢1,...,6x]T be a
complex Gaussian random vector such that E{¢} = 0, E{¢€T} = 0 and E{¢€*} = Q.
IfT: (&) = T(€,€) is a C* complex function polynomially bounded together with its
derivatives, then

o) =S a5l O
E{&F(S)}—;QME{ o, } (2.9)
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Proposition 2.2. (Poincaré-Nash inequality.) Let £ = [¢1,...,Ek]T be a com-
plex Gaussian random vector such that E{¢} = 0, E{¢¢T} = 0 and E{&¢*} = Q. If
T (€)= T(EE) is a Cl complex function polynomially bounded together with its

derivatives, then, noting VeI = [88—;, cee %]T and Vel' = [%, R %]T
Var{L(¢)} < E{ Vel (€ TV (E) b+ E{Vel(€)" V(€ } (2.10)

3. Use of the Poincaré-Nash inequality.

In this paragraph, we control the variance of various functionals of Qx(z) using
the Poincaré-Nash inequality. For this, it appears useful to evaluate the moments
of |[Wx||. The following result holds.

Lemma 3.1. For any | € N, it holds that sup -, E{||[Wx|*} < 4oc.

Proof. We first remark that it is possible to be back to the case where matrix
Ry = In. Due to the Gaussianity of the ii.d. vectors (y,)n>1, it exists i.i.d.
N.(0, 1) distributed vectors (yiign)n>1 such that E(yiid,ny;@dm) = I,y verifying
Yn = R}Vﬂyiid,n. From this, we obtain immediately that the 2M L x N block Hankel

matrix Wiq N built from (yn,iid)nzl,...,N satisfies
RY?
Wy = Wiia,nN- (3.1)
RY?

As the spectral norm of Ry is assumed uniformly bounded when N increases, the
statement of the lemma is equivalent to supy E{||[Wi;ql|?'} < +oo. It is shown in
[26] that the empirical eigenvalue distribution of Wi;q, NWijd, N converges towards
the Marcenko-Pastur distribution ppsp« with parameter c,, i.e. parp« is the limit
of the empirical eigenvalue distribution of matrices such as %QX X* where X is
a K7 x K9 random matrix with i.i.d. zero mean and unit variance entries when
K7 and K5 converge towards 400 in such a way that % — ¢4. The smallest non
zero eigenvalue and the largest eigenvalue of Wi,q, NW;;d, ~ (which coincides with
[Wiia,n||?) converge almost surely towards (1 — ,/¢;)? and (1 + /c,)? respectively.
We express E{||[W;iq|/?'} as

E{[|Wiiall”} = E{IWiial* 1ywiaiz< i+ veny2+s} + E{IWiall* Lywisalz> 4 ver2+s )}
< K+ E{Wiial P Lywialz> 4+ yemz+st < 6+ B Wial # 1 2E{L jwiaiz> a4 ven2 st

where k > 0 is a nice constant. As E{||W;.;.q. |3} = O(N?), it is sufficient to prove
that E{1|w, 2> 1+ e)2+s} is less than any power of N~1. We introduce a smooth
function ¢g defined on R by

Do) = 1, for A € [—o0, =0] U [(1 + \/e5)? + 6, 400,
SV T00, for A e [-6/2, (1+/E)? + /2]
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and ¢g(N\) € (0, 1) elsewhere. Then, it holds that

E{Lyw, 412> 0+venz+6t = E{Ix,.. wiawy >+ vanz 6t < P[Trdo(WiaWiig) > 1]
* 2k
<E{<Tr¢0( iid iid)) }

for any k£ € N. Lemma 3.1 thus appears as an immediate consequence of the follow-
ing lemma.

Lemma 3.2. For each smooth function ¢ such that $(A) =0 if A € [-§/2, (1 +
VEx)? +6/2] and ¢(X) constant on [—oo, —6] U [(1 + \/cx)? + 8, +o0], it holds that

K
Vk € N, ]E{(Trqs( i ;;d))z’“} < <o

Proof. We prove the Lemma by induction. We first consider the case & = 1.
For more convenience we will write W instead of W;;4 in the course of the proof.

Here and below we take sum for all possible values of indexes, if not specified. From
(2.10) we have

. ATep(WWH\ oy ITrp(WW™)
Var{Trg(Ww*)} < S E{ [ el ) mpwm e et
ar (Tro (W)} < Y- {( o ) (W7
OTGWW*) o, OTrp(WW*) )
+ZE{ o E{ “lemp}(an?Q : (3.2)

We only evaluate the first term, denoted by 9, of the right handside of (3.2), because
the second one can be addressed similarly. For this, we first remark that

ORI (o oW :
anl =Tr <¢ (WW )8Wm1 ) (¢ (WW )W)zh_]l N

11,71 11,71

Plugging this into (3.2) we obtain
1 / * *my
U= 30 CE{ @ WWIW) G s iatin (6 (WWOW)2, L
Denoting [ = i1 — 49, it is easy to verify that 1) can be written as

V=g S BT @ OW) (0 e L) (W) V) 63)

where we recall that matrix Jy, is defined by (2.6) and that e(I) =1 if { > 0 and
e(l) = %[l if I < 0. For each ML x N matrices A and B, the Schwartz inequality
and the inequality between arithmetic and geometric means lead to

*€'lL * *e(uw e(u 1 *xe(uw e(u 3
TrA*(J W @ Iy)BJE™| < —TrA (T3 g @ 1y )A+ﬁTrBJN( RS

Therefore, since Jzé(u)Jz(u) ® Inr < Ipgr and J;E(M)J;\;u) <In

1 se(u *e(u

VL (TrA*A 4+ TrBBY). (3.4)

2
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By taking here A = B = ¢/(WW*)W, we obtain from (3.2) and (3.3)
Var{Tro(WW*)} < %E {Tr (& (WW™))>? WW*} . (3.5)

Consider the function n(\) = (¢’(A\))?\. It is clear that n()\) is a compactly sup-
ported smooth function. Therefore (see e.g. [26]), it holds that

1
E{—Tr ((¢/ (WW*)?WW* :/
L @orwypw )= [
where pprp,v is the measure associated to Marcenko-Pastur distribution with pa-
rameter ¢y and where Syrpn C [0, (1 + (/cn)?] represents the support of pap .

It is clear that for N large enough, the support of ¢’ and Sysp,n do not intersect,
so that [¢  n(A)duarp,n(N) = 0. Therefore, we obtain that

1

n(A)dpnrp,n(A) + O (NQ) :

MP,N

E {MlLTr ((¢’(WW*))2WW*)} =0 (;2) .

This and (3.5) lead to the conclusion that Var{Tr¢(WW*)} = O (N~2). To
finalize the case k = 1, we express E{(Tr¢(WW*))?} as E{(Trop(WW*))?} =
Var{Tr¢g(WW*)} + E{Tr¢(WW*)}2. [26, Lemma 10.1] implies that
E{Tr¢(WW*)} = O(N~1), which completes the proof for k = 1.

Now we suppose that for any n < k we have E{(Tr¢p(WW*))?"} = O(N ")
and are about to prove that it holds for n = k+ 1. As in the previous case we write
E{(Tro(W W)X 41} = Var(Tro(WW)*1) + (E{(Troww)+1})".
(3.6)

To evaluate the second term of the r.h.s. of (3.6), we use the Schwartz inequality
and the induction assumption

BTV i)+ < (BOToww )Pt = 0 (g ).
(3.7)

We follow the same steps as in the case k = 1 to study the first term of the r.h.s.
of (3.6). Using again the Poincaré-Nash inequality, we obtain that

Var{(Teo(WW*))F1} < %E {(TrqS(WW*))Qk Tr (¢’(WW*)2WW*)} .

Using Holder’s inequality, we obtain

1

E+1

Var{(Tr¢(WW*))F1} < %E { (Tms(ww*))%“}k% E { (Tr(qs'(ww*)?WW*))k“}
(3.8)

The properties of function n(\) = ¢'(\)?X imply that it satisfies the induction
hypothesis and that it verifies (3.7), i.e. E {(Tr(¢/(WW*)2WW*))* 1} = O(577).
Plugging this into (3.8), we get that

.
T

Var{(Trg(WW*)" 1} < 5B {(Troww)? 2}
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From this, (3.7) and (3.6), we immediately obtain

K2

E{(Tr¢(WW*))2k+2} < %E{(Tr¢(WW*))2k+2}%H + W

(3.9)

We denote by zj v the term z y = N2*F2E{(Trp(WW*))2¥+2}. Then, (3.9) im-
plies that

ZE,N < K1 (Zk,N)k/(k—H) + Ka.

This inequality leads to the conclusion that sequence (zx,n)n>1 is bounded, or
equivalently that E{(Trgp(WW*))?*2} < - as expected. This completes the
proof of Lemmas 3.2 and 3.1. B

We now evaluate the variance of useful functionals of the resolvent Qn(z).

Lemma 3.3. Let (Fn)n>1, (Gn)n>1 be sequences of deterministic 2M L x 2M L
matrices and (Hn)n>1 a sequence of deterministic N x N matrices such that
max{supy ||Fn |, supy |Gn|, supy [|[Hn||} < k. Then, for each z € C*, it holds

that
1 C(2)k?
1 . C(2)k"

where C(z) can be written as C(z) = Py(|z]) P2 (125) for some nice polynomials Py
and Ps.

Proof. We first prove (3.10) and denote by £ the term £ = ﬁTrFQ. The
Poincare-Nash inequality leads to

0\ ooy oma y 06
Var{¢} < > E{(aw““) E{Wil,j1Wi27j2}W}

i1,J1,M1 11,1 12,]2
i2,J2,M2
o %\
my 72
> E{aw’”* BV Wi <3W,mz ) }
i1,J1,M1 11,71 12,72
12,]2,M2

We just evaluate the first term of the r.h.s. that we denote by ¢. For this, we need
the expression of the derivative of Q with respect to the complex conjugates of the
entries of W. We denote by I,y and Iy, the 2M L x 2M L matrices defined by
I, = (8 IJVOIL) and Iy, = (IISL 8). Then, after some algebra, we obtain that

0Q

W = _Q(wfj’f ) ( ﬁL)TQ i< - Q (w?,p) ( ZﬁL)TQ 1i>r

= —QIl,; We; ()" T,y Q — QM ;,We; (£7) T, Q. (3.12)
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From this, we deduce immediately that

o 1 ms
S = L (Mm,rQFQIL, W + prQFQprW)im

11571

Using that E{W™ W,

1 . s
i Wig it = N Rmyma0is+j1,ia+5>» We obtain that ¢ is given by

1 .

o= yamp 2 (@) oy QFQIW + T, QFQI, W) € R,
21,J17m1
12,j2,M2

X 611-4-]1712-"-]2 (fm ) ( I’fQFQHPfW + HfPQFQHfPW)ejQ'

We put u = i1 — iz and remark that >, . . _ £ R, (fr)T = ng(u) ®R
and that erjl:u ej, e;!l = J;,E("). Therefore, ¢ can be written as
L1
1 1 v/ pre(u)
¢ = 7MLN]E{ __Z_ L s QFQIL W + 11, QFQILy, W)™ (I, @ R)
% (IL,; QFQIL, W + 111, QFQIL, W)J3 ™ }. (3.13)

1 *e(u
Each term inside the sum over u can be written as m’ﬁA*(IL ® R1/2)(JL ) g

(I, ® R1/2)AJ;,E("), where the expression of the ML x N matrix A is omitted.
As ||R|| is bounded by the nice constant b (see (2.7)), (3.4) and (3.13) lead to
the conclusion that we just need to evaluate 17 E{TrA*A}. Using the Schwartz
inequality, we obtain immediately that

E{TrA"A} < 2E{Tr (I, QF QIL,; W)"IL,; QF QIL,; W)} (3.14)
+ 2E{Tr ((I1;, QFQIL;, W) I ;, QFQILp, W)}

Since (I, QFQIT, )" T1,;QF QI < Q|| F|* T and [|Q]| < 7 we get that

1
(Imz)?

< 1
~ (Imz)4

7 BT (T QF QI W) T QF QI W)} < o [|[F|? BTV}

I EL W}

Lemma 3.1 thus implies that

1 . 1
ST (1, QFQI, )11, Qrar, ) < 27 ()
for some nice polynomial P. The term 1+ E{Tr (I1;,QF QIL;,W)*I1;,QF QIl;, W)}
can be handled similarly. Therefore, (3.13) leads to ¢ < /{2 Lp (%) This estab-
lishes (3.10).
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To prove (3.11) one can also use Poincaré-Nash inequality for ¢ =
ﬁTrF QGWHW?™. After some calculations, we get that the variance of £ is up-
perbounded by a term given by

1 1
% E <MLTr(FQGWH)*(FQGWH) + 77 H(FQWH)* (FQWH) + 11 + 772) :
(3.15)

where k1 is some nice constant, and where 77 and 7, are defined by

1 ) *
m = 577 T, QGW HW™ FQIL,(W)" (IL,; QGW HW™ FQIL, W),

1 *
o = 577 T QGW HW* FQIL, W)* (T, QGW HW* FQII 1, V).

Using Lemma 3.1 as well as the inequality QQ* < ﬁ] , we obtain immediately
(3.11). This completes the proof of Lemma 3.3. B

In the following, we also need to evaluate the variance of more specific terms.
The following result appears to be a consequence of Lemma 3.3 and of the particular
structure (2.4) of matrix Q(z).

Corollary 3.1. Let (Fi n)n>1 be a sequence of deterministic ML x ML matrices
such that supy |[Fin|| < &k, and (Hy)n>1 o sequence of deterministic N x N
matrices satisfying supy |[Hy|| < 1. Then, if z € CT and Imz? > 0, the following
evaluations hold:

1 o 1 2 1
Var {MLTrFlQij(Z)} <K WP1(|Z ) P2 <Im22> ) (3.16)
where i and j belong to {p, f};
1 . F1 0 2 1 2 1
Var {MTI" |:HW Hiljl ( 0 O) Q(’Z)HMJQW]} é k mplqz |)P2 Im22 ’

where 11, 1,12, jo still belong to {p, f}, but verify i1 # j1 and is # ja.
Proof. We first prove (3.16), and first consider the case where i = j = p. We

define the 2M L x2M L matrix F by F = (F01 8) , and remark that 117 TrF1 Qpp (2)

coincides with £ = 77 TrFQ(z). We follow the proof of (3.10), and evaluate the
right hand side of (3.14) in a more accurate manner by taking into account the
particular structure of the present matrix F'. It is easy to check that

BT (11, QFQIL W) 11, QFQIT, 1)

1 * )k Pty
= mE{Tr (Wf Qppfi prprFlQppr)}~

As Qgp(2) = WPV{/'JTQ(Zz)7 we obtain that

1
Qin(2)Qup(2) = (Q*)) Wy W W Wi Q) < W oo
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if Im(2?) > 0. Therefore, it holds that
1
* VK 2 4
Fr Qe Qe Fy < w7 (|W]| (fm=2)2 I.

From this, using the expression of Q,, = 2Q(z?), we obtain similarly that

Wf QppFl prprFlQppr < '%QHW”G (Im22)%
Lemma 3.1 thus leads to the conclusion that
1 2 ’i1|z‘2

E{Tr (W} Qpp FY Qi Qep Fi Qpp Wy ) } <

ML (Imz2)*’

where £ is a nice constant such that E(||[Wy||®) < k; for each N. Using similar
arguments, we obtain that

1 2 K12
ML (Imz2)4"

This, in turn, implies (3.16) for i = 7 = p. As the arguments are essentially the

2|2

E{Tr (prQFQprW)*prQFQprW)} <K

same for the other values of ¢ and j, we do not provide the corresponding proofs.

In order to establish (3.17), we follow the proof (3.11) for F' = II;, ;, (F01 8),

G =11,,;,. It is necessary to check that the 4 terms inside the bracket of (3.15) can
be upperbounded by £2 Py (|2?|) P2 (1zz) for nice polynomials P; and P,. As above,

the use of the particular expression of matrices (Qjsj)i jefr,p} allows to establish this
property. The corresponding easy calculations are omitted. B

4. Various lemmas on Stieltjes transform

In this paragraph, we provide a number of useful results on certain Stieltjes trans-
forms. We recall that if K is a positive integer, then a K x K matrix-valued positive
measure w is a o—additive function from the Borel sets of R onto the set of all pos-
itive K x K matrices (see e.g. [34], Chapter 1 for more details). w is said to be
finite if the scalar positive measure Tr(w) is finite. In the following, if A is a Borel
set of R, we denote by Sps(A) the set of all Stieltjes transforms of M x M matrix
valued positive finite measures carried by A. S1(A) is denoted S(A). We first begin
by stating well known properties of Stieltjes transforms (see e.g. the Appendix of
[21], the Appendix A of [16], and the references therein).

Proposition 4.1. The following properties hold true:
1. Let f be the Stieltjes transform of a positive finite measure u, then
— the function f is analytic over CT,
—if z € C* then f(z) € CT,
— the function f satisfies: |f(z)] < ’fr(r]i), forze C*

—if u(—00,0) = 0 then its Stieltjes transform [ is analytic over C/RT. More-
over, z € Ct implies 2f(z) € CT.
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— for all ¢ € C°(R,R) we have

/R¢()\)d/i()\) = %lyig)llm {/Rqﬁ(x)f(m —H’y)dx}.

2. Conversely, let f be a function analytic over C* such that f(z) € C*
if z € CT and for which sup, > iy f(iy)| < +oo for some € > 0. Then, f is
the Stieltjes transform of a unique positive finite measure p such that p(R) =
limy,40o —iyf(iy). If moreover zf(z) € Ct for z in C* then, uy(R™) = 0. In

particular, f is given by
400
_ p(dA)

and has an analytic continuation on C/R™.
3. Let F be an P x P matriz-valued function analytic on CT verifying
~Im(F(z)) >0 if 2 € C*H
- sup,~. |liyF (iy)|| < +oo for some e > 0.
Then, F € Sp(R), and if p*" is the corresponding P x P associated positive
measure, it holds that
pF(R) = lim —iyF(iy). (4.1)

Yy—r+00
If moreover Im(2F(2)) > 0, then, F € Sp(RT).

We now state a quite useful Lemma.

Lemma 4.1. Let 3(z) € S(RY), and consider function B(z) defined by B(z) =
28(2%). Then B € S(R). Moroever, it holds that

(. BR) o
G = (b~ g ") e @ )
(g eBE) T
G(z) = < Ing T 2252(2) R) € Su(RT)
and that
X I . I
G(:) (G(:))" < it G (G < it (43)
Finally, matrices G(z) and G(z) are linked by the relation
G(z) = 2G(2?) (4.4)

for each z € CT.

Proof. Let 7 be the measure carried by RT corresponding to the Stieltjes trans-
form ((z). We first prove that 3(z) is a Stieltjes transform. We first remark that if
z € C*, then 22 € C—R™*. 3 analytic on C —R™ thus implies that 3(z) is analytic
on C*. Moreover, it is clear that

zdT()\) / Imz(A + [z|2)d T(N)
I == I =
mp(z) = Im Rt A— 22 R+ |A =222

> 0, whenImz > 0.
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To evaluate B(z) for z € CT, we write
/ 2dr()) / dr(\)
< .
R+ )\ — 2’2 - R+ |A — Z’

Using that % — z| > |Im(% - z)| > Imz for z € CT and A > 0, we get that

|ﬂwM534 dr(y) _ T(RY)

+ Imz Imz

From this and Proposition 4.1, we obtain that 3(z) € S(R).

To prove (4.2), it is first necessary to show that G is analytic on CT. For this,
we first check that m(z) =1 —c?B2(z) # 0 for z € C*. Indeed, write B(z) = z + iy
with > 0, then m(z) = 1 — c?2? + c?y? — 2cayi. Hence, if 2 = 0 we have m(z) =
1+ c%y? > 0, and if  # 0 then 2zy # 0 since y > 0. In order to establish that

matrix (zIM — 1_052(;2(2)]%) is invertible on CT, we verify that
¢B(2)
Im | —2Ipy — ——>5—R 0 4.5
m (-t - =) < )
on CT. It is easy to check that
B(2) cImB(z)(1 + ¢*|B(2)*)
Im (—2lpy — — ) R) = —Imzly — —Imz Iy,
m<ZM 1—&wufa S TR R
Therefore, Imz > 0 and ImB(z) > 0 imply (4.5). The imaginary part of G(z) is

given by

Im(G(2)) = —G(2)Im | —zInp — L(Z)R (G(2))" >Imz (G(2) (G(2))") > 0.
1—¢262(z)

Therefore, InG(z) > 0if z € C*. We finally remark that lim,_, o —iyG(iy) = I,

which implies that sup, . [[iyG(iy)| < +oo for each ¢ > 0. Proposition 4.1 even-

tually implies that G € Sy;(R). Moreover, if 7% is the underlying M x M positive
matrix valued measure, (4.1) leads to 7¢(R) = Iy;.

We prove similarly the analyticity of G(z) on Ct. We first check that 1 —
2c2B2(z) # 0 if z € C*, or equivalently that |1 — 2c282(2)| # 0 if z € CT. We
remark that

1 1
1—2¢2B82%(2)| = |28(= 0262—>IszmBzIm(026z— )

| () = BENICEE) - 5] (o)1 (25() -

(4.6)
As 8 € S(RY), it holds that Im (cgﬁ(z) - %) > 0if z € CT. Therefore, 1 —
2c2B%(z) # 0 if z € C*. As above, we verify that
)
1—2(cB(2))?

cB(2)

Im (ZIM 1—2(cf(2))?

R)IszMIm( > R < —Imz I,y;.

(4.7)
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For this, we remark that
czB(z) ) c 9
Im = Im(z8(2)) + |z¢B(2)|“ImB(z)) > 0
(= Sest7) = seamrp (A + oo m(a)
if 2z € Ct*, which, of course, leads to (4.7). Therefore, matrix

(—zIM — CZB(Z)QR) is invertible if z € C*, and G is analytic on CT. More-
1 —2(cB(2))

over, we obtain immediately that

Im(G(z)) = G(=) (Imz Ins +Im < c28(2) ))2) R) (G(2))* > Imz (G(2)G(2)") >0

1—2z(cB(z )
4.8

czB(2)

Im(zG =G(Z)m| ——— | R(G(2))* >0

n(:6() = G (=20 ) RG>

for z € C*. As above, it holds that lim, , . —iyG(iy) = I and that

sup, .~ |iyG(iy)|| < +oo for each € > 0. This implies that G' € Spr(RT), and that

if 7¢ represents the associated M x M matrix-valued measure, then 7¢(R*) = I.

In order to establish (4.3), we follow [15, Lemma 3.1]. More precisely, we remark
that

dr¢(\) 9 (RY) I
ImG(z) =1 =
mG(z) = Imz /R+ A —z|? < TTIme Imz

Therefore, (4.8) leads to (G(2)G(2)*) < L. The other statement of (4.3) is

= (Imz)%"
proved similarly and this completes the proof. B

Lemma 4.2. We consider a sequence (Bn)n>1 of elements of S(RT) whose asso-
ciated positive measures (Tn)n>1 satisfy for each N > 1

1
~(RY) = MTTRN (4.9)
as well as
/ AdTny(\) =c L Ry LTeR2 (4.10)
- TN = CN M N M N .
Then, it exist nice constants w, k such that
Kk Imz
1 > 4.11
mONE) 2 T 1y
and
1 3
1— 2 (enB(2)?] > —m2) (4.12)

(w? +[2]?)?
for each z € CT and for each N > 1. Moreover, if By(z) is defined by By(z) =
2 Bn(22), then, we also have

% (Imz)®

EEED) (4.13)

ImBy(z) >
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and

1_ (CNﬂN(z»Q‘ > ( x (Imz)®

—_— 4.14
R .

for each z € C* and for each N > 1.

Proof. We first establish (4.11). Imfx(z) is given by

Imfn(z) = Imz /R+ d;ﬁjg.

For each w > 0, it is clear that
/ dTN()\) >/w d’TN()\) > TN([O,W])
r A =22 7 Jo A =22 T 2002 4 [22)

Assumption (2.7) and (4.10) imply that the sequence (rn)n>1 is tight. For each
€ > 0, it thus exists w > 0 for which 7y (Jw, +o0[) < € for each N, or equivalently,
™w([0,w]) > T8v(RT) —e. As 75 (RT) = 4 Tr(Ry) > a, we choose € = a/2, and
obtain that the corresponding w verifies 7 ([0, w]) > a/2 for each N. This completes
the proof of (4.11). We now verify (4.12). For this, we use (4.6). As Im (ﬁ(ﬂ) <0,

it holds that Im (cfv B ()

— ﬁ(z)) > & ImfBn (z). Therefore, we obtain that

]1 e (cNBN(z))2’ > 2 Tmz (ImB (2))? (4.15)

which implies (4.12).

We finally verify (4.13) and (4.14). For this, we first express By(z) as

z

,BN(Z) = ZﬁN(Z2) = d’TN(A)

R+ )\ — Z2
which leads immediately to

1
Rt [A— 2%

1
> (1T 3 —d A).
> ()’ [ mmd )

A+ |z

ImﬁN(Z) =Imz - m

drn(N) > Imz |2|? dTn(N)

We observe that for w > 0, then,

1 w 1 1
%55 > R > - )
/R+ |)\_22|2d71\/()\) _/0 |)\_22‘2dTN()\) =ETEFED 7N ([0, w])

As justified above, it is possible to choose w for which 7x([0,w]) > § for each N.
This leads to (4.13).

We now remark that |1 — ¢&.8%| = \,[)'NH,@%V —c%Bn|- AsImBy >0 on CT, it
holds that

‘1 - c%vﬁN‘ > ‘Im (1 - c%vﬁN)‘ > 3 ImBy.
BN BN
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Using that |3,] > ImBy, we eventually obtain that
11— X By > & (ImBx)?

which, in turn, implies (4.14). B

5. Expression of matrix E{Q} obtained using the integration by
parts formula

We now express E{Q(z)} using the integration by parts formula and deduce
from this an approximate expression of E(Q(z)). For this, we have first to es-
tablish some useful properties of E{Q(z)} that follow from the invariance prop-
erties of the probability distribution of the observations (y,)n=1,.. .~. In the fol-
lowing, for k,I € {1,2,...,L}, we denote by f)’ll) and ngf’l the M x M ma-

trices whose entries are given by ( ]gil))m,n = (Qpp)(k—l)M+m,(l—1)M+n and

k.l
(fo )m o= (fo)(k_l)M+m,(l_1)M+7Lfor each m,n € {1,2,...,M}.

Lemma 5.1. The matrices E{Qpp} and E{Qg} are block diagonal, i.c. E (QKL) =
E{QE'} =0 if k # 1, and

TrE{Qpp}(Ir ® R) = T'E{Qg }(I1 ® R), (5.1)
E{Qps} = E{Qsp} = 0. (5.2)
Proof. To prove (5.2), we consider the new set of vectors z = e %y, and

construct the matrices Z,, Z; in the same way as Y, and Y;. It is clear that
sequence (z)nez has the same probability distribution that (yn)nez. Z, and Zy
can be expressed as

eIy ... 0 1... 0
Zp = Yp : )
0 ) efLiOIM 0 e~ (N—1)i0
e ®Iy... 0 1 0
Zy=et¥ : Yy :
0 Ce L0, 0 e~ (N-1)i0

Therefore, it holds that

e Iy ... 0 eIy ... 0
2323 2,27 = Do : YV Y, Y/ :
0 e_LwI]w 0 €Li‘9[M

72]1»1[‘ %ZfZ;

-1
Similarly to Q we define matrix Q% = ( ) and obtain immediately

%ZPZ}K 72[]\/[[‘
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that
eIy ... 0 eI ... 0
E{Q]Z)p} = : : E{Qpp} :
0 - e_LwI]\/[ 0 Ce €wajy[
Since E{Q%,} = E{Qpp}, then for any M x M block E{Qpp’"*}, we have
E{Qppj7k} = e_jw]E{Qppj’k}ekw = e(k_j)wE{Qppj’k}-
This proves that ]E{Qppj’k} = 01if k # j as expected. A similar proof leads to the
conclusion that E{Qg} is block diagonal. Moroever, the equality E{Q?p} =E{Qgp}
implies that
eiwa... 0 GMIM... 0
E(QRy=e¢""| = - |E{Qe}
0 €_LiGIM 0o ... €LiGIM
Therefore, each M x M block prj’k of Qg verifies E{prj’k} =
e~ (EH—RORIQ Y. As j — k € {—(L — 1),...,L — 1}, this implies that
E{Qs,""*} = 0. This leads immediately to E{Qg,} = 0. We obtain similarly that
E{Qpr} =0.
To prove (5.1) we consider the sequence z defined by z, = y_pn4nor for each
n. Again, the distribution of z, will remain the same and it is easy to see that Z,
and Z¢ are given by

0 ...1y 0...1
Zy=| : N RO B
Ipg oo O 1...0
0 Y 0 1
Zp =1 R
Iy ... 0 1...0
From this, we obtain that
0 ...1y 0 ...1y
E{Qept=| 1 1 |E{Qa}
Ipg ... 0 Ippooo O

AsE{QZ%,} = E{Qpp}, this immediately implies that E{Qg’} = E{Qpp~ 7+ 77},
and, as a consequence, that E{TrQpp (I, ® R)} = E{TrQg (I}, ® R)}, as expected.
|

In order to present the following approximation of E(Q n(z)), we introduce some
useful notations. ay(z) is the function defined by

1

aN(z) = mTI‘ (]E{QN(Z)(IL X RN)}) . (53)
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ay is clearly an element of S(RT). In order to evaluate its associated positive
measure i, we denote by iy the positive measure defined by

ML
N 1 £ R
din () = 31 ; FIL @ R)fidy,, (5.4)
where we recall that (5\1) v and ( fz)Z 1,....MI represent the eigenvalues and

eigenvectors of WyW W, W We remark that fin is carried by R* and that its
mass /iy (RT) coincides Wlth TrRN Then, measure fi is defined by

[ o dm ) =5 ([ o) 55)
and satisfies fiy (RT) = - TrRy. We also define ay(z) as the function

an(z) = zay(2?) (5.6)
which, due to the identity Qpp(2) = 2Q(2?), is also given by

OéN(Z) = ﬁ]E {TrQN,pp(Z)([L ®RN)} (57)

Lemma 4.1 implies that ay € S(R) and that the M x M matrix-valued functions
Sn(z) and Sy(z) defined by

SN(Z) = — (ZIM + %RN>_ (58)

and

Sn(z) = — (%R + z) L 8n() (5.9)

belong to Spr(RT) and Sy (R) respectively. We are now in position to introduce
the main result of this section.

Theorem 5.1. The matriz E(Qn(2)) can be written as
E{Qn(2)} =1, ® Sn(z) — En(2) (IL ® Sn(2)), (5.10)

where En(z) is an error term such that

1 1 1
—TrE Fy| €< k— P, Py(— 11
T TN < 5o D) (5:11)
for each z € CT and for each deterministic M Lx M L sequence of matrices (Fn)n>1
such that supysi [|[Fn| < &

In order to establish Theorem 5.1, we express E{Q(z)} for z € CT by using
the integration by parts formula (see Proposition 2.1), and deduce from that the
expression (5.10) of E{Q(z)}. The properties of the error term Ey(z) is finally de-
duced from the results of section 3.
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We recall that matrix M is defined by (2.3). In order to express E{Q(z)} for
z € C*, we use the identity

N *
2Q(2) = Ly + Q(2)M = — Loy, + ; Q(2) (wmow?j o ’jowp’j> . (5.12)

Foreverymi,ma=1,...,M,i; =1,...,2L and i3 = 1,...,LwedenotebyA;'fil?m2
the 2N x 2N matrix defined by

Amim Am'lmQ (pp) Am'lm2 (pf) >
Amime — (Hiia Sz , 5.13
2= (e ) At (17 (543)
where the 4 N x N blocks are given by
A=)k = (Q (wo, )i (w2,
(A7 e)ik = (Q (wy, )5 (wp )i, (514
(A7 (F )k = Q)i (wh )i,
(A7 (o)) = (Q (Y5 (wp )i

We also define matrix A™™2 by A71™2 — E{A™™2}  (5.12) implies that

1119 1112 1172

ZE{QZL;;LZ (Z)} = 751'171'2 5m1,m2 + TrAZLil;nz (pf)lizﬁL + TI‘AZ-?;:?L(fp)]_Z—Q>L,
(5.15)
In the reminder of this paragraph, we evaluate for each i1, 75, m1, mo the elements
of matrix A"} using (2.9) and (3.12). As we shall see, each element of AJ";™* can
be written as a functional of matrix E{Q} plus an error term whose contribution
vanishes when N — +oc0. Plugging these expressions of AZL;;M into (5.15) will
establish an approximate expression of E{Q}. As the calculations are very tedious,

we just indicate how each element (A7'1™?(ff));r of matrix AJ"}™*(ff) can be
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evaluated. By using integration by parts formula (2.9) and (3.12) we obtain

. mi m
E { (Q <wé)])> . * } Z ZE{QZ;:%WZ:—?LL J zzj-L k}
11 13=1 mg
L [ (@ :
= Z Z E{WzTiLg i’,j’} X E <Q ' J—m’ 2+L’k) = Z Z msam/’

1 o —
i3=1 z/,_] i,j 137 z g’
mo,ms m’ ;13

mlms
mim 72 1113
X 6i3+L+j,i’+j’E {anls 36m2,m’6i2+L,i’5k,j’ + Wi2+L P e 7m, }

L M L
1 mam 1
- N Z Z E{ 1113 3Rm3m26i3,i2_(j_k)} o N Z Z RmSm/5i3+L+j,i’+j’
i3:1 mg:l

i37j//i,:1
ms,m
) 1 =
ma Iy m m'm
]E{ka (Q("y ))thiUrL?g} -~ > > Ruymigirijirts
in,g! #=L+1
ma,m’
—(f)ma mi " mima2
xE{WE—iLL (@(u2)) szg} ZE{((Q“) LER)
71 2113

o) D SussenenB{ (A0 @ue Ry}

m’ 5" ig,i'=1
1 mi1msa m’nz’
-~ Z S G (AnL=0h) | Qepll e R ¢
31/ 1 ’

Now we define for every iy = 1,...,2L, 4o = 1,..., L and mi,ms = 1,..., M the
2N x 2N matrix B]"}™* with N x N blocks

(Bm?'f’h(fp)) = iE{(Qpp) (IL®R)}Ml7m2 1,<; I
Q142 ik Qs inyis—(j—k)—L 1<io—(j—k)—LZL>
(Bmlmz ) — {(Qpp> IL®R)}m1Jn2 1 - el
i1z , i1 via— (k) 1<is—(j—k)<L>
( m1m2 ) E {(pr) IL X R)}ml’mz 11<i —(j—k)<L>s
e ik inia—(i—k) o T
mlmz ]E pr) I R }ml)m2 1 o (i— .
( iz ) {( L& R) insia— (k)L S2TUTRTLSL

For every ML x ML block matrix D, we define the sequence
(T(M)(D)(l))l=—L+1,...,L—1 as

rAD(D)(1) = mTrD(J D @ Iy) = Z S by (5.16)

mlzz’l
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and the N x N Toeplitz matrix T]\(,J}I{)(D) given by
L—1
M *e(l
Tvr @)= > Moy, (5.17)
I=—L+1
In other words, the entries of TJ\(,%) (D) are defined by the relation
[TJ%)(D)L 2 D) (1 = j2) 1 (L-1)<jr—jo<L-1- (5.18)
1,J2

We observe that if D is block diagonal, i.e. if D?fll’:” = 0 for each my, mo when

i1 # i9, then, matrix TN7 T (D) coincides with the diagonal matrix TJ\(,%) (D) =
(ﬁTrD) In. It clear that

= Z {((Qpp) I ®R))::n2 5i3,i2(jk)} = ( :le:w(ff))
In order to rewrite the term

N > %LWWxE{(AZ;;’”(m) (Qup (I @ R }

m/,j" i3, =1

in a more convenient way, we put [ = i’ — i3, and remark that

3 Z v < B{(A0D) @l e |

m’,j" ig,i’
ML . mims
T ;l__%_l)E{<Auw (ff))LJrj Lk ML ., ; l pr IL ®R))z i } .

Using the definition (5.16), this can be rewritten as

L
1 mi1m 77/ 4
¥ 5 X duseny < B{ (AT0D) , Qult s R =
m/,j iz, i =1 ’

L-1

e > B{(anrun), M Qe R0}
| ,

l=—(L—1

We introduce j' = L 4+ j — [, and using (5.18), we notice that

Iy s v < B{(A0D) @l e |

m’,j’ i3, =
N

NES S [T @uem)|, (ALeun) o=

ok
=1 !

enE { (TATE QeI & RYALL™ (1)) k} :
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We obtain similarly that
1 L
N2 X 5i3+j,if+j/E{(AZT§T2(pf)) (Qpp(Iz @ R))Z" } =
m/ g ig,i'=1

enE { (T80 Quo(1 @ R)ALL™ (01)) k} |

Therefore, matrix A"!™2(f f) is also given by

(=), = (Bureun) | - eve{ (AT Qe e AT D) |

- B { (T8 @uett 0 RYAT 1) |}
Writing Qgp and Qpp as Qg = E{Qgp} + Qp, = Qg, (see (5.2)) and Qpp =
E{Qpp} + Qpp, We obtain that
(Areun) = (=) —oxB{ (T0 Quutts s AL 00) |}
- B { (KT Qult e ROAZE™ (D)}

—cnE { (T4 Qg @ RDATL™ (1)) } :
Jsk
We define the N x N matrix A"}™2(f f) by

172

ATLTR(ff) = —enE{IKT Qe (1L © RDATL™(15)}

112

— enE{ T Qa1 @ R)AL™ (0f) }

1112

Dropping the indices i1, i3, m1, ms, we eventually obtain that
Ag = Bg — cnE {T]%)(QPP(IL ® R))} Ape + Ag.
Using similar calculations, it is possible to establish that:
Apt = Bpr — enE{ T4 (Que(I. ® R)) } A + Apr,
Agf = Bgp —cnE {TJ\(f{VL[)(Qpp(IL ® R))} App + Ap,
App = Bpp —cnE {T]\(/],\i)(Qﬁ'(IL ® R))} Agp + App,
where Apg, Agp, and App are defined as
Apr = —enE{ T (Qpe(l ® R)JiApe | — enE{T'](Qa(1L © R)Ag |,
Agp = —cyE {JﬁTN%)(Qgp([L ® R))Afp} —¢nE {T(M)(QO (I ® R))App} :

App = —cnE {TJSIE)(Q;f(IL ® R))Jy App} - CNE{ T Qe (I @ R))Afp}
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By Lemma 5.1, matrices E{Qg} and E{Qpp} are block diagonal. Therefore, matri-
ces E{TI\(,%) (Qe(IL®R))} and IE{TJ\(,{\/LI) (Qpp(IL®R))} reduce to o E{TrQg (I ®
R)} Iy and 7E{TrQpp(I, ® R)} Iy respectively. As E{TrQg(I;, ® R)} =
E{TrQpp(Ir ® R)} (see (5.1)), we eventually obtain that

CN

In N R A{TrQpp(I, ® R)} Iy

x ML eP A=B+A. (519)
7MLE{TI'QPP(IL®R)}IN In

Using (5.7), this can be written as

< IN cNaNIN

A=B+A.
ecyanyIy Iy ) i

Lemma 4.1 implies that
1= (ene(2))* #0

if z € CT. This implies that the matrix governing the linear system (5.19) is invert-
ible for z € C*. Matrix H given by

H:< Iy CNa<z>IN>1.

cNa(z) IN IN

is thus well defined for each z € C*. The blocks of H are of course given by

1

Hyp =Hg = ———5 In,

PP 1—ca(z)
CNO(Z

Hp¢ = He, = — voz) g

1-Za(z)’

(5.19) implies that A = HB + HA. (5.15) implies that we only need to evaluate
matrices Apr and Ag,. We obtain that these matrices are given by

Apf = prBpf + prBff + prApf + prAﬁ'7
Afp = prBpp + Hﬂ'pr + prApp + Hﬁ'Afp.

This and definition (5.14) of matrix Aj"}™* lead immediately to

0o wywr mimz mim mim
(E {Q (Wpr* fo ’ >}> =TrA; *(Pf)li<r + TrAiliQ*ZL(fp)1i2>L =

1172
1

1—c%a?

mimo
Tf(Bpf — exaBg + Aps — cNaAH) M er
1112
mimsa
1i2>L.

1112 —

1
+ WTr(pr — CNaBpp + Afp — CNaApp)

It is easy to notice that Tr (Bgp)! "™ = Tr (Bpe), 2" = 0, and Tr (Bpp)"1 "™ =

1112 ’il’ig 1112

E{(QI(IL® R));; "}, Tr(Be),, " = E{(QI,(I2L® R));; "}, where

i1io+L 1112 1112
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My = (§;2,) and I, = (42 0). Hence, using that E{Qps} = E{Qgp} = 0,

0Inmr
we obtain that

(]E {Q (W;LV; WfOW; ) })::nz = _% (]E{anp(IQL ® R)}
e = - (BlQUaem))

m
i1z 12 1-Za ;

1ma2 mima
+gi1i2 ?

TE(QIL (Lo R)) )

lliz
where £;"1™ represents the remaining terms depending on the entries of matrix

A", Using the identity (5.12), we obtain that

’Lli

E(Q+ I =E{Q (5 07 )} = 1 B{QY B © B) + €,

1—c3
(5.20)
which immediately leads to

o

~E{Q} <1_JZQ

a2([gL®R)+2) =Ly — &
N

or, equivalently,

E{Q} (Ior ®S)™" = Loy — &,

where we recall that S is defined by (5.9). As E{Q} is block diagonal, (5.20) implies
that matrix £ is also block diagonal, i.e. & = Epe = 0. Moreover, it holds that

E{Q(2)} = L ® S(z) — £(2) (121 ® S(2)). (5.21)

This allows to evaluate E{Q(2)} by identification of the first diagonal blocks of the
left and right hand sides of (5.21). We thus obtain immediately that

E{Q(z*)} = I, ® S(2%) — Epp(2) (I ® S(2)) (5.22)

for each z € CT, where we recall that S(z) is given by(5.8). Therefore, Epp(z) only
depends on z2. As the image of C* by the transformation z — 22 is C — RT, we
obtain that Epp(2) = E(2?2) for some function E analytic in C—R*. This discussion
leads to

E{Q(2)} =1L ® S(z) — E(z) (IL ® S(z)) (5.23)

for each 2 € C — R™T.
In the following, we prove (5.11). For this, we establish following result.

Proposition 5.1. For each deterministic sequence of ML x ML matrices
(F1,n)n>1 such that supysy [|[Fy N[ < &, then

Eu(z) Fuw)| < 530 P Pa ) (5.24)

L Imz?

holds for each z € CT for which Imz? > 0, where Py and Py are 2 nice polynomials.
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Fin 0

Proof. We define Fy as the 2M L x 2M L matrix Fy = ( 0 0

) and remark

1 1 .
that mTrEF = mTr(épp(z) F1,n) can be written as

1 1 mo 1m2
T BEF = ——— > (WAL (0f) — calr AT (£) Lincs
mi s

(TP AT () — calT AT, (5p) Lior ) FIE™ . (5.25)

1271

1
, mTrSF is reduced to the first term
of the right hand side of (5.25) that we now evaluate.

As matrix F verifies nglml =0ifio > L

S AT () e = S Z]E{ LQaer) ()

1
91,12 i1,42  j,k
mi,msa mi,msa

x (wf]) P2 (T (Qae (110 R) T (Q () )m (w}‘f,j>m Fm s
= e E{ T Qe (Lo R) (") FQ (7 )+ T (Qae (@ R) - () FQ(i,) |
= e TWE{ T (Qi (11 @ R)) (TL,/ W) FQ (I, )

+ TR QL © R)JRE (T, W)* FQ (L, W) .

1
Similar calculations lead to the following expression of mTré' F:

1 1 .
Tk by T TE{ TR Qi (I @ R) (T, W) FQ (I, W)

TN (Qpe(TL@R)) N (T W)™ FQ (I, W) —ca Ty (Qpp ([ ®R)) (I W)™ FQ (I, W)
— ca K THL(Q5 (11 @ R)) (T W)" FQ (I, W) | (5.26)
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We now evaluate the right hand side of (5.26). The Schwartz inequality leads to

DRI Qa7 © R)) (T, W) FQ (I, 0) }'

i E{T(M)(Q%‘(IL ® R))([)MLTI"(J*E(I) ( hW)* FQ (prW))}‘
l=—L+1
L-1

> E{ ]\41L Qi ® R @ L)) 577 Tf(J*E(l) (IL,sW)" FQ (prW))o}
l=—L+1

L-1

1/2
Z Var{Tr(fo(IL®R)( J50 ®IM>)}

l——L+1

1/2
XVar{ TY(J*e(l) (prW)*FQ(prW))} .

ML
Using Corollary 3.1, we obtain that

Var {MLMQH(IL ® R)(Ji ®IM))} < %H“ZQ')P? (Ixriz?)

and that

var { ST (7 @) FQUn ) ) < e ().

Imz2

Since L does not grow with N, this implies immediately that

Imz2

S (TR Qi (12 & ) (W) PQU, W) } < w2 (1)

holds. It can be shown similarly that the 3 other normalized traces can be upper
bounded by the same kind of term. It remains to control the terms m

and . For this, we use Lemma 4.2 for the choice Sy(z) = an(z). It is

ay
17((;1\{ aN)2
sufficient to verify that the measures (fiy ) n>1 associated to functions (an(2))n>1
verify (4.9) and (4.10). For each N, it holds that

/O+OoduN(>\) - E{ /O+OodﬂN()\)} - %TrRN

and
/O+°° Adiiy(A) =E (/0+°° )\dﬂN(/\)) =E (MlLTr((IL ® R)wagwpwm .

A straightforward calculation leads to ]E{ w7 Tr(Wy Wy W,W; )} L5 TrRyTrRY, .
Therefore, (4.12) implies that

@ < 0P ()
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for each z € Ct, and if 22 € Ct, it holds that

1 1
<P(P)P | — |-

e < AR ()
As an(z) = zay(z?), this is equivalent to

o < PP ()

1—(eny an) Imz2

Finally, we remark that |y (2)| < 3 TrRy - < b2 for each z € CT. Therefore,

if z2 € C*, it holds that oy (2?)] < b and that |ay(z)| = |2||an(2?)] verifies
1

Imz

lan (2)] < blz| —5 < b(1+ 2]

Imz2"
This completes the proof of Proposition 5.1. B

Proposition 5.1 immediately leads to the following Corollary.

Corollary 5.1. For each sequence (Fn)n>1 of deterministic ML x ML matrices
such that supysq |[Fn|| < & we have

1Tr[<E{QN<z>}1L®SN<z>>FN}\sfe;gauz)zﬂz( =) e

ML Im2z?2
for each z € C*. In particular, it holds that
1 1 1
T (EQM:) - L sN<z>>1\ <rpPlDR (s ) 629
Proof. (5.22) implies that
1 1
SE T BN () — 100 S3(:2) )| = | 17 T (a) (1 5 () P
As Epp(2) = E(2?) and [|Sy(2?)|| € 155 if 2% € CT, the application of Proposition
5.1 to matrix Fy y = Sy(2?)Fy implies that
1 1 ) 1

for each z such that 22 € C*. Exchanging 22 by z eventually establishes (5.27).
This, in turn, completes the proof of Theorem 5.1.

6. Deterministic equivalent of E{Q}

6.1. The canonical equation

Proposition 6.1. If z € CT, there exists a unique solution of the equation

zentn(z) -t
) (61)

1
tN(Z) = MTI‘RN (ZIM -
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satisfying tx(z) € CT and zty(z) € C*. Function z — tn(2) is an element of
S(RT), and the associated positive measure, denoted by py, verifies

1 1 1
pn(RT) = Tt /+ Mdpun(N) = cn T MTTR?\,. (6.2)

R

Moreover, it exists nice constants 8 and x such that

I R+’

o7 < 3 (6.3)
‘1 ~ 2 (entn(2)) ] (Imz)
for each N. Finally, the M x M wvalued function Tn(z) defined by
zentn(2) -1
T =—|zI ————R 6.4
N (2) (z Mt — 22 2,(2) N) (6.4)

belongs to Syt (R™). The associated M x M positive matriz-valued measure, denoted
vL, verifies

vR(RT) = Iy (6.5)
as well as
1
UN = MTI‘RNZ/IY\;. (6.6)

Proof. As N is assumed to be fixed in the statement of the Proposition, we
omit to mention that tn,Tn, iy, ... depend on N in the course of the proof. We
first prove the existence of a solution such that z — #(z) is an element of S(R™).
For this, we use the classical fixed point equation scheme. We define t¢(z) = —%7
which is of course an element of S(RT), and generate sequence (¢,,(z))n>1 by the

formula

et (2) )1 .

1

We establish by induction that for each n, t, € S(R'), and that its associated
measure ju, verifies y1, (RT) = 2. TrR and

+o0 1 1 )
A (dA) = c—=Tr(R)—Tr(R?). 6.7
| @) = e (R e (6.7)
Thanks to (2.7), this last property will imply that sequence (in)n>1 is
tight. We assume that ¢, indeed satisfies the above conditions, and prove
that ¢,41(z) also meets these requirements. Lemma 4.1 implies that function

Tn(z) = <ZIM 11— ze22
to Proposition 4.1, to prove that ¢,11(z) € S(RT), we need to check that
Imty,41(2), Imzt,11(2) > 0if z € CT, as well as that lim,_, | o iyt,+1(iy) exists. As

zctn(2)

-1
( )R> is an element of Sp/(RT). According
2
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T, € Su(RY) and t,,41(2) = ﬁTrRTn(z), it is clear that Imt,1(2), Imzt,41(2) >
0. Finally, it holds that
. . 1 ciyty (iy) -1
wini (i) = 37 Tr ( M = eiytaiy))?

Since t,(z) is a Stieltjes transform we have —iyt, (iy) — pn(RT), which implies
that —iyt,11(iy) — 4 TrR, ie. that g, (RT) = L TrR.
We finally check that p,11 satisfies (6.7). For this, we follow [16].
+OO)\ d\) = lim R 1y (1 iTrRT ) iTer
A (d) = lim R =y (y TR () + TR )

We can express 1), as

—1 2
1 ct 1 R ¢t ct

T,=—=(1I — " _R = -4+ = n__ n R?T,,,
z ( M+ 1 —zc?t2 ) + ( )

— 212 _ 242
z z 1 —zc*t2 1 — zc?tZ

from which it follows that

1 1 czty, 1 9 czty, | 3

Since —iyt,(iy) — TrR and t,(iy) — 0 we can conclude that
—iy(iy77 TrRT, (iy) + 77 TrR) — 35 TrRTrR? as expected.

We now prove that sequence t,, converges towards a function t € S(R™) verifying
equation (6.1). For this we evaluate 0,, = t,4+1 — t,

1 1 2e(tn — tn—1)(1 + 2cPtpt,_1)
0, =-—TrR(T,, —T,_1) = —TrRT, RT,
M ( ) M (1 —2c282)(1 — 2c2t2_ ) !
ze(1+ zPtpt,_1) 1
0, — TrRT,RT,_,.
A= z2)(1— 22 )M !
We denote by f,,(z) the term defined by
ze(1+ zPtpt, 1) 1
n = —TrRT,RT, . 6.8
W& = T e —zee g ! (6.8)

Lemma 4.1 implies that ||| < - and that |t;| < & for each k > 1 and each
z € C*. Therefore, it holds that

= ((Irfzw (1 N <hi>2)> :

2__|2]
(Imz)?

1
ze(l + chtntn_l)MTrRTnRTn_l

Moreover, it is clear that for each k, |1 — 2¢*t2| > (1 — ¢
small enough, we consider the domain D, defined by

). For each € > 0

2]

D, = +
c={zeC " (Imz)?2

<) (6.9)
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Then, for z € D, it holds that
1 1 1
1 —2c2t2] |1 — 2¢2t2_,| = (1 — c%¢)?

and that
|fn(2)] < ﬁ (e+¢?).

We choose € in such a way that ﬁ (e + 62) < 1/2. Then, for each z € D, it
holds that

1
|9n| < 5‘9n71|~

Therefore, for each z in D, (t,(2))n>1 is a Cauchy sequence. We denote by t(z)
its limit. (¢,(2))n>1 is uniformly bounded on every compact set of C — R*. This
implies that (¢,(z))n>1 is a normal family on C — R*. We consider a converging
subsequence extracted from (t,(z))n>1. The corresponding limit ¢.(z) is analytic
over C—R*. If z € D, t.(z) must be equal to ¢(z). Therefore, the limits of all con-
verging subsequences extracted from (¢, (z)),>1 must coincide on D, and therefore
on C — R*. This implies that ¢,(z) converges uniformly on each compact subset
towards a function which is analytic C — R*, and that we also denote by #(z). It
is clear that t(z) verifies (6.1) and that ¢ € S(R*) and verifies (6.2). Moroever,
Lemma 4.1 implies that T € Sy (R™), while (6.6) and (6.5) are obtained immedi-
ately.

As (6.2) holds, (6.3) is a consequence of the application of Lemma 4.2 to the
function By (z) = tn(2).

We now prove that if z € CT and ¢;(z) and t2(z) are 2 solutions of (6.1) such
that t;(z) and zt;(2) belong to C*, i = 1,2, then t;(z) = t2(2). In order to prove
this, we first establish the following useful Lemma.

Lemma 6.1. If z € CT and if t(2) verifies the conditions of Proposition 6.1, then,
it holds that

1—wu(z)>0 (6.10)
and

det(I — D) > 0, (6.11)

D= (i) ) (612

where

lezt(2)]? &% Tr(RT(2)(T(2))* R)

u(z) =c¢ HM_ RETE)EE , (6.13)
LTr(RT(2)(T(2))*R

o= o19
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Proof. Using the equation t(z) = - TrRT(z), we obtain immediately after some

- M
algebra that

Im(t(2)) Im(t(z)) 1 .
27 E(RT'(2)(T'(2))")
Im(z) _ Tm(z)
(Imw(z)) ) =D <Im<t<>> ) + (M 0 : (6.15)

Im(z) Im(z)

The first component of (6.15) implies that

(1= ul) T = o) HEE) s Lnrr o))
Therefore, it holds that (1 — u(z)) > 0. Plugging the equality

Im(t(z))  w(z) Im(zt(2)) 1 1 . T
Im(z)  1—wu(z) Im(z) Tz u(z) MT (RT(2)(T(z))")
into the second component of (6.15) leads to

z 2'[}2 z mizi(z z 2'U z
(1 —u(z) - ‘1 - uég;) I h(nfi))) = l I u((z)) STHRT(2)(T(2))) > 0

and to (6.11).

To complete the proof of the uniqueness, we assume that equation (6.1) has
2 solutions t1(z) and t2(z) such that t;(z) and zt;(z) belong to C* for i = 1,2.
The proof of Lemma 4.1 (see in particular (4.6)) implies that for ¢ = 1,2, then

5 ) zcti(2)

1 — z(cti(2))* # 0 and matrix —zI — T=a2i()
Ty (z) and T(z) the matrices defined by (6.4) when t(z) = t1(z) and t(z) = ta(2)
respectively. u;(z) and v;(2), i = 1,2, are defined similarly from (6.13) and (6.14)
when ¢(z) = t1(2) and ¢(z) = t2(2). Using that ¢;(z) = 3, Tr(RT;(2)) for i = 1,2,
we obtain immediately that

t1(2) — t2(2) = (u1,2(2) + 2v1,2(2)) (t1(2) — t2(2)),

R is invertible. We denote by

where
() = czti(2)ezta(2) 77 Te(RTy (2) RT2(2))
128 = T e ()9 (1= #(eta(2)P) (6.16)
and
vra(z) = ¢ + Tr(RT1(2)RT»(2)) (6.17)

(1= 2(ct1(2))?) (1 = 2(cta(2))?)
In order to prove that t1(z) = t2(2), it is sufficient establish that 1 — uq 2(2) —
zv1,2(2) # 0. For this, we prove the following inequality:

1= u1(2) = 2v12(2)] > V(1 = u1(2)) = [2fvr(2) V(1 = wa(2) — [z[va(2) (6.18)
which, by Lemma 6.1, implies 1 — u; 2(z) — zv1,2(2)) # 0. For this, we remark

that the Schwartz inequality leads to |uj2(2)] < y/ui(z)\/uz2(z) and |v12(2)| <

Vv1(2)y/va(z). Therefore,
1= u1a(2) = 2012(2)] 2 1= VVur(2)Vuz(2) = V2o (2) /]2 lv2(2).
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We now use the inequality
Vab—Ved > a—cvb—d, (6.19)

where a,b,c,d are positive real numbers such that ¢ > ¢ and b > d. (6.19)

for a = b =1 and ¢ = ui(z), d = wuz(z) implies that 1 — J/uq(2)\/ua(z) >
/1 —u1(2)y/1 — ua(z). Therefore, it holds that

1= u12(2) = 2012(2)] 2 V1= ua(2)V/1 = u2(2) = V/]z[v1(2) V[ 2]v2(2)
(6.19) for a = 1 —ui(2), b = 1 —uz(z), ¢ = |z\v1(z) and d = |z|va(z) eventually
leads to (6.18). This completes the proof of the uniqueness of the solution of (6.1)
and Proposition 6.1. B

Remark 6.1. (6.10) and (6.11) are still valid if z belongs to R™*. To check this,
it is sufficient to remark if z = x € R™*, the fundamental equation (6.15) is still

valid, but ITéqt((;))) nd Imgé(’;)) have to be replaced by t (z) and (xt(z)) where

" denotes the differentiation operator w.r.t. x. The same conclusions are obtained
because ¢ (x) > 0 and (zt(z)) > 0if 2 € R,

6.2. Convergence

In this paragraph, we establish that the empirical eigenvalue distribution oy of
matrix Wy, NW NWp, NWf n has almost surely the same deterministic behaviour
than the probablhty measure vy defined by

1

vN = MTI‘V}\}, (6.20)

where we recall that v% represents the positive matrix valued measure associated
to Tx(z). For this, we first establish the following Proposition.

Proposition 6.2. For each sequence (Fn)n>1 of deterministic M L x M L matrices
such that supy>q [|[Fn|| < &, then,

ﬁTr [(B{QN(2)} — I, @ TN (2)) FN] = 0 (6.21)
holds for each z € C — R™T.

Proof. Corollary 5.1 implies that
1
Sz TEQN) - (o sv)Fy =0 ().

We have therefore to show that ——Tr (I, ® (Sy —Tn)) Fx — 0. It is easy to check

that

ML

zZeN«Q

2
1—zcy

L nL e -T)F= MlLTr(ILm)(

zcnt
- IL®RT)F
ML 1— zc§vt2> (IL®RT)

a2
zey(a—t)(1 4+ chat) 1

= (- 2Bt (i ==& ML U @ SRDE (6:22)
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We express o — t as a — 37 TrRS + 7 TrR(S — T'), and deduce from (6.22) that

1 1 zen (1 + zckat)
—Tr (I —-T)F = — —Tr
(L& (S ) (a RS) (1 —zc%,02)(1 — zc3t2)

ML M
zen (1 + 2ckat) 1
—Tr(IL@SRT)F.
(1—zc%02)(1 — zc3t2) ML (e )

1 1
%577 TS RT)F+ - TeR(S-T)

(6.23)

(5.27) implies that o — - TrRS = O, (4 ). Therefore, in order to establish (6.21),
it is sufficient to prove that ;TrR(S — T) — 0. For this, we take F = I, ® R in
(6.23) and get that

STR(S() - T(E) = f(e) 37 TR(SG) ~T() + Ou(5) (624
where fy(z) is defined by
zen (1 + 2c%at) 1

In(z) = —Tr(RS(2)RT(2)).

(1—2c%02)(1 — 23 t2) M

fn(z) is similar to the term defined in (6.8). Using the arguments of the proof

of Proposition 6.1, we obtain that it is possible to find ¢ > 0 for which,
supysn, [fn(2)] < § for each z € D, for some large enough integer Np.
We recall that D, is defined by (6.9). We therefore deduce from (6.24) that

1
ZTrR(S(2) — T(2)) — 0 and mTr (IL ® (S(z) = T(2))) F converge towards 0

for each z € D.. As functions z — ﬁ’ﬁ (I, ® (Sn(2) — Tn(2))) Fv are holomor-
phic on C —RT and are uniformly bounded on each compact subset of C — RT, we
deduce from Montel’s theorem that ﬁf[‘r (I, ® (Sn(2) = Tn(2))) Fn converges
towards 0 for each 2 € C —R*.

We deduce the following Corollary.

Corollary 6.1. The empirical eigenvalue distribution Uy of W NnWy nWp N5
verifies

191\/ —vy — 0 (625)
weakly almost surely.

Proof. Proposition 6.2 implies that E{1; TrQn(2)} — 3 Tr(Tn(z)) — 0 for
each z € C—R™. The Poincaré-Nash inequality and the Borel Cantelli Lemma imply
that o+ Tr(Qn(2)) — E{57: TrQn(2)} — 0 a.s. for each z € C — R*. Therefore, it
holds that

1

MLTr(QN(z)) — %Tr(TN(z)) — a.s. (6.26)
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for each z € C —R™. Corollary 2.7 of [16] implies that oy — vy — 0 weakly almost
surely provided we verify that (Inx)n>1 is almost surely tight and that (vy)ny>1 s
tight. It is clear that

~ 1 * *
/]R+ Ndin(N) = T W N W N W N Wy < W%,

Wy N
Wy =, PN,
N (Wf,N>
It holds that ||[Wx| < Vb |Wisa n || where Wi;q v is defined by (3.1). As |[Wiian|| —
(14 y/c.) almost surely (see [26]), we obtain that 577 TeWy Wy W, W}y is
almost surely bounded for N large enough. This implies that (Pn)n>1 is almost

surely tight. As for sequence (vy)n>1, we have shown that supy [p4 Adpun(N) <
+00. As uny = ﬁTrRNVE, the condition Ry > al for each N leads to

where we recall that

Adun(N) >a Advn ().
R+ R+
Therefore, it holds that supy fR+ Advn (M) < 400, a condition which implies that
(VN)NEI is tight. [ |

7. Detailed study of vy.

In this section, we study the properties of vy. (2.7) implies that puy and vy are
absolutely continuous one with respect each other. Hence, they share the same
properties, and the same support denoted Sy in the following. We thus study uy
and deduce the corresponding results related to vy. As in the context of other
models, uy can be characterized by studying the Stieltjes transform ¢y (z) near
the real axis. In the following, we denote by M the number of distinct eigenvalues
(XZ,N)l:L...,M of Ry arranged in the decreasing order, and by (m n),; 37 their

multiplicities. It of course holds that Z£1 myn = M.

7.1. Properties of t(z) near the real axis.

In this paragraph, we establish that if o € R™*, then, lim, ,, ,cc+ t(z) exists
and is finite. It will be denoted by ¢(z() in order to simplify the notations. More-
t(z)] = +o0, and lim,_,o ,ec+ur~ 2t(2) = 0.
The results of [35] will imply that measure py is absolutely continuous w.r.t. the
Lebesgue measure, and that the corresponding density is equal to %Im(t(x)) for
each € R™. When ¢ > 1, a Dirac mass appears at 0.

over, when ¢ < 1, lim, o ,ec+ur-

We first address the case where zg # 0, and, in order to establish the existence
of lim,_,,, .ec+ t(2), we prove the following properties:



March 3, 2020 10:8 WSPC/INSTRUCTION FILE revised-version'2

43

o If (2,)n>1 is a sequence of CT converging towards g, then [¢(z,)],~; is
bounded -

o If (21.1)n>1 and (22,,)n>1 are two sequences of C* converging towards
and verifying lim;, , ., = t; for i = 1,2, then ; = 5.

Lemma 7.1. If zp € R, and if (2,)n>1 is a sequence of C* such that
limy,—s y oo 2n = o, then the set [t(2y)|,~, s bounded.

Proof. We assume that [t(z,)| — +00. Equation (6.1) can be written as
M —
1 my A\
t(zn) = — E —.
ct(zn ) A
M =1 —Zn(l + 417?5615()%}))2)

(7.1)

As ¢ # 0, the condition [¢(z,)| — +o0o implies that it exists Iy for which

ct(zn)xlo

T = @G 2

—0

or equivalently

t - = -
Znct(zn) ct(zn) fo
As [t(z,)| — +oo, it holds that z,ct(z,) — A, , a contradiction because |z, ct(z,)| —

+o00. W

Lemma 7.2. Consider (z1,)n>1 and (z2.,)n>1 two sequences of Ct converging
towards xy € R™™ and verifying lim,, | ., t(2in) = t; for i = 1,2. Then, it holds
that t1 = to.

Proof. The statement of the Lemma is obvious if zy does not belong to S.
Therefore, we assume that 2o € S — {0}. We first observe that if lim,_, o 2, = Zo
(25, € CT) and t(z,) — to, then

1 — g (ctg)* # 0, (7.2)
cto XZ —
14+ —=— =1,...,M. :
+ 1— Z0 (Cto)Q 7é Oa l ) ) (7 3)

Indeed, if (7.2) does not hold, Eq. (7.1) leads to to = 0, a contradiction because
1 — x¢ (ctg)? was assumed equal to 0. Similarly, if (7.3) does not hold, the limit of
t(z,) cannot be finite. Therefore, matrix Ty defined by

fe (e ) -

is well defined, and it holds that T'(z,) — Ty and that ¢y = ﬁTrRTO. In particular,
for i = 1,2, T(z;,,) — T; where T; is defined by (7.4) when ty = ¢;, ¢ = 1,2, and
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t, = ﬁTrRTi. Using the equation (6.1) for z = z; ,,, we obtain immediately that
< t('zl,n) - t(zln) ) — ( uO(Zl,'ru ZQ,n) UO(Zl,na Z2,n) >
21nt(21,n) — Z2,nt(22,n) 21,n22,n00(21,ns 22,n) U0 (21,05 22,n)

y ( t(z1.) — t(22,n) )) N ((Zl,n — z2.n) J\l/[TrT(Zl,"l)RT(ZQv”)) ,(7.5)

Zl,nt(zl,n) - ZQ,nt(zQ,n 0
where (21, 22) and vg(z1, 22) are defined by

czit(z1)czat(z2) 37 Tr(RT (1) RT (22))
(1= z1(ct(z1))? ) (1= 22(ct(22))?)

Uo(Zl,ZQ) = (76)

and
. L Tr(RT (1) RT (22))
0(z122) = € T ) (= 2a(et(2))7) o

for z; € C*, i = 1,2. Taking the limit, we obtain that

< ty — to ) _ ( uo (2o, o) Uo(moyxo)) ( th —t2 >
zo(t1 — t2) z3vo(xo, o) uo (0, T0) zo(t1 —t2) )’
where up(xg, o) and vo(xg, xg) are defined by replacing z;,t(z;), T(2;) by o, t;, T;

in (7.6, 7.7) for i = 1,2. If the determinant (1 — ug(xg,x0))? — xdvo (70, x0)? # 0 of
the above linear system is non zero, it of course holds that ¢; = t5.

We now consider the case where (1 — ug(zo,70))? — x3vo(z0,70)? = 0. We
denote by u;(zo) and v;(zo), ¢ = 1,2 the limits of u(z; ) and v(z; ), ¢ = 1,2 when
n — +o00. We recall that u(z) and v(z) are defined by (6.13) and (6.14) respectively.
It is clear that u;(zo) and v;(x) coincide with (6.13) and (6.14) when (z,t(z), T(2))
are replaced by (xg,t;,T;) respectively. (6.11) thus implies that

(1 —ui(z0))? — 2gvi(w0)* 2 0 (7.8)

for i = 1,2. Using the Schwartz inequality and (6.19) as in the uniqueness proof of
the solutions of Eq. (6.1) (see Proposition 6.1), it is easily seen that

(1 = uo(w0, 70))* — 5 (vo (20, 20))?| > (1 — VVua (o) ua(w0))? — xgv1 (20)v2(20)

> (1 —ua(20)) (1 — uz(w0)) — 2gv1(x0)v2(20)
> (= wa(20))? — #Bv1(20)2\/ (1 — ua(20))? — wBvala)? 2 0. (7.9)

Therefore, (1 — ug(zo,70))? — 23vo(w0,20)?> = 0 implies that the Schwartz in-
equalities and the inequalities (6.19) used to establish (7.9) are equalities. Hence,
it holds that |ug(zo,z0)> = wi(zo)ua(zo), or equivalently | Tr(RT\RT:)| =
(4 Tr(RTI Ty R))Y? (4 Tr(RT,T5 R))Y/2. This implies that 77 = aTj for some
constant @ € C. Moreover, as t; = J&[Tr(RT) for ¢ = 1,2, it must hold that
t1 = at;. (7.9) follows from (6.19) {a c = ul(aco) d = ua(zp)} and
{a=(1—-ui(z0))? b= (1—uz(z0))? c= w%v% d = z}v2}. Since all these terms
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are positive real numbers, vab — Ved = a — ev/b — d if and only if ad = be. Tt
gives us

u1(zo) = uz (o),

(1 = ua(z0))?zgv2(w0)* = (1 — ua(wo))*zgv1(z0)*.
Since zg # 0 and v1(xg) > 0, the inequality (1 —u1(xo))? — 23v1(20)? > 0 implies
that uy(xg) # 1. Hence, u1(zo) < 1 and (7.10) implies that v1(zg) = v2(zg). From
the definition of u; and v; one can notice that u;(zo) = c?x3|t;|?v;(z0). Which gives

(7.10)

us immediately |t1|? = |t2|? and, as a consequence, |a| = 1. Using once again the
fact that vy (zg) = va(xo) and T1 = aT3, we obtain that

la|? 37 Tr(T5 RRTy) 37 Tr(RTT5 R)

|1 — 2oc2a2(t5)2]2 |1 — zoc?t3)?
The numerators of both sides are equal and non zero, from what follows that the
denominators are also equal, i.e.

11— xoc?a®(t5)?]| = |1 — zoc®t3).

We remark that if w and z satisfy |1 —w| = |1 —z| and |w| = |z|, then, either w = z,
either w = z. We use this remark for w = xoc?t3 and z = xoc?a®(t3)%. If w = z, it
holds that a(t3)? = t3 = t? = t3 and since Imt; > 0 we conclude t; = to. If w = Z,
we have a?(t3)? = (t3)%. If to = 0 then it also holds that t; = 0. Otherwise, we have
a = £1. If a = 1, the condition Im¢; > 0, leads to the conclusion that ¢; and ¢ are
real and coincide. We finally consider the case a = —1. We recall 71 = aT5 = —T5.
Therefore, it holds that
.’L‘Qt; .’L‘Qt;
1 — zoc?(th)? 1 —zoc?(t5)2 7

which is impossible, since xo # 0. This completes the proof of Lemma (7.2). B

.’L'()IM— R:—.’L'()IM—

Lemmas 7.2 and 7.1, and their corresponding proofs imply the following result.

Proposition 7.1. For each x > 0, lim,,, ,cc+t(2) = t(x) exists. More-
over, 1 — xz(ct(z))® # 0, and matriz (I + %R) is invertible.
Therefore, lim,_,, ,ec+ T(z) = T(x) where T(x) represents matriz T(xr) =

-1
(—x([—i— % R)) . Moreover, t(x) is solution of the equation

t(z) = %Tr(RT(x)). (7.11)

If u(x) and v(x) represent the terms defined by (6.13) and (6.14) for z = x, then
1t holds that

1—u(z) >0 (7.12)
and

(1 —u(z))? — 2%(v(x))* >0 (7.13)
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for each x # 0. Moreover, the inequality (7.13) is strict if v € RT™ —S. If moreover
Im(¢(x)) > 0, then, we have

1 —u(x) —azv(z) =0. (7.14)

Proof. It just remains to justify (7.12), (7.13), and (7.14). As function z — t(z)
is analytic on C — S,  — #(x) is differentiable on RT — . As (£(x))" > 0 and
(zt(z)) > 0 hold on RT — S, the arguments used in the context of Remark 6.1
are also valid on Rt — &, thus justifying (7.12) and the strict inequality in (7.13).
1 —u(x) > 0 and inequality (7.13) also hold on & — {0} by letting z — z, 2 € C*
in Proposition 6.1. As v(z) > 0 for each z # 0, the strict inequality (7.12) is a
consequence of (7.13).

In order to prove (7.14), we use the second component of (6.15), and remark
that it implies that

Im(t(z)) = (u(z) + z0(z)) In(t(z)).
Therefore, Im(¢(x)) > 0 leads to (7.14). R

We also add the following useful result which shows that the real part of ¢(x) is
negative for each x > 0.

Proposition 7.2. For each x € R™, it holds that Re(t(z)) < 0.

Proof. It is easily checked that

Re(t(2) B u(z)  —v(z) Re(t(z) —Re(z)ﬁTr(RT(z)(T(z) )
(Re(zt(Z)) > - <—|Z|20(2) u(z) ) (Re(zt(Z)) >+( — |2 3 Te(RT (2)(T(2))* )
7.15)

for each z € C — S. Moreover, as all the terms coming into play in (7.15) have a
finite limit when z — z when a # 0, (7.15) remains valid on R*. For z = z, the
first component of (7.15) leads to

Re(t(x))(1 — u(z) + 2v(z)) = —x%Tr(RT(ac)T(x)*). (7.16)

Proposition 7.1 implies that 1 —u(x) > 0, when & € R*. Therefore, 1 —u(z) 4+ zv(x)
is strictly positive as well, and it holds that

1 1 *
T T (@) + 7o) MTr(RT(x)T(a:) ). (7.17)

Re(t(z)) = -
Therefore, x > 0 implies that Re(t(z)) < 0 as expected. B

We now study the behaviour of #(z) when z — 0. We first establish that
lim, 0 ec+ur~ [t(2)] = +oo, and then that lim, . ,cc+ur- 2t(2) = 0 if ¢ < 1
and is strictly negative if ¢ > 1. We recall that ¢(z) for > 0 is defined by
t(x) = lim,_,, ,ec+ t(2). For this, we establish various lemmas.
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Lemma 7.3. It holds that lim,_,q ,cc+ur+ [t(2)] = +00.

Proof. We assume that the statement of the Lemma does not hold, i.e. that it
exists a sequence of elements of Ct U R* (2n)n>1 such that lim, 4 2, = 0 and
t(zn) — to. (6.1) and (7.11) imply that

M <
1 ml)\l
= —— _ Nl
antlen) = =37 2. T (7.18)
=1 1—zn(ct(zn))?

ct(zn)\
L+ = GiGae u
converges towards 0, for each [, 1+ ctgA; cannot vanish. Therefore, matrix I + ctgR
is invertible, and taking the limit of (7.18) gives

clearly converges towards 1+ cto);. As the left hand side of (7.18)

1
MTrR(I +ctoR)™' = 0.

As Imﬁ’I&“R(I + ctOR)_1 cannot be zero if tg is not real, ty must be real. We now
use the observation that |z,|v(z,) < 1 for each n (see Lemma 6.1 and Proposition
7.1if 2, € CY URT*, and Remark 6.1 if z, € R™*). As |1 — z,(ct(2,))?|* — 1,
|zn|v(25,) bounded implies that |2, |37 Tr(RT(2,) RT(2,)*) is bounded. It is easy to
check that
1 1
EN MTr(RT(zn)RT(zn)*) = WMTr(R(I +ctoR)'R(I + ctoR) 1) + O(1).

Therefore, the boundedness of |z,| 3 Tr(RT(z,)RT (z,)*) implies that L Tr(R(I +
ctoR) " R(I + ctyR) ') = 0 which is of course impossible. B

Lemma 7.4. Consider a sequence (zn)n>1 of elements of C*t UR* such that
lim,, 400 2, = 0. Then, the set (2,t(2n))n>1 is bounded.

Proof. We assume that (z,t(2,))n>1 is not bounded. Therefore, one can extract
from (z,)n>1 & subsequence, still denoted (z,,)n>1, such that lim, 4o |2,t(20)| =
+00. Then,

ct(zn) 1

= — 0.
1 - Zn(Ct(zn))Q ﬁ - Znt(zn)

Therefore,
1 ct(zn) -1 1
——TrR(I+——— R ——TrR.
M ( T (o)) ) AT

This is a contradiction because the above term coincides with z,t(z,) which cannot
converge towards a finite limit. Il

Lemma 7.5. Assume that (21,n)n>1 and (z2.n)n>1 are sequences of elements of
Ct UR* such that limy, 400 2in = 0 and limy,, 400 2i nt(2in) = §; for i = 1,2.
Then, (51 = 62,
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Proof. We first remark that [¢(z;,,)] = +oo for i = 1, 2. Equation (6.1) implies
immediately that

1\ 1 1 -
zt(z) = (zct(z) - ct(z)> MTrR (R + i) zct(z)) . (7.19)
— ¢b; for i = 1,2. If 6; # 0, Eq. (7.19)

As ﬁ = 0, zinct(zin) —

thus implies that ¢ MTrR (R +
implies that matrix R — ¢d;I is invertible. Therefore, either §; = 0, either §; is a

1
ct(z- n)

Ct(z - ziynct(zi,n)> converges towards 1, which

solution of the equation
1
1= CMTrR(R — o)™ (7.20)
or equivalently, J; verifies
1
6; = cd;—TrR(R — ¢85, 1)~ L. (7.21)
M
We note that the solutions of this equation are real, so that d; € R for i = 1,2. Eq.
(7.5) leads to
zl,nt(zl,n) - Z2,nt(32,n) = Zl,nZQ,nUO(Zl ny 22 n)( (Zl n) (32 n))
+ U0 (21,n, 22,n) (21,0t (21,0) — 22,0t (22,0))-

It is straightforward to check that z; ,22 nvo(21, n,ZQ n)(t(z1,n) — t(z2,n)) — 0 and
that wo(21,n, 22,n) = 10(0,0) = ci; TrR(R — ¢611) "' R(R — ¢621)~'. Therefore, we
obtain that

51 - (52 = UQ(O, 0)(51 - (52) (722)

We recall that |ug(21,n, 22.0)| < Vu(21,n)/u(22,,) < 1. Moreover, we observe that
w(zin) = u;(0) = ci; TrR(R — ¢8;1) ' R(R — ¢6;1)~! and that 0 < u;(0) < 1. The
Schwartz inequality leads to

|uo(0,0)] < v/u1(0)y/uz(0) < 1. (7.23)
If the Schwartz inequality (7 23) is strict lup(0,0)] < 1, and 61 = d2. We now
assume that ug(0,0) = y/u1(0)y/u2(0) = 1. This implies that
R — oI = k(R — cdo)
for some real constant &, or equivalently, \; —cé; = x(A\;—cdo) foreach i =1,..., M.
If R is not a multiple of I, k must be equal to 1, since otherwise, we would have

M = Ay for each [,I'. k = 1 implies immediately that §; = 5. We finally consider
the case where R = 02I. Then, (7.21) implies that §; is solution of 61402%551 =4,

ie. 0, =0 or
5 (1
bi=0"|-—-1]). (7.24)
c
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We now check that 6; = 0,6y = o2 (% - 1) or dy = 0,8, = o2 (% - 1) is impossi-
ble. If this holds, u1(0) and u2(0) cannot be both equal to 1, and |ug(0,0)| < 1.
Therefore, (7.22) leads to a contradiction, and §; = 2 is equal either to 0, either
to o2 (1 — 1). |

Lemmas 7.4 and 7.5 imply the following corollary.

Corollary 7.1. If ¢ <1, it holds that
lim zt(z) =0 (7.25)

z—0,2€CTHUR*

and that
n({0}) = 0. (7.26)

Proof. Lemmas 7.4 and 7.5 lead to the conclusion that lim,_,o ,ec+ur~ 2t(2) = 0
where § is either equal to 0, either coincides with a solution of the equation (7.21).
In order to precise this, we remark that ¢(z) > 0 if x < 0 implies that 6 < 0.
Therefore, § coincides with a non positive solution of equation (7.21). If ¢ < 1, it is
clear that (7.21) has no strictly negative solutions. Therefore, (7.25) is established.
(7.26) is a direct consequence of the identity

u({0}) = lim —zt(2).

z—0,2€CTUR*

|

In order to address the case where ¢ > 1 and to precise the behaviour of Im(¢(2))
when z — 0,z € CT UR* if ¢ < 1, we have to evaluate z(¢(z))? when z — 0. The
following Lemma holds.

Lemma 7.6.

o Ifc=1, it holds that lim, o ,ec+ur- |2(t(2))?] = +oo.

o Ife<1,
lim  2(t(2))? = — ! (7.27)
2—50,2€C+UR* c(1—c¢) '
o If ¢ > 1, the assumption lim, .o ,cc+ur- 2t(2) = 0 = 0 implies that
lim, g .ccrur- 2(£(2))? = —ﬁ, a contradiction because the above limit

1s necessarily negative. Hence, § is non zero and coincides with the strictly
negative solution of Eq. (7.21), and p({0}) = —46.

Proof. (6.1) implies that

1 I c -1
t(z)?=—-—TrR|(—+—+——-R| . 7.28
6 = 3R (55 + =) (728
We assume in the course of this proof that § = 0 (if ¢ < 1, this property holds).
We first establish the first item of Lemma 7.6. We assume that ¢ = 1 and that

there exists a sequence (z,)nectur+ such that z, — 0 and z,t(z,)? — a. As
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[t(zn)] — 400, (7.28) leads to @ = a — 1, a contradiction. Therefore, if ¢ = 1,
lim, ,o ,c+ur- [2t(2)?] = +00 as expected.

We now establish the 2 last items. For this, we establish that if ¢ # 1, then,
|2t(2)?| is bounded when z € C* UR* and z is close from 0. For this, we assume

the existence of a sequence (z)n>1 of elements of C* UR* such that z, — 0 and
|2nt(2n)?| — +o00. Then, it holds that

1= —MTrR( tza) + W”)Q»ZR>1.

1—z,(ct(zn

As |zpt(20)?] = +o0, % — —2+. Condition z,t(z,) — 0 thus implies

that ¢ = 1, a contradiction. Usmg agam (7 28), we obtain immediately that if
2n(t(2n))? — «, then a = 7c(c 1j- As |2t(2)?| remains bounded when z € C* UR*

is close from 0, this implies that lim, , ,cc+ur- 2(£(2))? = as expected.

1
T e(1—c¢)
Taking z € R™* leads to the conclusion that the above limit is negative. When
¢ > 1, this is a contradiction because — (1 ) is positive. Therefore, if ¢ > 1, §, the
limit of zt(z), cannot be equal to 0. Hence, § coincides with the strictly negative

solution of (7.21) and p({0}) = —§ > 0. This completes the proof of the Lemma. H

Putting all the pieces together, we obtain the following characterization of uy.

Theorem 7.1. The density fn(x) of un w.r.t. the Lebesgue measure is a continu-
ous function on R™, and is given by fx(x) = LIm(ty(z)) for eachz > 0. Ifen <1,
N s absolutely continuous, and if cy > 1, then dun(x) = fn(z)dz + pn ({0})do.
0 belongs to Sy, and the interior S3; of Sy is given by

8% = {z € RY,Im(t(z)) > 0} (7.29)

If moreover cn < 1, it holds that
1
(@) = = ——— (7.30)

when x — 07, while if cy = 1,
3/1 -3
V3 <TrR1) —. (7.31)

1
Ia(w) = T M x2/3

Proof. ¢(z) is not analytic in a neighbourhood of 0, hence, 0 € S. As
lim,_,, .ec+ t(2) = t(z) exists for x # 0, Theorem 2.10of [35] implies that if A C RT*
is a Borel set of zero Lebesgue measure, then u(.A f A x)dz = 0. The continuity
of f on RT* is a also a consequence of [35].

We now prove (7.30). For this, we remark that (7.27) implies that

ZJ%%>Ox(t(x))2 T l—o) (7:32)
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impli ~__i +
As Im(t(z)) > 0 for each = # 0, (7.32) implies that ¢(z) ~ N when z — 07,
1
Vze(l—c)'

It remains to establish (7.31). For this, we first prove that

or equivalently that ~Im(t(z)) ~ 1

—1
1
. 2 3_ (L ~1
mJé{I;>0x (t(x))° = (MTrRN ) . (7.33)
For this, we write (7.11) as
~1
1 1
z(t(z

As ¢ =1, zt(z) — 0 and |z(t(z))?| = +oo when z — 0,2 > 0. The left hand side
of (7.34) can be expanded as

—1
1 1 1
—TrR| - JT4—— S .
MR < S C i p—— — R) a(t(z))?

z(t(x

1
@2

where €;(x) and e3(z) converge towards 0 when z — 0,2 > 0. Therefore, (7.34)
implies that

+ %Tr R at(2) + wt(x)er (x) +

1 1 1 . I

MTrR xt(x) — 2{t@) 2 = zt(x)é(z) + ———5€(x),

where € (z) and é(z) converge towards 0 when z — 0,2 > 0. This leads immedi-
ately to (7.33). As function z — 2%(¢(z))? is continuous on R**, it holds that

1 —1/3
: 2/3 _ J2ikn/3 [ 1 -1
o m_ @) =e (MTr R ) ’

where k is equal to 0,1 or 2. If k = 0, the real part of ¢(z) must be positive if x is
close enough from 0. Lemma 7.2 thus leads to a contradiction. If & = 2, Im(¢(x)) < 0
for & small enough, a contradiction as well. Hence, k is equal to 1. Therefore,

) ~1/3
lim  2%/3Im(t(z)) = sin 27/3 (MTr R1> . (7.35)

x—0,2>0

This completes the proof of (7.31). B

We now show that function z — t(x) and ¢ — f(x) possess a power series
expansion in a neighbourhood of each point of SR,. More precisely:

Proposition 7.3. If xg > 0 and Im(t(xg)) > 0, then, t and f can be expanded as

400 400
t(@) = ar(x —z0)", f(w) = > bi(x —x0)"
k=0 k=0
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when |z — xo| is small enough.

Proof. As in [35] and [13], the proof is based on the holomorphic implicit
function theorem (see [9]). We denote t(xg) by to. Then, Eq. (7.11) at point z( can
be written as h(xo,to) = 0 where function h(z,t) is defined by

1
h(zt) =t — %n (R (—Z(I + #t(ct)Q R)) ) .

As 29 > 0 and Im(tp) > 0, function (z,t) — h(z,t) is holomorphic in a neighbour-
hood of (xg,tp). It is easy to check that

(8h> =1 — ug(z0, o) — Tgvo(T0, T0), (7.36)
Ot ) vt

where we recall that functions ug and vg are given by (7.6) and (7.7). Following the
proof of Lemma 7.2, we obtain immediately that 1 — ug(xq, o) — 23vo(70,20) = 0
implies that T'(z¢) = aT'(z0)*, and that tg = at{ for some a € C. The arguments of
the above proof then lead to the conclusion that tg = ¢§, a contradiction because
Im(¢(xg)) > 0. Hence, (%)mo,to # 0. The holomorphic implicit function theorem
thus implies that it exists a function z — #(2), holomorphic in a neighourhood N
of xg, verifying #(zo) = to and h(z,t(z)) = 0 for each z € N. Moreover, condition
Im(to) = Im(#(z0)) > 0 implies that Im(#(z)) > 0 and Im(zt(2)) > 0 if |z — zo| < €
for € small enough. Therefore, if 2 € CT and |z — 29| < ¢, it must hold that
t(z) = t(z) (see Proposition 6.1). Hence, t(z) = lim, ,, .cc+ t(z) must coincide
with #(z) when |z — 29| < e. As #(2) is holomorphic in a neighbourhood of x(,
function z — t(x) can be expanded as

+oo
t(z) = ap(w — zo)"
k=0

when |z — z¢| < €. This immediately implies that f possesses a power series expan-
sion in the interval (zg —€,29 +¢€). B

We finally use the above results in order the study measure vy associated to
the Stieltjes transform

1
tnw(z) = MTrTN(z).

As vy and py are absolutely continuous one with respect each other, dvy(z) can
also be written as dvy(z) = gy (x)dx + vn({0})dg. Using the identity

1 ct(2)
—Tr|—2(l+—F7""—— T =1.
[ (1 T=Hamer) 70

we obtain immediately that

2z 1—2(ct(2))?’ (7:37)
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If 2 >0, t,(x) = lim,_,, .ec+ t,(2) exists, and is given by the righthandside of
(7.37) when z = x. Hence, for z > 0, g(z) = Im(t,(z)), i.e.

1 cIm((t(x))?
ey = L (@)
7 |1 — x(ct(x))?|
If ¢ > 1, |2t(2)?| = +o0if 2 — 0. (7.37) thus implies that v ({0}) = lim,_,o —2t,(2)
coincides with 1 — %, which, of course, is not surprising. We now evaluate the

behaviour of g when £ — 0,z > 0 and ¢ < 1.

(7.38)

Proposition 7.4. If c < 1, it holds that
1 1 1 1
T) 2y g — ———= —Tr(R™") — 7.39
while if ¢ = 1, it holds that

2/3
() o 2 V3 (Alﬁuz*)) L (7.40)

Proof. Using Eq. (7.28), we obtain after some algebra that
1 1 1 1

2(t(2))? + =0 ~. .0 MTerl EA—op i)

~ i
As t(z) ~z0,2>0 Vo= we get that
1 1 1 1
Im((t(x))?) ~ —i —TrR™* '
Hl(( (x)) ) 2 M T 1_c (C(l —C))3/2 \/E
Therefore, (7.38) immediately leads to (7.39). (7.40) is an immediate consequence

of (7.35). W

Proposition 7.4 means in practice that if ¢y < 1, a number of eigenvalues of
matrix Wy vWy yWp W5 v are close from 0. Moreover, the rate of convergence
of gy towards +oo is higher if ¢y = 1, showing that in this case, the proportion of
eigenvalues close to 0 is even larger than if cy < 1.

We finally mention that ¢, (x) and g(z) possess a power expansion around each-
point g € §°. This is an obvious consequence of Proposition 7.3 and of the above
expressions of ¢,(z) and of g(x) in terms of ¢(x).

7.2. Characterization of Sn.
We denote by wy () the function defined by
(1 — z(entn(2))?) 1
= t - .
CNtN(Z) zen N<Z) CNtN(Z)

It is clear that w is analytic on C — &, that Im(w(z)) > 0 if z € C*, that w(z) =
lim,_,, .ec+ w(z) exists for each € R*, and that the limit still exists if z = 0. If we

wn(z) = — (7.41)
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denote this limit by w(0), then, it holds that w(0) = 0 if ¢ < 1 and that w(0) = ¢§
if ¢ > 1, where we recall that ¢ is defined as the solution of (7.20). Moreover, w(x)
is real if and only if ¢(z) is real. Therefore, the interior S° of S is also given by

S° = {z € R"  Im(w(z)) > 0}. (7.42)

" are strictly positive if x € R — S, the derivative

Moreover, as t(x)" and (zt(x))
w'(x) of w(zx) w.r.t. x is also strictly positive on R — S. Using the equation #(z) =

+7TrRT(z), we obtain immediately that t(z) can be expressed in terms of w(z) as

t(z) = % w(z) %Tm (R—w(z)I)"". (7.43)
(7.41) implies that
1+ ct(2)w(z) — z(ct(2))* = 0. (7.44)

Plugging (7.43) into (7.44), we obtain immediately that wy(z) verifies the equation

on(wn(2)) = z, (7.45)
where ¢y (w) is defined by

on(w) = cyw? %TrRN (Ry —wI)™" <CN %TrRN (Ry —wl)™ " — 1) . (7.46)

Observe that (7.45) holds not only on C — S, but also for each 2 € S. Therefore,
it holds that ¢(w(x)) = z for each x € R. For each z € R — S, it thus holds that
¢ (w(z)) w'(x) = 1. Therefore, as w' (z) > 0if 2 € R—S, w(x) satisfies ¢ (w(x)) > 0
for each x € R — S. This implies that if x € R — S, then w(z) is a real solution of
the polynomial equation ¢(w) = = for which ¢ (w) > 0. Moreover, Proposition 7.2
implies that if z € RT — &, then, t(z) = Re(t(z)) is strictly negative. Eq. (7.43) for
z = x thus leads to the conclusion that if z > 0 does not belong to S, then w(x)
also verifies w(z)4; TrR (R — w(z)I)~" < 0.1f £ < 0, then, #(z) is this time strictly
positive and w(z) still verifies w(z)1; TrR (R — w(z)I)~" < 0. This discussion leads
to the following Proposition.

Proposition 7.5. If x € R — S, then w(z) verifies the following properties:
’ 1 —_
p(w(x)) =z, ¢ (w(x)) >0, w(x) MTI"R (R—w(z))~" <o0. (7.47)

As shown below, if x € R — S, the properties (7.47) characterize w(z) among
the set of all solutions of the equation ¢(w) = x and allow to identify the support
as the subset of RT for which the equation ¢(w) = x has no real solution satisfying
the conditions (7.47). These results follow directly from an elementary study of
function w — ¢(w).

We first consider the case ¢ < 1, and identify the values of > 0 for which the
equation ¢(w(z)) = x has a real solution verifying (7.47), and those for which such
a solution does not exist. It is easily seen that if z > 0, all the real solutions of the
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equation ¢(w) = x are strictly positive. Therefore, the third condition in (7.47) is
equivalent to ﬁTrR (R— w(x)[)_l < 0. We denote wi v <wz n <...<wgs y the
(necessarily real) M roots of - TrRy(Ry —wl)™ = i and by piny < pon <
... < piz7_y x the roots of ﬁTrRN(RN —wl)™! = 0. As ¢ < 1, it is easily seen that
w1 > 0, and that wq <Xﬁ<u1 < Wwsy <Xﬂ_1 < ... < UFF_q <W<X1.Itisclear
that L TrR(R—wI)~' < 0if and only if w € (Ag7, f1)U...U(X2, pg7_; ) U (A1, +00).

For > 0, the equation ¢(w) = z is easily seen to be a polynomial equation
of degree 2M + 1. Therefore, ¢p(w) = x has 2M + 1 solutions. For each = > 0,
this equation has at least 2M — 1 real solutions that cannot coincide with w(z) if

x € (8°)<

e M solutions belong to Jwi, Az7], . . ., Jwsz M| None of these solutions may
correspond to w(z) if z € (S°)¢ because - TrR(R —wI)~! > 0 at these
points.

e On each interval [Ag7, 1], - - -, ] A2, ig7_, [, the equation ¢(w) = z has a real
solution at which ¢’ is negative. Therefore, ¢(w) = x has M — 1 extra real
solutions that are not equal to w(z) if x € (S§°)°.

As on(w) — +oo if w — XLN,w > XLN and that ¢y (w) — 400 if w — +o0,
it exists at least one point in JA; x,-+oo[ at which qﬁlN vanishes. This point is
moreover unique because otherwise, ¢x(w) = x would have more than 2M + 1
solutions for certain values of x. We denote by w4 n this point, and remark
that if 2 > 24 v = én(win), ¢n(w) = x has 2M + 1 real solutions: the
2M — 1 solutions that were introduced below, and 2 extra solutions that belong
to JA1, wy[ and Jwy, +oo| respectively. Therefore, w(x) is real, and it is easily seen
that w(zx) coincides with the solution that belongs to Jwy,4o00[. This implies that
Jey, +oo[C R—S.

If ¢'(w) does not vanish on |Agz, 1[U. .. UlXa, g4 |, for each x €]0,2[, ¢ is
decreasing on these intervals. Therefore, none of the real solutions of ¢(w) = x
match with the properties of w(z) when z € Rt — S. Therefore, w(z) must be a
complex number: ¢(w) = = has thus 2M — 1 real solutions, and a pair of complex
conjugate roots: w(z) is the positive imaginary part solution. In this case, z € §°,
and the support S coincides with [0, 24 ].

We illustrate such a behaviour when M = 3. In the context of Fig. 1, the support
is reduced to the single interval [0, 2] because ¢ (w) # 0 for w € [N, 1] U [Aa, 2]
In order to precise the support when ¢ vanishes in A3z 11U U, pr |
we need to characterize the corresponding zeros. For this, we first justify that ¢/
cannot have a multiplicity 2 zero. Assume for example that qb/ has a multiplicity 2

zero in })\Mﬂ_l, [, and denote by w; this zero. Then, if 2; = ¢(w;), the equation
#(w) = x; has 2M — 1 simple real roots, and the multiplicity 3 root w;. Therefore,
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Fig. 1. Typical representation of ¢ (w) as a function of w for ‘M = 3. There is no local maximum

on [A3, n1] and on [z, p2], so that S = [0, z4].

the equation ¢(w) = x; has 2M + 2 roots (counting multiplicities), a contradiction.
We now establish the following useful result.

Proposition 7.6. The number of local extrema of ¢ in A3z, p1[U. .. UlXo, ug7_, |
is an even number, say 2q, with 0 < ¢ < M — 1. If ¢ > 1, we denote the arguments

of these extrema by wi':N <wyy < w;:N <. < w;’_LN < w, n, then xIN =
¢N(wIN)’x2_,N = ¢N(w2_,1v)z S 17;_1,N = ¢N(w;—1,N)a TN = ¢N(w;N) verify
fo<x;N<x;N<...<xq+71,N<x;N. (7.48)

Moreover, for each I, the interval ])‘M—(l—w/“[ contains at most one interval
(Wi nowoy n)s and x)  (resp. )y ) s a local minimum (resp. local mazimum)

of ¢

Proof. We establish that if wy, wy € {w)", wy, ..., w/_;, wy} such that w; >
wa, the images x1 = ¢(w1) and z2 = ¢(ws) are also satisfy x; > x2. The goal is to
show that ratio (z; — 22)/(w; — wz) is always positive. For more convenience we
put f, = ETrRy(Ry — w,In) ™t = <4 3 % for n = 1,2. With this and
(7.46) we can rewrite

Tn = d)(wn) = w’l%fn(fn - 1) = wipn(pn - 1)7 (7~49)
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where p, = 1 — f,. Let us notice that extremes w; and wy are by definition such
that fi and f2 are negative. Using directly (7.49) for 21 and z2 we can write

1 —xy  (wip} — wip3) — (wipr — wips)

w1 — Woy w1 — W2
_ 2, _ .2
= (wipy + wopy) LRz TAPL T WEP2 (7 50
w1 — Wy w1 — W2
With the definition of f; o the first term of (7.50) can be expanded as
wip1 — Wop e I Tmg w w
1P1 22:1+7Z 11(2 _1)
w1 — W2 Ml=1w1*w2 i —wa A —ws
M ~2
c A my;
=1- — L
M 21: (Ai —w1)(Ai — w2)
And similarly the second one as
wip) — wips (w1 + ws) + c f: Aim; ( w3 wi )
— " = (w +w — = — =
w1 — wa ! YU M —wyp —wy \\; —w2 A —wy
M ~2 M —
c A\, m; c Aimy;
= (w1+w2) 1-— == t +wiwe — — —
M 4 (Nj —wi) (N — wo) lez (Ai —w1)(Ai —wa)

Putting the last two equation in (7.50) we obtain

Vs —2
T1 — T2 ¢ Aimi
——— = (w1p1 + wap2 — w1 —w 1—— = =
w1 — w0y ( 1P1 2P2 1 2) M;(Ai—wl)()\i—wﬂ
c d N
— Wwiwe — = . = —(wif1 +wafa)
M ; ()\l — w1)<)\i — ’wg)

Aim;

M
C
X 1-—— — — — WLw2 — — — .
M 1 ()\z — wl)()\l — U}Q) M zl: (>\z - wl)()\z - w2)

Now we recall that —f, is positive as well as wi, we > 0 from what we have
— (w1 f1 + wa fz) > 0. That allows us to use the inequality

1 1 < 1 n 1 )
i —w) A —w2) ~ 2\ (A —w1)? (A —wa)?
and to write

Tr1 — C L Am C L Am

1 2 3 1o 3 g
— > —(wifitwafo) |1 — — _ = = —_
w1 — W2 ( ) 2 ; : ; :
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It is easy to check that 47 > >, X ”;‘)2 = f(w) + wf’(w). Using this we can rewrite

last inequality as

not _%(wlfl +wafo) 2= fi —wifi = foa—wafy)

wyp — w2

C szz
— — = = . (751
wlsz;()\i—wl)()\ifwg) ( )

Taking the derivatives of the expression (7.49), we obtain that ¢'(wy,) = 2w, f2 —
2wy, fr + 2w2 fo fl, — w2 fl. By definition, w; o are extremes of function ¢(w), i.e.
@' (wy,2) = 0. This gives immediately f, +w, f), —1 = wg}i ». After putting this into
(7.51) and regrouping terms we obtain

(w: f +wf)<w1f{+w2fé)—ww : f: Ao
i 272 fl f2 M 1 )\ — 1)(Xi7’(1)2)

1 1 , f f c & Aim

2 ¢l 2 ¢l 2 1 J1 )

= —(w +w + —wiw + — WiwWa— — — .
alrhr el e (flf 5 ) 1 2M; (Ai —wi)(Ai = w2)
Finally, we denote by I1, I, I3 the three terms of the r.h.s and show that IH—%IS and
I+ %I;; can be presented as the sum of positive terms. Using again the definition
of fi,2 we expand I; + %Ig as

1 M i
2 pt 2 ¢/ )
-l w +w — 2wy ws
4 11 5f2 1 21 )\ “un) )\ ")
2 2

c T w 2w wo
e J— )\Z i __ 1 + _ 2 R 17
4M Z " <()\l —w)?2 (A= we)?2 (N —wr)(N — w2))

— o= S N, fo/ i fi/fe 2
=gy 2N ((A — w0 O — wg)? (Ai—wmi—wz))

\/f2/f1 Vil fa ’
fw1w24MZ)\ ( = >

)\ — w1 )\i — W2
This shows that x; — x2 > 0, and that (7.48) holds. It remains to justify that
each interval (JAq7_ (1—1)> Ha[);=1, 77—1 contains at most one interval [w Wy N Wy N

Assume that the interval ])\M (1—1) tu[ contains 2 intervals [w ;71\,, w, 1, y) and
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[w;;,N,w;QH,N} with p; < po2. Then, it also holds that [w;+1,N’w;+2,N} C

. + . . . o . + —_
JA37— (1), tul- @,y is necessarily a local minimum because x, y < ¥, 41 N
while T, 4, h
and T, 1o N- However, this contradicts the property Ty N <Zp 1N This com-

pletes the proof of Proposition 7.6. B

y must be a local maximum. The same property holds for x; H1IN

Proposition 7.6 allows to identify the support Sy.
Corollary 7.2. When cy < 1, the support Sy is given by
Sy = [O,th]U[xQ_,N,:ﬂ;N]U...[z;N,x+,N}. (7.52)

Proof. If  belongs to the interior of the righthandside of (7.52), ¢(w) = z has
only 2M — 1 real solutions. This implies that the 2 remaining roots are complex
valued, i.e. that x € §°. This leads to the conclusion that

10, fo[U]ziN, a:;N[U .. .]x;N, zy N[CS°

and that

[O,xiN] U [miN,m;N] U...lz, yi24N] CS.
Conversely, if z € RT — ([O,xiN} u [x;)N,x;N} U... [x;N,xﬁN]), the equation
#(w) = x has 2M + 1 real solutions, which implies that w(z) is real. Therefore,

Rt — ([O,zIN] u [xQ_,N,x;N] U... [z;N,x+,N}> CRT -8

or equivalently,

ScC [O,fo} U [x;N,x;N} U...[z, ns24,n]

This completes the proof of Corollary (7.2). B

We illustrate the above behaviour when M = 3. In the context of Fig. 2, q[)/

vanishes on [A3, p1] and not on [Ag, o). The support thus coincides with § =
[vaf] U [SL’;, er}'

When matrix Ry is reduced to Ry = 021, i.e. M =1 and A\; = o2, the support of
course coincides with Sy = [0, 24 n|, and x4 n is given by

1 1+ 14 8¢
Ty N = 0'4CN (1 + m) (CN + \/27]\[) . (753)
2

Moreover, w4y is equal to
Wy, N =0

2 <1 + Hvl2+86N> : (7.54)

(7.53) and (7.54) are in accordance with the results of [22].
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Fig. 2. Typical representation of ¢ (w)ias a function of w for M = 3. There are 2 local extrema
on [Xs, u1] and no local maximum on [Xo, ua), so that S = [0,27] U [z5, 4]

We now briefly address the case ¢y > 1. The behaviour of ¢y is essen-
tially the same as if ¢y < 1, except that the first root w; n of the equation
TRy (Ry — wl)™! = i is now strictly negative. As ¢n(0) = 0, this implies
that it exists w_ y € (w1,n5,0) for which d)}v(w_,N) = 0. Moreover, this point is
unique, otherwise, the equation ¢y (w) = x would have more than 2M + 1 roots
for certain values of x > 0. z_ v = ¢n(w_ n) > 0 is thus a local maximum of ¢n
whose argument is strictly negative. We also notice that ¢n(w) > 0if 0 < w < Aj7.
Apart these differences, the behaviour of ¢ for w > XM remains the same as if
cy < 1. In particular, Proposition 7.6 still holds true. However, we remark that
if 0 < z < z__y, the equation ¢x(w) = = has still 2M — 1 real solutions that
are strictly positive, and 2 extra real roots, the smallest one being less than w_ n
and the other one being negative and largest that w_ n. This implies that wy (x)
is real. We also notice that wy(z) coincides with the smallest extra negative root
because it satisfies conditions (7.47). Hence, the interval |0, z_ y[ is included into
Rt — Sy. If ¢ does not vanish on 257 U U, g7, for @ €]z N, 24 N,
the equation ¢x(w) = = has only 2M — 1 real solutions that do not satisfy condi-
tions (7.47) and 2 extra complex conjugates solutions. Therefore, |x_ n, 24+ n[C S¥
and [z_ n, 24+ n] C Sy. Conversely, [0, 2_ y[U]z4 v, +00[C RT =Sy, which implies
that Sy C {0}U[z_ N, 24 n]. As it was established above that {0} C Sy, we deduce
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that Sy = {0} U [z_ v,z n] if ¢ does not vanish on |Agz, pa[U. .. U, pigz_q |-
If ¢ vanishes on [Agp, 1[U. .. UlXa, pig_4 |, i-e. if ¢ > 1 (we recall that ¢ is defined
in Proposition 7.6), the support is given by

Sy ={0} U [xny,fo] U [xiN,x;N] U...[z, ny2,N] (7.55)

To justify this, we just need to establish that z_ n < a:fN, and to use the same
arguments as in the proof of Corollary 7.2. To justify x_ y < xiN, we put w; =
W_ N, Wy = wa, and follow step by step the arguments used to evaluate ¢(ws) —
¢(w1) > 0. We notice that in contrast with the context of the proof of Corollary
7.2, w; < 0 and f; > 0. However, fiw, is still negative, so that —(wq f1 + wa f2) is
still positive. This allows to conclude that all the inequalities used in the course of
the proof of Corollary 7.2 remain valid, except the evaluation of the term I + I5/2
that needs the following simple modification: we express I + I3/2 as
¢ —f2/f1 —fi/f2 2
U 2 dimi ((Az‘ —w? - wa (= wn) (- wz)) '

As —f3/f1 and — f1/ fo are positive, it holds that

T _ _c L \/*fQ/fl \/*fl/fz ’
2+ 13/2 = w1w24MZ)\ZmZ Fyp— + Fyp—— )

Therefore, Iy + Is/2 > 0, and ¢(w2) — ¢(w1) > 0 holds.

In order to unify the cases ¢y < 1 and cy > 1, we define x_ y for cy < 1 by
z_ y =0, and summarize the above discussion by the following result.

Theorem 7.2. The support Sy is given by
Sy ={0}.,>1 U [m_J\/,xIN] U [a:;N,x;N] U... [xq_’N,a:Jr,N]. (7.56)

We now establish that sequences (w4 n)n>1 and (z4 n)n>1 are bounded. In
other words, for each N, the support Sy is included into a compact interval that
does not depend on N.

Lemma 7.7.

sup wy n < 400, sup 4 N < +00. (7.57)
N>1 N>1
Proof. In order to prove this lemma, we use that wy ny > A n and that
¢ (wy n) = 0. It is easy to check that

’

1 _ 1 _
dn(w) = 2c?vaTrR(wI —R)™' - (ch)QMTrR(wI —R)™2
2

1 _ 1 o1 _
—2c%w (MTrR(wIR) 1) 72(CN’LU)2MTI‘R(’LUI7R) 2MTrR(wffR) L

For w > b > Ay, it is clear that ||(wl — R)™Y| < -L1.. Writing that

w—

7.
wi;TrR(wl — R)™! = 4 TrR + 5 TrR*(wl — R)™! and w?{; TrR(wl — R)™% =
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NLlTrR +w (3 TrR(wl — R)~?) — L TrR*(wl — R)~*, we obtain immediately that
¢ (w) can be written as

/ 1
dn(w) = % MTrR—F oy (w),

where d (w) verifies |dn (w)] < §(w) and w — §(w) is a rational function of w that
does not depend on N and which converges towards 0 when w — +o00. Therefore,
for each n > 0, it exists w; > b such that gb}\,(w) > % ﬁTrR — 7 for each w > w;.
As ¢y — ¢, and that %’HR > a, we obtain that ¢/N(w) > %a for w > wy. As
¢}\,(w+,N) = 0, we deduce from this that w; y < w;. As w; does not depend on
N, this establishes that supys; w4 n < +00. To prove that x4 y is bounded, we
observe that x4 y = <Z)N(w+7N_) < ¢n(wy). As wy > b, it is easily seen that

2.2 b b
on(wr) < 2cxwy <(w1 — )2 + (w1 = b)) )

Therefore, sequences (¢pn(w1))n>1 and (x4 n)n>1 are bounded. This completes
the proof of Lemma 7.7. B

We finally provide a sufficient condition under which the support is reduced to
Sy =1[0,z4 n]if ey <1andto Sy ={0}U[z_ n,z4 n]if ey > 1. More precisely,
the following result holds.

Proposition 7.7. Assume that there exists k > 0 such that for each M large
enough, the following condition holds:

E—1 1/2
Ak, N — An| < K <M|) (7.58)

for each pair (k,1), 1 < k <1< M. Then, for each M large enough, Sy = [0, z+ N]
ifen <1 and to Sy = {0} U [z— n,x+ n] if en > 1.

Proof. We assume that (7.58) holds, and that S does not coincide with [0, 2]
or & = {0} U[z_,x4] , i.e. ¢ (w) vanishes at a point wy such that Ay < we < Ay
and 7 TrR(R — wol)~! < 0. After some algebra, we obtain that wy satisfies:

_ —ﬁTI‘R(R — ’U)o])_l
1 —2c4TrR(R — wol )~

%Tr (R(R — wol)™")?

As 4 TrR(R — wol)~! < 0, this implies that

M 2
%Tr(R(waOI)fl)Zz ! Z( Ak ) < ——TrR(R — wol)™*
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2 2
Jensen’s inequality leads to (ﬁ 22/[:1 ‘)\kiikw(ﬂ) < ﬁ 22/[:1 (Ak{kwo) . Therefore,

we obtain that 57 22/1:1 I)\k)\*ikwol < 1, and that

% > (ﬂ))z <1. (7.59)

k=1
We assume that \j, < wo < Ajy4+1. Then, hypothesis (2.7) and condition (7.58)

imply that
(A) @ M
Ak — Wo k2 (Jk—jol + 1)

Hence, it must hold that

‘ Q

M
<1
K2 Z |k—.70|+1)

k=1

for each M large enough, a contradiction because Z,]szl m is easily seen to

be an unbounded term. l

8. No eigenvalues outside the support.

In this paragraph, we establish the following result:

Theorem 8.1. Assume that there exists € > 0, k1 € R, ko € RU {+00}, k2 > K1
and an integer Ngy such that

(k1 — €, ka+€)NSy =0 VN > Ng. (8.1)

Then with probability one, no eigenvalues of Wf7NW;7NW,NW}"N appears in
[£1, ko] for all N large enough.

We first remark that it is sufficient to consider the case where ko < +o00.
To justify this claim, we recall that Unx>1Sy is a compact subset (see Lemma
7.7), and notice that [|[Wy yWy xWp vW} x| < [Wx[|* where matrix Wy is de-
fined by (2.5). Moreover, (3.1) implies that almost surely, for N large enough,
[Wn > <b(1+6+ /cx)? where § > 0. Therefore, almost surely, the largest eigen-
value of Wy nWJ W), NW§ Ny s, for each N large enough, upperbounded by the
nice constant b? (1 + 0 + y/cx)*. This justifies that it is sufficient to assume that
Ko < 400 in the following.

In order to establish Theorem 8.1, we use the Haagerup-Thornbjornsen approach
([15], see also [7]). The crucial step of the proof is the following Proposition.

Proposition 8.1. Vz € CT, we have for N large enough,

E {MlLTrQN( )} _ %TrTN(z) + %TN(Z), (8.2)
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where T is holomorphic in CT and satisfies

@< Pl (o) (5.3)

Imz
for each z € C*, where P1 and P, are nice polynomials.

Proof. To prove (8.2) we write

E {]\;LTTQN(Z)} - ﬁTrTN(z) = ﬁTr E{Qn(2)} — IL ® Sn(2)]
T [Sn(2) — T (2)]

As (5.28) holds, it is sufficient to establish that
2718 (2) = Tw ()| < 3 Prel) Patin ™) (5.4
M Tr'on(2 N(Z = N2 1\~ o\lm ~Z .

for some nice polynomial P; and P». In the following, we denote by sy(z) the
function defined by

sn(2) = %TrRNSN(z). (8.5)

It is clear that sy € S(R"). Moreover, if py s represents the associated positive
measure, then we have

1 1 1
pn.s(RT) = 27 RN, /R X Ndun s(\) = ey 27 BN MTrR%V (8.6)

(8.6) can be proved using the arguments of the proof of Proposition 6.1.

As LTr[Sn(z) — Ty (z)] is given by (6.23) for F = I, (8.4) appears equivalent
to the property

3 TRV (E) = T ()] = s (e) = ()] < Pl Pa(im 2. (8.7

In order to prove (8.7), we define the following functions that appear formally
similar to functions u(z) and v(z) defined by (6.13) and (6.14):

lcza(2)]? 4 Tr(RS(2)S* (2)R)
11— z(ca(z))?[? ’
ﬁTr(RS(z) *(2)R)

uq(z) =c

vo(2) =

T 2(ca())2
w () = C|cz|2t(z)a(z)ﬁTr(RS(z)T(z)R)
ral?) = T ) ) — 2(el(2)E) (8.8)
HTT(RS(Z)T(Z)R) (8.9)

0el®) = T (o)D) (1 — (et
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Using equation #(z) = 7;TrRT(z) and the definition of s(z) and S(z), we obtain
easily that
(s(z) —t(2)) ) _ o (((5(2) = 1(2)) €1(2)
(i) P (G370 + (60)

holds, where
€1(2) = (a(2) = 5(2))(201,a(2) + ut,a(2)),
€2(2) = z(a(2) = 5(2))(2v1,0(2) + ut,a(2)),
Ut,a(z) vta(2)
Dio(z) = 5° , :
a(2) (z%t’a(z) Ut,0(2)
This can also be written as
(s(2) = t(2)) ) (61(Z)>
I-D; (2 - . 8.10
a-peto (0 i) = (660 (510
The application of (5.27) to F' = I, ® R leads to a(z) — s(z) = O.(N~2). In order
to verify that (&;(2))i=12 are O,(N~2) as well, we have to control u;, and vy q.
As t(z),a(2), |T(2)|| and ||S(z)|| are O.(1) terms, it is sufficient to evaluate the
denominator of the right handside of (8.8). As the mass and the first moment of
and T (the measure associated to a(z)) both verify the conditions of Lemma 4.2,
this Lemma implies that (1 — z(ct(2))?)™! = O,(1) and (1 — z(ca(2))?)~t = O,(1).
Therefore, we have checked that (€;(2));=12 are O.(N~2) terms.

In order to evaluate s(z) — t(z), it is of course necessary to show that matrix
I—Dy; (z) is invertible on C*, and to control the action of its inverse on the vector
(€1(2),€1(2))T. We define matrix D,, by

Do(z) = ( ta(2) va(z)>

2%04(2) ua(2)

and establish the following result.

Lemma 8.1. For each z € CT, it exist nice constants k and 3 such that

r (Imz)®
det(I —D(2)) > —5—F5—. 8.11
(=DED = o ey 541
Moreover, it exist 2 nice polynomials Py and Py for which
1 —uq(z) >0 (8.12)
and
r (Imz)®
det(I —Dy(2)) > —5—— 8.13
(1= DelE) = (g 1oy (8:49)

for each z € By, where By is defined as

1 1
By {ze@ LG (1 Z) _1}. (8.14)
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Finally, for each z € By, it holds that

% (Imz)®

(1812 +1=1%)*
Proof. To evaluate det(I — D(z)), we use the calculations of the proof of
Lemma 6.1. In particular, we have

det(] — Dy.o(2)) > (8.15)

(I —D(z)) (;;n;f?)) = Imz (MTrRTéZ)T*(Z)) . (8.16)
This implies that
1—u(z) = 1;1?(2 z %TrRT(z)T*(z) + Iflnftt((;))v(z) > IE(Z 2 %TrRT(z)T*(z)

By applying Cramer’s rule to (8.16), we obtain that

Imz

det(l = D(2) = Lo

L lTrRT(z)T*(z)) N

 LDRT()T(2)(1 - u(2) > (Imt(z) M

M

~—

(8.17)

It is clear that Imt(z) < [t(z)] < +TrR (Imz)” " < b(Imz)~". Therefore, it holds

>
I
that — > (Imt(z))*. We now evaluate & TrRT(2)T*(z). For this, we remark

Imt(z)
that

1 1 11

- * _ * > 2 * ) )

MTrRT(z)T (2) MTrRT(z)T (z)RR™" > bMTr(RT(z)T (2)R). (8.18)
Jensen’s inequality implies that - Tr(RT(2)T*(2)R) > |ﬁT1rRT(z)|2 = [t(2)]? >
(Im #(z))?. Therefore, the application of Lemma 4.2 to 3(z) = #(z) implies that

Imz 1 . > r (Imz)®
(it 3 ATOT0) = g

for some nice constants x and 8. (8.11) thus follows from (8.17).

We now establish (8.12) and (8.13), and denote by e(z) the function e(z) =

a(z) — s(z). Using the equation s(z) = 4;TrRS(z), and calculating Im s(z) and

Im zs(z), we obtain immediately that

(T—Du(2)) <Im0‘(z)) — Tmz <J\14TYRS (2)8 *(Z)> + <Im€(z) > . (8.19)

Imza(z) 0 Imze(2)

The first component of (8.19) leads to

1 Ime Imzo Imz 1 Ime
= - —TrRSS* - —TrRSS* .
Ima M ' + Ima + Ima o = Ima M ' + Ima

(8.20)

Imz

1—u,
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1
Using the same arguments as above, we obtain that MTrRSS* > %|3(z)|2 >

i (Ims(z))®. As (8.6) holds, we can apply Lemma 4.2 to 8(z) = s(z) and obtain as

above that
Imz 1 r (Imz)*
- —TrRS(2)S* —
() MGG 2 Gy
. Ime le]
for some nice constants 8 and k. We remark that o > —ima- Therefore, by

I z
Lemma 4.2 applied to 8(z) = a(z), it holds that Iﬁ > —ﬁ1|e|% for some
ma

nice constants 1 and S1. As [e(2)| < 7 Q1(]2])Q2(5

) for some nice polynomials
@1 and Q2,we obtain that

4

Imz Ime Imz |e| 1 k (Imz)
1—uq > —- —T et — > — —TRSS* > —
Yo Z o 3 RS s Z e M Ima — 2 (|82 + |22)2
(8.21)
if z belongs to the set By y defined by
% (Imz)* Q1 (12))Qa(—— 1 " B+l 1 & (Imz)*
(8P + P2 S’ Ime T2 (8P + 2P

The set By n is clearly defined in the same way than By, but from 2 other nice
polynomials P; ; and P ;.

Using the Cramer rule, we obtain that det(I — D,,) can be written as
Imze

— Uy
Ima

I I
det(I—D,) = (mz LRSS + Im€> (1—ua) +

Ima M mo

Plugging (8.21) in the last equation, we get that the inequality

1ok )t \ 2l
det(I-D,) > (2 ( ) - Voy

16> + 12[%)? Ima

holds for each z € By n. As vq, = O,(1), we obtain that

4\ 2 4 0\ 2
£ (Imz) |2l el S 1 (Imz)
(1817 + |2[*)? Ima = \ 4 (|82 + |2[2)?
for each z € Bg n, where By y is defined as By from 2 nice polynomials P 2
and Py 2. We put Pi(|z]) = Pr1(|z]) + Pi2(|z|) and Py(1/Imz) = Po1(1/Imz) +

P55(1/Imz), and consider the set By defined by (8.14). It is clear that By C
Bi.n N By n, and that (8.12) and (8.13) hold if z € By.
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It remains to establish (8.15). For this, we remark that the inequalities

[det(I = Dya(2))] > |1 = ua(2)* = |2 [ora(2)* = (1 = |ura(2)])
= lzva(z) - [2lv(2) > (1 - (2)%(2))2—\ZIva(Z)-IZIU(Z) > (1= u(2))(1 =~ ua(z))
= [z[va(2) - [2lv(2) > V(1 = u(2))? = [20(2))((1 = wa(2))? = |2[?va(2))
= /det(I — D(2)) det(I — Dy(2))

hold for each z € By. Therefore, (8.15) follows from (8.11) and (8.13). This com-
pletes the proof of Lemma 8.1. B

Solving (8.10), we obtain immediately that it exists 2 nice polynomials ()1 and
Q2 such that,

() - ()| < 577 @02 (1 )

holds for each z € By. If z € B, we use the argument in [15]. More precisely,
if z € BY, the inequality 1 < /5 P1(]2])P2(1/Imz) holds. As |sy(z) — tn(z)] <
2 ﬁTrRN , we deduce that

1
Imz
P5(1/Imz)
Imz

59 (2) — e (2)] < 2Py (2]

for each z € BY. This, in turn, leads to the conclusion that sy (z)—t
for each z € C*. This establishes (8.7) and ;Tr(Ty(z) — Sn(2)
expected. This completes the proof of Proposition 8.1. B

We now follow [8] and [15] and use the following Lemma.

Lemma 8.2. Let ¢ be a compactly supported real valued smooth function defined
onRT, i.e. ¢ € C°(RT,RT). Then,
1 " " 1
E{MTY¢(Wpr Wpr)} - d(N)dun(A) = O <N2> .

Proof. Due to Proposition 4.1 we can write

1 1., 1
e{ s o0vs ) = St [ s { s i pae

SN

as well as

odux ) = Lt { [ o {1 nTs i bk

SN y0

Using Proposition 8.1, we obtain
1 * *
B { ST f - [ odun(y

=——= limlm{ . o(x)ry(z + iy)dx} . (8.22)
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Since the function ry(z) = O.(1), we can use the result which was proved in [7,
Section 3.3] and obtain

o(z)ry(x + iy)dz| < K

R+

lim sup
y40

for some nice constant x. This and (8.22) complete the proof.

In order to establish Theorem 8.1, we introduce a function ¢ € C2° such that
0<¢()\) <1 and

1, for X\ € [k1, k2],
60 = or [K1, k2]
0, for A € R — (k1 — €, ko + €).

Since for N large enough (k1 — €, %2 +¢) NSy = @ then [g ¢(N\)dun(N) =0 and
according to Lemma 8.2

* * 1
E {:jv[l;rfiqb(lifflﬁ/b [1/b14(f) }' = C) <:]\ﬂ2:)

Now we show that
1 . 1

For this we use again the Poincare-Nash inequality

R ATp(WiW;W,We)\ ™ .,
Var{Tr¢(Wpr Wpr)} < ZE{ ( anl a8 {Wll 31 Wi27j2}
21,71
Lo (W Wy Wy Wf)}+ZE WE{ "2y OTH(WIW™)
GWZLZQ 8W:1n21 Zl Jl 102 8W172n§2 .

We only evaluate the first term of the r.h.s. of the inequality, denoted by 1, because
the second is similar. For this we write first

OTrgp(WiWy WPW}*)

8W;le1

1 <iy < L, (W,Wie! (WWi W, Wi W) |
L+1<iy < 2L, (¢/(WyWrW,WHWEW W)y

, L OWWEW, W
=Tr qS(WprWpr)aW—ml

1,J1

Plugging this into (3.2) we obtain

L
Z Z (;E{ (W Wf(b (WfW 4% I/Vf)vvf)*m1 Rm1m26i1+j1,i2+j2

i1,12=1 j1,j2,m1,m2

* * * m2 1 * * * *Mmy
x (WyWie! (W WaW, Wi W)™ } + —E{ (& (WiW W, W)W W W,) ™

11J1

X Rm1m25i1+j1,i2+j2 ((b (WfW w, Wf)WfW W, )zz Jja })
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Following the proof of Lemma 3.1, we obtain

* * C * * * * *
Var{Teg(W; Wy W, W)} < CE{TW o/ (W Wy W, Wi W Wy W, Wi

X & (WeWy W W Wb+ SE(TW Wy W, W W, Wi (¢ (WWy W, Wi)) )
(8.23)

To evaluate the first term 1/ of the r.h.s of (8.23) we denote n(\) = (¢'()\))?\ and

write
1 * * * * * * *
ST (W W W W W W W, W 6! (W W W, W)Wy )
1 * *
< NE {IW P Te(n(W, W, W,Wi)}.
We recall that (3.1) implies that |W||> < b||W;;al|>. Therefore, it holds that
K * *
Y1 < NE{||Wn'dH21HWW\|§(1+\/a)2+5“(77(Wpr W,W§))}
K * *
+ N]E{||W’iid||21||Wiid“>(1+\/a)2+5Tr(n(Wpr Wpr))}
K * *
< FEAT((W Wy W, W)} + KEY2{ | Wisal * Ly > (14 en)2+6 )

x EY/? { (;fﬁ(n(wfwgwpwjt))f} .

Lemma 8.2 implies that $E{Tr(n(W;W;W,W}))} = O(N~2). Throughout the
proof of Lemma 3.1, we get that E||Wiia|*1jw,,. >+ ve)2+s = O(NF) for all k.
Since function ¢’ € Cg°, there exists a nice constant s such that |¢'(A)| < & for
all A and ¢'(A) = 0 for all A > b+ 2e. We deduce from this that it exists a nice
constant x such that ||n(Wy,nWy yWp NWF )|l < & for each N. From what about
we conclude that 1, = O(N~2).

As for the second term (1)) of the r.h.s of (8.23), we write

K * * * * %1 2
Yo = CE{ W W W W, W5 (o (W, W W,W5))* Wy |
1 * * 2 * *
< HE{|WP||2NTr (& (W W W, W) WW, W,,Wf} .

It is easy to see that 15 can be evaluated as 17, leading to the conclusion that
1y = O(N~2). Therefore, we have checked that

1
Var{Tro(W;W,;W,W;)} = O (N?) :

Now we can complete the proof of Theorem 8.1 as in [8]. For this we apply the
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classical Markov inequality and combine what above

1 * * 1 8/3 1 * * ?
P {WTFQS(WJ‘Wp Wpr) > N4/3} <N °E { <]\/[L’IT¢(Wpr Wpr )) }

1 1 i
= N8/3 (Var {mTré(WfW; WpW;)} + <E {MTT¢(WfW;WPW;)}> >

1

—0 <N4 /3) |

Applying Borel-Cantelli lemma, we obtain that almost surely, the inequality
1 . . 1

holds for each N large enough. By the very definition of function ¢, the number of
eigenvalues of matrix W,;Wy WpW§ lying in the interval [k1, ko] is upper bounded
by T1r¢(I/VfWZ’,k WW; ) < ﬁ Since this number of eigenvalues is an integer, we
conclude that with probability one there is no eigenvalues in the interval [k1, ko)
for each N large enough. l

We finally illustrate the above results by the following numerical experiment.
M, N, L are given by M = 500, N = 1500 and L = 2 so that ¢y = 2/3. The eigen-

values of matrix Ry are defined by A\x xy = 1/2 + 7§ cos (”(2’3\}1)) fork=1,..., M.

Matrix Ry verifies £ Tr(Ry) =~ 1. Fig. 3 represents the histogram of the eigen-
values of a realization of Wy W Wy NW7 v as well as the graph of the density
gn(z). We notice that the histogram and the graph of gy are in accordance, and
that, as expected, no eigenvalue of Wy nW yWp, NW]’}" n lies outside the support
of gn.

9. Recovering the behaviour of the empirical eigenvalue
distribution o using free probability tools

The purpose of this paragraph is to show that it is possible to use free probability
tools in order to characterize the limiting behaviour of the empirical eigenvalue dis-
tribution oy of matrix Wy Wy Wy NW7 . As the present paper is not focused
on these kind of approach, we present briefly the following results and leave the
details to the reader.

The free probability approach is based on the following observations:

e Up to the zero eigenvalue, the eigenvalues of Wy n W x W, NW7 v coincide
with the eigenvalues of Wi Wy nW) yWp N

e The matrices W}" Wy and W) W, N are almost surely asymptotically
free. Therefore, the eigenvalue distribution of Wi Wy nW W), N con-
verges towards the free multiplicative convolution product of the limit dis-
tributions of W} Wy n and W W), v. These two distributions appear
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Fig. 3. Histogram of the eigenvalues and graph of g (z) for M = 500, N = 1500, L = 2.

to coincide both with the limit distribution of the well known random ma-
trix model %X}‘V (I, x Ry)Xn where X is a ML x N complex Gaussian
random matrix with unit variance i.i.d. entries.

In the following, we follow the definitions of asymptotic freeness provided in [18]
(see in particular section 4.3) which need the existence of certain limit distributions.
This is in contrast with the approach developed in the previous sections more fo-
cused on the behaviour of deterministic equivalents. We however mention that more
recent free probability works (see e.g. [29] and the references therein, [6]) allow to
avoid the introduction of limit distributions, and would allow to recover the previ-
ous results on the deterministic equivalent vy of Dy .

In order to be in accordance with [18], we thus formulate in this section the
following assumption:

Assumption 9.1. The empirical eigenvalue distribution wy = ﬁ Zkle Ox..n Of
matrix Ry converges towards a limit distribution w.

We remark that hypothesis 2.7 implies that w is compactly supported. Moreover,
it can be shown that measures (un)n>1 and (vn)n>1 both converge weakly towards
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limits denoted 1 and v in this section. We also notice that Lemma 7.7 implies that
and v are compactly supported. It is also easily checked that the Stieltjes transform
t(2) of p verifies the equation

t(z):fl/ L(T)’ (9.1)

2 Jre cxTH(2)
1 — zc2t2(z)

while the Stieltjes transform ¢, of v is given by

1 cit(2)?

t(z)=——— ————. 9.2
(2) z 1= z(ct(2))? (92)
We recall that c, represents the limit of ¢y = % In the following, we establish

that (9.1) and (9.2) can be obtained using free probability technics.

Before going further, we first recall the main useful definitions introduced in
[18].

Definition 9.1. Counsider a finite family of sequences of N x N possibly random
matrices ((X; n)n>1)i=1,....r- Then (X; v)i=1,.. , is said to have an almost sure joint
limit if for each non commutative polynomial P(x1,...,2,) in r indeterminates,
then +TrP(Xy,n,..., X, n) converges almost surely towards y(P) where v is a
deterministic distribution defined on the set of all non commutative polynomials in
r indeterminates (i.e. 7y is a linear form such that (1) = 1).

We remark that if r = 1 and (X3 n)n>1 are Hermitian matrices, the above
condition is equivalent to the existence of a limit empirical eigenvalue distribution.

Definition 9.2. Consider p families (Xi()ljz,)i:l,wrl, el (Xi(ﬁzf)izl,m,rp of N x N
possibly random matrices. Then, XM ..., X®) are said to be almost surely asymp-
totically free if the 2 following conditions hold:

e Foreachg=1,...,p, (Xi(gz,)izl,qu has an almost sure joint limit

o Vmy, i1, i, € {1,2,...,p} with 41 # iy # -+ # i, and for each non
commutative polynomials (P;);=1,...m in (74,);=1,...,m indeterminates such
that Tr(Pj(Xyy,. .. »ijj,N)) — 0 a.s. it holds that

T

1 . ) .
NTr(Pl(XfN, s X N Pa(X T X0 ) = 00 as.

7’11

We remark that when each family X (@ is reduced to a single sequence (XI(\?)) N>1
of N x N Hermitian, or similar to hermitian matrices P, the almost sure freeness of
X X® holds if

Definition 9.3.

bin the sense that XI(\(,n = U](\?)H](\?)(U](\?))*l for some N x N Hermitian matrix H;g)



March 3, 2020 10:8 WSPC/INSTRUCTION FILE revised-version'2

74

e Foreachg=1,...,p, (X](\‘,]))Nzl has a limit eigenvalue distribution

o Vm, iy, iy € {1,2,...,p} with iy # 4y # -+ # ip, and for each
polynomials (P;);=1...,, in one indeterminate such that +Tr(P;(X)) — 0
a.s. it holds that

NTr(Pl(XJ(VM)Pz(X};Q)) P (XU 50 as. (9.3)

We also recall the definition of the S transform of a probability measure, and
recall that the S transform of the free multiplicative convolution product of two
probability measures is the product of their S transforms.

Definition 9.4. Given a compactly supported probability measure p carried by
R, we define v, (2) as the formal power series defined by

vue) =3 [ ddut = [ 7 dute) (9.4)

k>1

Let x, be the unique function analytic in a neighbourhood of zero, satisfying

Xu(¥u(2)) = 2 (9-5)

for |z| small enough. Then, we define the S transform of p as the function S,(z)
defined in a neighbourhood of zero by
142

Su(z) = xu(z) P (9.6)

Moreover, if ;11 and po are two compactly supported probability measures carried
by RT, the S-transform S, x,,, of pu1 X py satisfies

SNI‘XPW :SNISNZ' (9'7)
We are now in position to state the main result of this section.

Proposition 9.1. Matrices Wi yWy n and W yWy, N are almost surely asymp-
totically free.

Proof. We first notice that it possible to replace matrices Wy and W), by finite
rank perturbations because the very definition of almost sure asymptotic freeness
is not affected by finite rank perturbations. We thus exchange W, and W; by
W, = —=Y, and Wy = —L=Y; where Y, and Y} are defined by

VN VN
Y1 - YN
Y2 YN Y1

Yy --- YN Y1 Y2 ... YrL—1
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YL+1 «vv vvv vve e oo YN Y1 yr
Yr+2 oo oo oo oo YN Y1 Y YrL+1
f/f — | Y43 oo et YN Y1 .-+ YL YL+1 YL+2
Yyor, ---YN Y1 --- YL Y41 Y42 --- Y2L-1
In other words, vectors yni1,.-.-sYN+L—1,--.-,YN+2L—1 are replaced by vectors
Ylye-yYL—1,---,Y2r—1.- In order to simplify the notations, we still denote the above

finite rank modifications by Yy, Yy, Wy, Wy. We define the N x N matrix II and the
M x N matrix Y by

0...01
1 0

m=1 ;and Y = (y1,¥2,-..,YN)
0...10

and rewrite Y, (and Y respectively) as

Y Yk
YII yitt
Y, = . , Y=
YH.L— 1 YH2.L— 1

This allows us to obtain the useful expression for Wy W), and WiWs

* L— * yry

WiW, = S0, I* <N> 1", (9.8)
. 21y (Y Y

WiWy = Y3k ek (N Ik, (9.9)

Since N=1'Y*Y can be written as Nfl}/;’;dRNY;—id, where Yj;q has i.i.d. Gaussian
entries, the Hermitian matrix N~'Y*Y is unitarily invariant. Moreover, Assump-
tion 9.1 implies that N~'Y*Y has a limit distribution while it is easily checked that
the family {,T1%,I1, ..., IT*2£~1 T12£~1} has the same property. This and Theorem
4.3.5 in [18] leads to the conclusion that Y*Y/N and {I,11*, I, ... I1*2L =1 T12E-1}
are almost surely asymptotically free. Proposition 9.1 thus appears to be an imme-
diate consequence of the following Lemma adapted from Lemma 6 in [14]. In order
to make the connections between Lemma 9.1 and Lemma 6 in [14], we use nearly
the same notations than in [14] in the following statement.

Lemma 9.1. We consider a sequence of N x N Hermitian random matrices
(XNM)y>1 and N x N deterministic matrices UN , W ... ,UN WY such that
Xy and {UNWN ...;UN WL are almost surely asymptotically free. Then, if
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UNWHN .. UN WX satisfy

m

UNWN =wPNUN = (9.10)
for each i = 1,...,m as well as %Tr(UZNWJN) = 0;—; foralli,j =1...m, then
the random matrices UN XNWN ... . UNXNWN are almost surely asymptotically

free.

Proof. We prove Lemma 9.1 by following step by step the proof from [14]. For
simplicity we omit index N below. Due to (9.10) we have W; = U[l so that matrices
(U;XW;)i=1,...,m are similar to the Hermitian matrix X. We have thus to verify the
2 items of Definition 9.3. The first item is obvious. To check condition (9.3), we
consider any k, indexes 41, -- ,i; with ¢; # --- # 45, and polynomials P; such that
LTr(P;(U;; XW;,)) — 0 a.s. Using again (9.10) it is clear that P;(U;, XW;,) =
Ui, Pj(X)W;, and, as a consequence, Tr(P;(X)) — 0 a.s. We define ny as

1
N = NTT(Pl(UilXWu)P2(Ui2XWi2) (Ui X W) =

1
NTI‘(UhPl(X)WilUi2P2(X)W'L'2 e Uzkpk( ) TI‘ H WZJ 1[] P ) 5

where iy = ij. If 47 # i then by assumption %’IT(WZJ Ui, y=0forj=1,...,m
As we also have 2Tr(P;(X)) — 0 a.s, the almost sure asymptotic freeness of X and
{U1, W1, ,Upm, Wi, } leads to the conclusion that 7y — 0 a.s. In the case when
i1 = 1 we have W, U = Iy and the same conclusion holds. [J

By taking X = , Uy = II*! and W; = [T, Lemma 9.1 gives us imme-
diately that Y Y H*(YNY)H L IIe2l= 1(Y YOII2L- 3 are almost surely asymptot-
ically free. Usmg the expression (9.8, 9.9) of WyW,, and W;W;, we obtain that

Wy W), and WiW; are almost surely asymptotically free. B

We also deduce that the limit distributions of Wy W, and Wi W} both coincide
with the additive free convolution product of L copies of the well known limit
distribution of % It is easily seen that the Stieljes transform, denoted tpg(z) in
the following, of this free addditive convolution product is solution of the familiar
equation (see e.g. [1], p. 113)

1

tps(z) = — N (9.11)
R dw ()

1+ TtBs(Z)
In the following, we denote by pups the corresponding probability measure. It is
clear that (9.11) coincides with the equation verified by the Stieltjes transform of
the limit eigenvalue distribution of the random matrix %XI*V (I, x Ry)Xn where
Xy isa ML x N complex Gaussian random matrix with unit variance i.i.d. entries.
We note that this result could also be easily obtained using the Gaussian technics
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developed in [26] in the case where Ry is reduced to a multiple of Ij;.

According to Proposition 9.1, the limit eigenvalue distribution
of W}*_’NWﬁNW;)NWp’N is ups X ups. In the following, we denote by r this mea-
sure and by f(2) its Stieltjes transform. To find an equation satisfied by f(z), we
use (9.7). (9.6) and (9.7) give us immediately

142
= X2BS(Z)'

X (2) .

By replacing here z with ¢;(z) and taking into account (9.5) we obtain
144y
R Vi(z) o

/ll)[/ (Z) XBS
We notice that by definition (9.4), we have

@z;ﬁ(z):/ “t dz?(t):/ dv(t) 11f<1>1. (9.13)

1—zt 1— 2t z z

(¥5(2)). (9.12)

Putting this into (9.12) and replacing z with % give us

S (e (1)

From this, it is straightforward to obtain the expression of f(z). For more conve-
nience, we introduce the function g(z) = xps(¥s(271)) which is analytic in the
neighbourhood of infinity. It holds that

f(2) = (%6°(z) —2) " (9.14)

It remains to determine g(z). For this we use (9.13) for ¢)pg, tps and replace z
with xps(z). Then (9.5) gives

1 1 —1 = — z z
z=—1— mt]gs (XBS(Z)> = tBS(XBs(Z)) = (1 + )XBS( )

To obtain the equation for xpg it is sufficient to use the above expression of
tps(xps(2)), and to plug it in (9.11) with z = x5(2). Therefore, we obtain that

1
I e [ Tdw(T)
xes(z) 7 1—7(1+2)xBs(z)

(14 2)xBs(z) =

After simple algebra we get that

z . / Tdw(T)
(1+2)xps(z) ) 1—=7(1+2)xps(z)

We finally replace z by 15(27!) in the above equation. Using (9.12), it is easy to
see that the Lh.s. is equal to zg(z). To evaluate the r.h.s., we use again (9.12) and
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obtain that 15(271) = 2¢%(2)(1 — 2¢g?(z)) !, and that

9@)=]L4+(%T&MT). (9.15)

z _ 79(2)
1—zg%(2)

We recall that ¢(z) is solution of the equation
1 d
tHz) = -~ / _ rdel) (9.16)

2 . cxTt(2)
1 —zc2t?(2)

The equations (9.15) and (9.16) are identical up to factor —c,. Since it can be
shown that Eq. (9.16) has a unique solution on the set of Stieltjes transforms, we
obtain that g(z) = —c.t(z). Therefore, (9.14) leads to the equation

. 1
16 = = e

The Stieltjes transform of the limit eigenvalue distribution of WyWyW,W; is

clearly equal to Ci (f(z) + l%c) Using the expression (9.2) of t,(z), we obtain

immediately that
1 /2 1—cs
(7 +152) =tto)

Cy z

We have thus proved that the limit eigenvalue distribution of WyW WpW§ can be
evaluated using free probability technics.
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