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Abstract

This paper adresses the behaviour of the mutual information of correlated MIMO Rayleigh channels
when the numbers of transmit and receive antennas convergexicat the same rate. Using a new
and simple approach based on Poigebliash inequality and on an integration by parts formula, it is
rigorously established that the mutual information when properly centered and rescaled converges to
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. INTRODUCTION

Consider the following channel model with additive white noige: Gx + z, wherey is the received
signal,G is the channel matrixx is the vector of transmitted symbols, anis a complex white Gaussian
noise. It is widely known that high spectral efficiencies are attained when multiple antennas are used at
both the transmitter and the receiver of a wireless communication system. Indeed, due to the mobility
and to the presence of a large number of reflected and scattered signal paths, the elementssohthe
Multiple Input Multiple Output (MIMO) channel matrix withV antennas at the receiver’s site and
antennas at the transmitter’s are often modeled as random variables. Assuming a random model for this
matrix, Telatar [1] and Foschini [2] realized in the mid-nineties that Shannon’s mutual information of
such channels increases at the ratendfi(/V, n) for a fixed transmission power [1]. The authors of [1]
and [2] assumed that the elements of the channel mé&iriare centered, independent and identically
distributed (i.i.d.) elements. In this context, a well known result in Random Matrix Theory (RMT) [3]
says that the eigenvalue distribution of the Gram mafki&*™ where G* is the Hermitian adjoint ofG
converges to a deterministic probability distributionragoes to infinity andV/n converges to a constant
¢ > 0. Denote byI(p) = logdet (%GG* + IN) the mutual information of channé&k for a Signal to
Noise Ratio at a receiver antenna equapfa. One consequence of [3] is that the mutual information
per transmit antenné(p)/n, being an integral of &g function with respect to the empirical eigenvalue
distribution of GG*, converges to a constant. This fact already observed in [1] sustains the assertion
of the linear increase of mutual information with the number of antennas. In addition, this convergence
proves to be sufficiently fast. As a matter of fact, the asymptotic results predicted by the RMT remain
relevant for systems with a moderate number of antennas.

The next step was to apply this theory to channel models that include a correlation between paths (or
entries of G). One of the main purposes of this generalization is to better understand the impact of
these correlations on Shannon’s mutual information. Let us cite in this context the contributions [4],
[5], [6], [7] and [8], all devoted to the study of the mutual information in the case where the elements
of channel's matrix are centered and correlated random variables. In [9], a deterministic equivalent is
computed under broad conditions for the mutual information based on Rice channels modeled by non-
centered matrices with independent but not identically distributed random variables. The link between
matrices with correlated entries and matrices with independent entries and a variance profile is studied
in [10]. In a slightly different context, concentration inequalities for the capacity of a CDMA system are
established in [11].
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One of the most popular correlated channel models used for these mutual information evaluations is
the so-called Kronecker mod€ = $W¥ whereW is a N x n matrix with Gaussian centered i.i.d.
entries, andl and ¥ are N x N andn x n matrices that capture the path correlations at the receiver and
at the transmitter sides respectively [12], [13]. This model has been studied by Chuah et. al. in [5]. With
some assumptions on matricesand ¥, these authors showed th&fp)/n converges to a deterministic
guantity defined as the fixed point of an integral equation. Later on, Tulino et. al. [8] obtained the limit
of I(p)/n for a correlation model more general than the Kronecker model. Both these works rely on a
result of Girko describing the eigenvalue distribution of the Gram matrix associated with a matrix with
independent but non necessarily identically distributed entries, a close model as we shall see in a moment.
In [7], Moustakas et. al. studied the mutual information for the Kronecker model by using the so-called
replica method. They found an approximatibiip) of E [I(p)] accurate to the ordelr/n in the largen
regime. Using this same method, they also showed that the variande)of V'(p) is of order one and
were able to derive this variance for large
Although the replica technique is powerful and has a wide range of applications, the rigorous justification
of some of its parts remains to be done. In this paper, we propose a new method to study the convergence
of EI(p) and the fluctuations of (p). Beside recovering the results in [7] and especially the strikingly
simple form of the variance, we establish the Central Limit Theorem (CLTJ fpy— V' (p) (for a related
CLT in a non-Gaussian context, see [14]). The practical interest of such a result is of importance since
the CLT leads to an evaluation of the outage probability, i.e. the probability thaties beneath a given
threshold, by means of the Gaussian approximation. Many other works have been devoted to CLT for
random matrices. Close to our present article are [15], [16], [17].

In this article, we also would like to advocate the method used to establish both the approximation of
I(p) in the largen regime and the CLT. Due to the Gaussian character of the entries of Mafriwo
simple ingredients are available. The first one is an Integration by parts formula (17) that provides an
expression for the expectation of certain functionals of Gaussian vectors. This formula has been widely
used in RMT [18]-[20]. The second ingredient is Poilgchlash inequality (18) that bounds the variance
of functionals of Gaussian vectors. Although well known [21], [22], its application to RMT is fairly recent
[23], [20] (see also [24] and [25] where general concentration inequalities are derived for functions of
random matrices). This inequality enables us to control the decrease rate of the approximation errors
such as the order/n errorE [I(p)] — V(p) (note that the gaussian structure enters in two places: First

the reduction to matrices with independent entries et varying variance and then integration by part and
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Poincaé-Nash bounds for the variance of relevant spectral charactetjstids believe that these tools of
rigorous and explicit analysis might be of great interest for the communications engineering community
(see for instance the estimates obtained in [26] in the context of Ricean MIMO channels).

The paper is organized as follows. In Section Il, we introduce the main notations; we also state the two
main results of the article. In Section Ill, we recall general matrix results and the two aforementioned
Gaussian tools. Section IV is devoted to the proof of the first order result, that is the approximation of
E[I(p)]. The CLT, also refered to as the second order result, is established in Section V. Proof details

are in an appendix.

[I. NOTATIONS AND STATEMENT OF THE MAIN RESULTS
A. From a Kronecker model to a separable variance model.

Consider a MIMO system represented byWax n matrix G wheren is the number of antennas at the
transmitter andV is the number of antennas at the receiver and whéfe) is a sequence of integers
such that

N
0< ¢ = liminf (n) < (T = limsup

n—oo n n—oo

N 1)
n
a condition we shall refer to by writing, N — oo. Assuming the transmitted signal is a Gaussian
signal with a covariance matrix equal %in (and thus, a total power equal to one), Shannon’s mutual
information of this channel i$, (p) = log det (2G,, G}, + In) , wherep > 0 is the inverse of the additive
white Gaussian noise variance at each receive antenna. The general problem we address in this paper
concerns the behaviour of the mutual information for large value®’ addnd n in the case where the
channel matrixG,,, assumed to be random, is described by the Kronecker m@gdet \Iann\fln. In
this model,¥,, and \fln are respectivelyV x N andn x n deterministic matrices andV,, is random
with independent entries distributed acccording to the complex circular Gaussian law with mean zero
and variance oné€N (0, 1).
It is well known that this model can be replaced by a simpler Kronecker model involving a matrix with
Gaussian independent (but not necessarily identically distributed) entries. Indedd, I:etUnDéV;
(resp.¥,, — U, D3 V?) be a Singular Value Decomposition (SVD) ®, (resp.¥,.), whereD,, (resp.

D,,) is the diagonal matrix of eigenvalues &, ¥ (resp. ¥, ¥, ), thenl,(p) writes:

I(p) = log det (%YnY;‘; + IN) ,

11t is interesting to note that once the first reduction has been made, others techniques are available without using the gaussian

assumption - see for instance [20].
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whereY,, = D2X, D2 is a N x n matrix, D,, and D,, are respectivelV x N andn x n diagonal

matrices, i.e.
D, = diag (dﬁ”’, 1<i< N) and D, = diag (dg.”), 1<j< n) ,

andX,, = VW, U, has i.i.d. entries with distributio@A/(0,1) since V,, and U,, are deterministic
unitary matrices. Since every individual entry Wi, has the foring,”) = dgn)d§")Xij, we callY,, a

random matrix with a separable variance profile.

B. Assumptions and Notations.

The centered random variahlé — E[X] will be denoted by)O(. Element(z, j) of a matrix A will be
either denotedA];; or A;;. Elementi of vectora will be denotedu; or [a];. Columnj of matrix A will
be denotedh;. The transpose, the Hermitian adjoint (conjugate transposa), @ind the matrix obtained
by conjugating its elements are denoted respectively A*, and A. The spectral norm of a matriA
will be denoted|A|. If A is squareTr A refers to its trace. Let = \/—1, then the operator8/9z and
/0% wherez = z+iy is a complex number are defined By = 1 (a%- - ia%) andZ =1 (a% + i(%)

wherea% and a% are the standard partial derivatives with respect @ndy.

Throughout the paper, notatidd will denote a generic constant whose main featurneoisto depend
on n. In particular, the value of{ might change from a line to another as long as it never depends
uponn. ConstantX might depend ot € R* and whenever needed, this dependence will be made more
explicit.
As usual notatior,, = O(f,) is a flexible shortcut fota,,| < K3, anda,, = o(5,), for a,, = €,0,
with ¢, — 0 asn, N — oo (in the sense of (1)).
In order to study a deterministic approximationigf p) and its fluctuations, the following mild assump-
tions are required over the two triangular arréyié"), 1<i<N, n> 1) and (cig."), 1<j<n, n> 1).
(A1) The real numbersiz(") and d~§") are nonnegative and the sequen({eé”)) and (ci§”)) are

uniformly bounded, i.e. there exist constants,x and dmax SUCh that
sup |Dy|| < dmax and  sup ||f)n|| < dax.
n n

where||D, || and||D,| are the spectral norms @,, andD,,.
(A2) The normalized traces db,, and D,, satisfy

1 1~
inf ~Tr (D) >0 and inf ~Tr (Dn) > 0.
n n n n
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In the sequel, we shall frequently omit the subscripgnd the superscrigtz).
The resolvent associated Wit};]YnY;; is the N x N matrix H,(t) = (1Y, Y} + IN)_I. Of prime
importance is the random variablt) = 1 Tr D,,H,(t) and its expectation(t) = 1 Tr D,, EH,,(t).

We furthermore introduce the x n deterministic matrix defined by

R.() = (I+ia()D,) .
1

= diag (7;(t), 1<j<n) where 7;(t)= —,
g (7(t) j<mn) 3(t) T ta(d,

and the related quantitii(t) = 1TrD,R,(¢). In a symmetric fashion, th&/ x N matrix R,,(¢) is

defined by

R,(t) = (I+ta(t)Dy) ",
1

= di (1), 1<i< N) where ri(t)= ———.
We finally introduce the solutions of a deterministicc 2 system.

Proposition 1: For everyn, the system of equations i@, 5)

§ = ivD,I+tD,)"!

i _ (2)
5 = lTvD,(I+D,)

admits a unique solutioéén(t), Sn(t)> satisfyingd, (t) > 0,4,(t) > 0. Moreover, there exist nonnegative

measures.,, and i, over R* such that

_ [ paldA) 2o [ Bn(d))
n(t) _/R+ 1+t and  0.(t) _/R+ 14tA ®)

where,(RT) = LTrD,, and ji, (R*) = 2Tr D,,.

The proof is postponed to Appendix A.

With § and$ properly defined, we introduce the followin§ x N andn x n diagonal matrices:
T, = (Iy+tD,)"' and T, = (I, + tdD,)"".

Notice in particular thas = 2Tr D,/ T,, andé = 1 Tr D, T, by (2). We finally introduce the following

quantities which are required to express the fluctuations, gf):

n(t) = 2TrD2T2 (¢
() = 5 (t) _ 4

Y (t) = LTr D2T2(1)

Proposition 2: Assume that Assumption@\1) and (A2) hold and denote by

o2 (1) = —log (1 — 7 (1)3n(t), >0 (5)
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wherev, (t) and4,(t) are given by (4). Thew2(t) is well-defined, i.el — t2v,,(t),(t) > 0 for t > 0.

Moreover there exist nonnegative real numbersand M; such that
0 <m? <info2(t) <supo2(t) < M <oo for t>0. (6)
n n

Moreover,o7 (t) is upper-bounded uniformly in and¢ for ¢ € [0, p], i.e. sup,<, M7 < cc.

Proof of Proposition 2 is postponed to Appendix B.

Summary of the main notations.

In order to improve the readability of the paper, we gather all the notations in Table 1I-B. As expressed
there, there are three kinds of quantities:
1) Random quantities,
2) Deterministic quantities depending on the lawYofY via the expectatiorit with respect to the
entries ofY,,
3) Deterministic quantities which only depend on the matribgsand D,,, sometimes via and &
(as defined in Proposition 1) which are easily computable.
The main goal of the forthcoming computations will be to approximate elements of the first and second

kind by elements of the third kind.

C. Statement of the main results.

We now state the main results. Theorem 1 describes the first order approximation of the mutual
information ,,(p) while Theorem 2 describes its fluctuations when centered with respect to its first order
approximation.

Theorem 1:Let X,, be aN xn matrix whose elementX;; are independent complex Gaussian variables
such that

E(Xy) =E(X7) =0, E(X;*)=1, 1<i<N,1<j<n,
andY, = D,%Xnﬁ% where the diagonal matricd3,, and D,, satisfy AssumptiongAl) and (A2). Let
In(p) =logdet (Y, Y} 4+ Iy). Then, we have

i) = Val) + 0 () ™)

asn, N — oo (in the sense of (1)), where
Va(p) = log det (In + p5n(p)]5n) + log det (IN + pgn(p)Dn) —npdn(p)dn(p) .
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Deterministic quantities

Random quantities
depending on the law oY Y™ viaE | only depending on the variance structure Idaand D

H=(tYYy +1)7"
B = +TrDH a = LTrD(EH) §=1TrD(I+tD)"" = LT+ DT
7 = (1+tad;) ™!
R = (I +taD)™! T = (I+t6D)"!

a=1TrDR=1TrDI+taD)™' | § = 1TrDI + D) = 1 Tr DT
ri = (14 tad;) ™!
R=(I+taD)™" T=(I1+tD)"!

y=1TrT?’D?, 5= lTrT?D?

o?(t) = —log(1 — t*y(t)F(t))

TABLE |

SUMMARY OF THE MAIN NOTATIONS

and where(6,,(t), 0,(t)) is the unique positive solution of the system

§ = 1ITvD,(Iy +tD,) "
5 = 1TrD, (L, +t6D,)""!

Theorem 2:Assume that the setting of Theorem 1 holds andsfgp) = —log (1 — p*v,(p)Tn(p)) -
Then the following convergence holds true:
In(p) = Vulp) ¢

on(p) n—oo

N(0,1)

where £ stands for the convergence in distribution.

Ill. M ATHEMATICAL TOOLS AND SOME USEFUL RESULTS

In this section, we present the tools we will use extensively all along the paper. In Section IlI-A, we

recall well-known matrix results; in Section 1lI-B, we present two fundamental properties of Gaussian

models: The Integration by parts formula and Poigeldash inequality for Gaussian vectors. Section IlI-

C is devoted to a cornerstone approximation result which roughly stateRthatl R can be replaced by

T andT up to some well-quantified error. In Section IlI-D, various variance estimates and approximation

rules are stated.
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A. General results

1) Some matrix inequalitiesLet A andB be two N x N matrices with complex elements. Then

ITr (AB)| < /Tr (AA*)\/Tr (BB¥) . (8)
AssumingA is Hermitian nonnegative, we have
Tr (AB)[ < [[B] Tr (A) , 9)

where||.|| is the spectral norm (see [27]).
2) The ResolventThe Resolvent matri¥, (t) of matrix Y, Y}, is defined a1, (t) = (Y, Y} + IN)*l.
It is of constant use in this paper and we give here some of its properties. The following identity, also
known as theResolvent identity
t
H,(f) = Iy — —H, () YY" (10)

follows from the mere definition dff,,. Furthermore, the spectral norm of the resolvent is readily bounded
by one:

|H,(¢)| <1 for t>0. (11)

3) Bounded character of the mean of some empirical moméetyB,,),cn = diag <[b§”), . ,b%")} )
n € N, be a sequence of deterministicx n diagonal matrices. Assum@1), and furthermore, that

sup,, || Br|| < co. Then for every integek, we have

1
—E

< Ky, . (12)
n

1 k
Tr (YanY;‘;>
n

Let us sketch a proof. Expanding the left hand side of (12) yields:

1 _
W Z bj1 bj2 T b]kE [Y;l]'l}/izjl}/izjz}/isjz T Ylk]kylljk :

01,09, ig=1:N
G1seendp=1lin

A close look at the argument of tlie operator implies that due to the independence ofYfhewe only
havek + 1 degrees of freedom in the choice of the indi¢ggsand j,. As all moments of the Gaussian

law exist and moreoveltB,, |, ||D,||, and||D,,|| are bounded, this sum is of orderasn — co.
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4) Differentiation formulas:Let A be aN x N complex matrix and leQ(A) = (Iy + A)™'. Let
0 A be a perturbation ofA. Then

Q(A +6A)=Q(A) - Q(A) A Q(A) +o(|0A]), (13)

N,N

whereo (|[§A]) is negligible with respect t§d A || in a neighborhood of. Writing H(t) = [Hy,(t)], ;.

we need the expression of the partial derivaiiMé,,/0Y;;. Using (13), we have:

0H,, t YY" t ~—1Y
= — |H H| =——|H|0k—1)Yy H
Y n[ Y } n[ [ (k=) gj}k,ézl Lq
t * t *
= ——Hy [Y*H],, = —EHpi[yjH]q , (14)
whered is the Kronecker function. Similarly, we can establish
OH,, t t
a}/T] = _g [HY]pj Hiq = _g[Hyj]pHiq : (15)

The differential ofg(A) = log det(A) is given byg(A + 6A) = g(A) +Tr (A~! 6A) +o(||6A])) .

We use this equation to derive the expressiobft)/0Y;; also needed below:

ol t IYY™ t , N t t
v, n <H oY, ) =l (H [6(5_‘7)}/}”}&21) =, Y]y =0 Hy,], - (9)
B. Gaussian tools
1) An Integration by parts formula for Gaussian functionalset & = [¢1,...,&y]7 be a complex

Gaussian random vector whose law is determine®fgf = 0, E[¢¢7] = 0, andE[¢¢*] = E. LetT =

(&1, €60, &1, -+, &) be aCt complex function polynomially bounded together with its derivatives,
then:
2 IT(€)
BleT(E)] = 3 18 B | 72| a7
m=1 m

This formula relies on an integration by parts and thus is referred to as the Integration by parts formula
for Gaussian vectors. It is widely used in Mathematical Physics [28] and has been used in Random Matrix

Theory in [18], [19].

2) Poincae-Nash inequality:Let & and T be as previously and 167, = [0T'/0z1,...,0T /0zp] T
andVzI' = [0I'/0z1, . ..,0T /0z37)T. Then the following inequality holds true:

var (D(€)) < E [V.T(€)" & V.I(€)| +E[(V=T(€))" & VT(¢)] . (18)

A proof of this inequality is available in [20] in the real case; see also [23].
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When ¢ is the vector of the stacked columns of mathk i.e. £ = [Yi1,...,Yn,]?, formula (17)
becomes:
~ 8F(Y)}
E[Y;;T(Y)] = did;E | —=~| , 19
VoY) = di | 19)
while inequality (18) writes:
N n 2 2
i r'(Y) or(Y)
var ( gg dE ' |+ | (20)

Poincaé-Nash inequality turns out to be extremely useful to deal with variances of various quantities
of interest related with random matrices. In order to give right away the flavour of such results, we state
and prove the following:

Proposition 3: Assume that the setting of Theorem 1 holds andAgt be a/N x N real diagonal

matrix which spectral norm is uniformly boundedn Then

Iy Aan> =0((n?) .
n

Proof: We apply inequality (20) to the functioR(Y) = %Tr AH. Using (14), we have
N

GHPP _ *
Z PaY’J - [ HAH]

Therefore, denoting byl the upper bound! = sup,, ||A,|| and noticing thadoT'/dY; ;| = |0T /dY |,

we have:

22 X
var(Y) < & = E:ddE‘ HAH‘
i=1 j=1

2% &
= t4 d;E (yyHAHDHAHY,)
n
J=1
2t2 YDY*
= %E Tr (HAHDHAH )
n
(a) 2t2 YDY* (0)  2A2d, 0t YDY*\ © K
< {!HII IA[*D]| Tx ( )} < 5 —ETr < ) < 5.
n n n n
where inequality(a) follows from (9), (b) follows from (11) and from the bounded character||&,, ||
and ||D,,||, and(c) follows from (12). [

C. Approximation rules

The following theorem is crucial in order to prove Theorems 1 and 2. Roughly speaking it allows to

replace matriceR,, and R, by T,, and T, up to a well-quantified small error.
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Theorem 3:Let (A,,) and (B,,) be two sequences of respectively x N and n x n diagonal

deterministic matrices whose spectral norm are uniformly bounded then the following hold true:

1 1 1
-TrA,R, = —-TrA,T,+0 <2> , (21)
n n n

InB,R, = 1T4B,T,+0 (12) . (22)
n n n
Proof of Theorem 3 is postponed to Appendix C.

D. More variance estimates and more approximations rules

We collect here a few results which proofs rely on the Integration by parts formula (19), on Reincar
Nash inequality, and on Theorem 3. The proofs of these results, although systematic, are somewhat
lengthy and are therefore postponed to the Appendix. These results will be used extensively in Section
V.

Proposition 4: In the setting of Theorem 1, I€A) and (B) be two sequences of respectivélyx N
andn x n diagonal deterministic matrices whose spectral norm are uniformly bounded @Qonsider

the following functions:

B(Y) = ~Tr (AHYBY > W(Y) = 2Tr <AHDHYBY > .
n n n n
Then,
1) The following inequalities hold true:
var (®(Y)) = O(n™?), var (¥(Y)) = O(n™?) .
2) The following approximations hold true:
E[B(Y)] = ~Tr (DTB) 1 (ADT) + O (n?) | (23)
n n
_ ; i T 2m2\ tl 22 1
EW(Y)] = (= (nQTr (DTB) Tr (AD’T?) — v (D T B) Tr (ADT)) +O <ﬁ(>4)

The variance inequalities are proved in Appendix D; the approximation rules, in Appendix E.

IV. FIRST ORDER MOMENT APPROXIMATION: PROOF OFTHEOREM 1

This section is devoted to the proof of the following approximation:

E[L(p)] = Va(p) + O (n7") , (25)
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where

Va(p) = log det (L, + pon(p)Dy ) +log det (I + p3n(p)Dn ) = npdn(p)bu(p) . (26)

This result already appears in [7] and is proved under greater generality in [9]. The proof presented here

is new and relies on gaussian tools.

Outline of the proof

The proof is divided into three steps. We first make some preliminary remarks. Notice that the mutual

information can be expressed &g) = [ Tr (n~"H(¢)YY*) dt. In particular,
P *
E[I(p)] :/ Tr <E {H(t)YY ]) dt . (27)
0

n

In order to study the asymptotic behaviour Bf(p)], it is thus enough to studf§fr (H(t)¥XX-) for

n — 400 up to an integration. The Resolvent identity (10) yields

TrE <H(t)YY*> =TrE (I_H(t)> .

n t

We are therefore led to the study &ffTr (H(¢))]. We now describe the three steps of the proof.

A. In the first part of the proof, we expari@H(¢) with the help of the Integration by parts formula
(19). This derivations will bring to the fore the deterministic diagonal ma&j>and Poinca-Nash

inequality will then allow us to obtain the following approximation:
ETrAH=TrAR+ O (n7') ,

for every diagonal matrixA bounded in the spectral norm. Here are the main steps, gathered in

an informal way. Differentiating the terf <[Hyj]p YTU) we obtain:

5 ((Hy.], V) = 4B ] ~ i (11 (DH) [y, T,)

from which we will extractE[H,,| later on. At this point, Poinc&rNash inequality yields some

decorrelation up t@ (n~') and we obtain:
ElTDHH TNEITDHEH Y,;| = oF |[Hy,] Y,;
v (DH) (Hy;)pYy;| ~E | —Tr (DH) [[ Yilp m}—a [[ Yilp pj] :
This approximation allows us to isoIalb([Hyj]p YT,Q)

(1 +tdj0)E ([Hy;], V) = dydE[Hy] < E([Hy), V) = dpdsisE [Hy) -
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Now summing overj and using the Resolvent identi,, = 1 — - >7 | E[Hy;] Y,; in the
previous equation yields:

1—EH,,

; ~ ad,EH,,, thatis EHp,, ~r, .

All the technical details are provided in Section IV-A.

B. The second step follows from the approximation rule (21) stated in Section IlI-C, which immediatly
yields
ETrAH=TrAT+ 0O (') .

This in turn will imply that

ET (H(t)YY*> T <I_EH> —Tr (I_T> +en(t) D ns(05(t) + en(h).

n t t
where (a) follows from the fact thal — T = t6D(I + t6D) .

C. In the third step, we integrate the previous equality:

/OPETr <H(t)YY*) dt = n/0p5(t)5(t)dt+/0pen(t)dt,

n

We identify n [ ()3 (t)dt with V;,(p) as given by (26), and check th#f e,,(t)dt = O(n™!).

A. Development o (Tr AH(¢)) and Approximation bylr AR(t)

In order to studyE (Tr AH(t)), we first consider the diagonal entriés,,(¢) of H(t). For each index
7, we have
N
E ([Hy,), Y5s) = Z;E (HpiYiiYo;) -
We now apply the Integration by parts formula (19) to the summand of the right hand side for function
I" defined ad'(Y) = H,;Y,,;. This yields:

_ , t —
E (HpYiYp;) = didE [Ha] 6(i — p) — did; ([HYj]p Hqu) : (28)

Therefore,

B (1Hy.], V) = B lH,] - tdE (1 (DR) [y, T,) 9)
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from which we extractE[H,,] later on. Recall at this point thatar (n"'Tr DH(t)) = O (n"?) by
Proposition 3. Recall also the following notations:= n~'Tr (DH), a = E[f], andé =f03-a.
Plugging the relatiord = « +B into (29), we get

B [[By,], ¥, = dpdBlfty] - ok [y, V0] - 08 Gy T| - @0

Solving this equation w.r.t& [[Hy;],Y, ;] provides:

- - - o - . 1 ‘
EUHwbﬁu}=%%mEﬁ%¢%%wEDﬂHwbE4 where 7j(t) = ———— forl<j<n.
1+ ta(t)d;
(31)
Summing (31) oveyj yields:
E [HYY } — ad,E[H,,] — (ES [HYDRY] , (32)
n pp n pp

~ ~\ —1 ~ o~
whereR is the diagonal matrixliag (7;(t)) = (I + atD) anda = 1Tr DR. In order to obtain an
expression foill[H,,|, we plug the identity (32) into the Resolvent identity:

YY*
E[Hpp) =1—tE [H } ]
n pp
and obtain:
o | _YDRY*
E [Hpp) = rp + t*rpE [ﬂ H] (33)
n
pp

with rp,(t) = (1 + to?dp)_1 . Let A be aN x N diagonal matrix with bounded spectral norm. Multiplying

(33) by A’s components and summing ovelyields:

ETr (AH) = Tr (AR) + nt’E [ﬁ (Y )} ,

[elNe]

whered(Y) = 1 Tr (ARHYBEY") AsJis zero-mean[E[é ®] = E[3 ®]. In particular, Cauchy-Schwarz
inequality yields:

B3 ®| < \/var(3)y/var(®)

Recall thatvar(3) = O (n=2) by Prop. 3. Sincd/R/| and |[DR| are both bounded by Assumption
(A1) and by the definitions oR and R, one can directly apply the result of Proposition 4dtan order
to getvar(®) = O (n™?2).

We have therefore proved the following:
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Proposition 5: In the setting of Theorem 1, leA,, be a uniformly bounded diagon& x N matrix.
Then for everyt ¢ R,
E(Tr A, H,(t)) = Tr AR, () + O (n71) . (34)

B. The Deterministic Approximatiom’, ().

Proposition 5 provides a deterministic equivalenEt0Ir A, H,,) since the matriR,, is deterministic;
however its elements still depend én= n~'Tr (D, R.,), which itself depends on = E (n~'TrD,H,,),
an unknown parameter. The next step is therefore to apply Theorem 3 to approximate theRydiyix
T,,, which only depends oi,, and D,, and on§ and?, the solutions of (2). Theorem 3 together with
Equation (34) imply that:
E(TrA,H,) =Tr (A, T,)+ 0 (n') . (35)

SinceT,, only depends ord and 4§, (35) provides a deterministic equivalent BfTr A,H,) in terms
of § and . Note that takingA = D yields in particulara = § + O(n~2) while a direct application of
Theorem 3 forA,, = D,, yields & = 6 + O(n"2).

We are now in a position to describe the behavioutEdfr (Hn(t)%) by using the Resolvent
identity. From (10) and (35), taking.,, = I,,, we immediately obtain:

Y, Y
n

E Tr <Hn(t) > = %Tr I, = Tp(t) +0O (n7") .

AsT, — T,(t) = (T,(t)"' —1,)T,(t) = t5(t)D, T,(t), we eventually get that

Y’;Y:H — n6()5(8) + £n(t), (36)

B |1 (0

where the erroe, () is aO(n~1) term.

C. Recovering the Deterministic Approximatidi{p) of E[(p)].

As mentionned previously,,(t) is aO(n~!) term, i.e.|e,(t)] < K;n~!. One can easily keep track
of K in the derivations that lead to (36) and prove ti#gtis bounded on the compact interval p).
In particular, |e,,(t)] < Kn~! on the compact intervdD, p] for some K > 0. The proof of this fact is
omitted.

As ne,(t) is uniformly bounded ono, p], we have| [ e, (t)dt| = O(n™"). Therefore,

E[I(p)] = /Op nd(t)o(t) + O (n_l) .
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Consider now
WMzWQw@ﬁ@)
where function¥ (p, 8, 6) is defined by
W (p, 0, 5) = log det (In + p&f)n) + log det (IN + pSDn) — npds .

One can easily check that:

%Vf; - (Tr (ﬁn(ln + paf)n)—l) . ns) and aav;/ —p (Tr (Dn(IN + pSDn)—l) . n(5> .

As the pair(5(p),d(p)) satisfies (2), the above partial derivatives evaluated at fpiri(p),0(p)) are

zero. Therefore,
av <8W

dp Op >(075(p)75(p))
which in turn implies (7). Theorem 1 is proved.

=nd(p)d(p) (37)

Remark 1 (On the deterministic approximati@i): The deterministic approximatiofl,, can be used
to approximate functionals of the eigenvalueofY other that the mutual informatidog det(pn =Y, Y +
Iy) (see for instance [9]). This relies on a specific representatio,gf The spectral theorem for

Hermitian matrices yields the integral representation:

1 Ny (d))
—T Hn = )
— (2) /0 14Xz

ze€ C\R_,

where N,, represents the empirical distribution of the eigenvaluesYgfY . It can be shown that

n~1TrT,, admits a similar representation:

1 ° mp(dA)
—TrT,(z) = , C\R_,
n (2) /0 1+ Az z€C

where 7, is a probability measure. Finally, one can prove thgt f(A)N,(dX) — [;° f(A\)mn(dX)

converges to zero almost surely for every continuous bounded function (see [9] for details).

V. SECOND ORDERANALYSIS: PROOF OFTHEOREM 2

This section is devoted to the proof of the Central Limit Theorem:

07 (0) n(p) — Vu(p)) —=— N(0,1) . (38)

n,N—oo

Denote by, (u, p) = E [el“(/(P)=V2(P))] the characteristic function of,(p) — V;,(p). We first reduce

the problem in the following way:
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Proposition 6: Assume that for every, € R,

hn(u) = Y (u, p) — e 7 0/2 0 (39)

n,N—o00
then (38) holds true.
Proof: Let Z be areal\V'(0, 1) random variable. If (39) holds true, then for every bounded continuous

function f,

]Ef(In(p) - Vn(p)) - Ef<an(p)Z) — 0. (40)

n—oo
Assume not, then is there exists some bounded continuous fungti@amd an extracted subsequence

(I(n) — V(n)a”(n)) such that
Ef*(In) = Vin)) —Ef (0m)2) ———a#0. (41)
Due to Proposition 2, the family of probability distributions qf,) Z is tight and one can extract a new

converging subsequence, say,)Z such thato,,) 7 £, 5*Z. Butin this case/ () — Vim) £ o7 by
(39), which in turn implies that

Ef(Iomy = Vi) —Ef(omZ) =  (Bf(Iony — Vim)) —Ef(0°2)) + (Ef(0*Z) — Ef (0 Z))

goes to zero; and this contradicts (41). Convergence (40) is proved.

Recall now the following distance between probability distributions:

B(P,B) :sup{/f av— [ 1 4B, |fl < 1},

where|| f|lpr = || fl|zip + || flloos || - ||ip DeING the Lipschitz norm anfll- ||, the supremum norm. By

using the tightness dfo,,(p)Z) and mimicking [29, Theorem 11.3.3], one can prove that

B(L(In—Vn), L(onZ)) —— 0, (42)

n—oo

where £(X) stands for the probability distribution of . Let us now prove that

3 (E <I”a_nv") : 5(2)> ——0.

This will prove (38) by [29, Theorem 11.3.3]. Lgtbe such that|f||zr < 1.

Ef (In , Vn) ~Ef(2) = 22 Bgu(L — Vi) ~ Ega(002))

On mye

whereM;, m; are defined in Proposition 2 apd(z) = 5% f (%) One can readily check thi, || sz <

- 2M,
1, thus:

On
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It remains to take the supremum over tfis such that|| f||z;, < 1 to get:

I, —V, 2M, a
5 (e(220) o) < 2 e, - vi), £0,2) L0,
On my n— oo
where (a) follows from (42). Proposition 6 is proved. [ |

Outline of the proof of(39).
The proof of the convergence éf,(u) towards zero is divided into two steps.
A. We first differentiatey, (u,t) with respect tot in order to obtain a differential equation of the
form:
Oy (u,t) u?

= _?nn(t)@bn(u,t) +en(u,t) . (43)

In order to obtain the differential equation (43), we first devetdp/0t with the help of the
Integration by parts formula (19). We then use Poiadsdash inequality to prove that relevant
variances are of orde?(n~2). This will enable us to decorrelate various expectations, i.e. to express
them as products of expectations up to negligible terms. We shall then use the approximation rules

stated in Proposition 4 in Section IlI-D to deal with the obtained expectations.

B. The second step is devoted to identify the variance, that is to prove the identity

p
/0 (1) dt = 02(p),

wherea? is given by (5), i.e02(p) = —log(1 — p>7,(p)Fn(p))-

C. The third step is devoted to the integration of (43). Instead of directly integrating (43), we introduce
Kn(u, p) = tn(u, p)es () which satisfies the following differential equation:

Hnlsl) _ (e 20 (49

Taking into account the obvious facts that(u, 0) = 1, 02(0) = 0 and therefore thak’,, (u,0) = 1,
we shall obtain that
P w2 o
Ky(u,p) =1 +/ en(u, t)eT oM dt |
0

and prove thatf;” enlu, ez 750 dt = O(n~). This will yield in turn that:

—

Un(u,p) = (L+0m™))e 50 @ =500 4 o1y

where (a) follows from Proposition 2.

The theorem will then be proved.
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A. The differential equatiod;,, = —%nnwn +éen

Recall thati, (u, p) = ¢n(u, p)e V=(?) wherep(u,t) = E (e ful(t )) As V!(t) = né(t)s(t) by (37),

we obtain:
8¢(u, t) —iuV(t) ag)(”? t)

5 = TR iund (£)0(t)i(u, t) . (45)
Sincel’(t) = n 'Tr H(t)YY* by (27), we have:
&Og“t’”’t) —iuE {T&" (H(t)YnY*> iul( ] _ Z ZE i Hy Ve | (46)

pz 1j5=1
Applying the Integration by parts formula (19) ]b[YinpiEei“I] (which can be writterE (Y;;1'(Y))
for I'(Y) = H,;Y,;e!) and using the differentiation formulas (15) and (16) yields:
. o .
E |V HpiYpe | = did;E [ HpiYyet! } :
) v, (™)
t Y iul 7 . iul
— — —ddE |[Hy,], HiaVpie™! | + did;d(i — p)E | Hpie™ |
iut - — i

+ T dhdE | Hy Yy [Hy] e (47)

We now sum over index and obtain:
E|[Hy;], Vye!| = - tdE |3 [Hy;] Vel | + dyd;E [Hype™|
t -
+ 1id E[[HDHy,] V;e!] |
where 8 = n~1Tr DEH. Writing 3 = 3 + o yields:
(1 + tadj)E [[Hyj]pﬁjeiuq = — tJjE |:ﬁ [Hyj]pi/pjeiulj| + dpdeE [preiul]
iut ~ > iu
+ —-dE |[HDHy,] V;e!| . (48)
We now take into account tha(t) = (1 + tad;)~" and sum ovey:
E[[HYY"],, "] = —E [5 [HYDRY"| ‘“f] + nad,E | Hype'! |
pp
iut

+—E HHDHYf)f{Y*Lp ei"ﬂ . (49)

By the Resolvent identity (10 [H,,e'*!] =E [e!*/] — LE {[HYY*]pp ei“I}. Replace now in (49),
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recall thatr,(t) = (1 + ta(t)d,) " and sum ovep to obtain:

E[Tr (HYY> eiuf} — Tr (DR)aE [ei“}

n

+ iutE lﬁ <RHDHYDRY> ei“f]
n n
n
= X1+Xx2+Xx3- (50)
Thanks to Theorem 3,
xi = Tr (DR)aE [eiuf] — Tv (DT)GE [ei“} +OMmY) = nidE [ei“[} +OmY). (51)

In order to deal withys2, we apply the results of Proposition 4 relatedit¢Y) in the particular case
where A = R and B = DR. In this case,x; writes x» = iutE (¥(Y)e!), and Cauchy-Schwarz

inequality yields:

’E (wetur) & (&) IE(\IJ)‘ — ’]E[ei“I Ul <, |E

Therefore,
E (q/eiuf) —E (éuf) E(T) +O(n ) .
We now use the approximation f@&¥(Y) given in Proposition 4. By Theorem 3, we can repldte

(resp.f{ by T (resp.’f) in the obtained expression. We therefore obtain:
E (\P(Y)ei“) — EU(Y)E [ei“} +0(n ™)

_ 1 -1 23 1 (533 1 2 ful -
= v (fynTr (D?T?) — 7T (D*T*) ~Tr (DT?) | E [¢] + O (n"152)

The termys can be handled similarly: We apply the results of Proposition 4 relateb( %) in the
particular case wherd = R and B = DR. In this case,; writes yo = —tnE <ﬁ<1>(Y)ei“I> , and

Cauchy-Schwarz inequality yields:

E (écbeiuf> _E (%é“f) E(@)' - ‘E[é el %]‘ < \/IE [51 \/IE [&2] —Omn?).

We therefore obtain
E YDRY* .
E |3Tr (RHR> e‘“f] = E{

n
(@ E[

o

eiuz] e (ﬁﬁ*f{) Tr (DTR) + O (n™")

1
n

o

! ] 3 Tr (DT?) +0 (n7') , (53)
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where (a) follows from Theorem 3. It remains to deal with the te ﬁei“f]. To this end, we shall

rely on (49) and develop the terii [prei“]. The Resolvent identity yields:
* iul | _ n iul n iul
E [[HYY ],y € } = -E [e } —<E [pre ] .

Plugging this equality into (49) and using = (1 + to?dp)_l, we obtain after some computations

s[pew] = em [5 Ly (RDHYDRY>]
n n
s 42 NV
_ e gy (RDHDHYDRY> du| 4 1o (o (R—E[H}))E[ei“}
n n n n
@ o - [% ur| 1 iut® 1 3m3 21 ~3m3
Y 12,3E 2 M (50 (D3TP) — 42 Ty (DT
0] [ﬂe } w8 \Un v (DYT?) — ty? r( ) ¢ +O(nBH)

where (a) follows from Theorem 3, Proposition 4 and Proposition 5. We therefore obtain:
o 1 jut? 1 1 ~ 1
il | _ _ — 5T 3T3 . 27T 3T3 - )
E [ﬁe } n (1 — t2~7)? (fyn r (DT) — ty — (D ) p+0 n?
Plugging (54) into (53), and the result together with (51) and (52) into (50), and getting back to (46)

and (45), we obtain:

87/’71 u,t _
8(75 ) = — N, ()Yn(u,t) + O(n™1)
where
( ) B 1 tQV%TI‘ (D3T3) %TI‘ (DTQ) s lT (D2T3) . t3,.~y2%Tr (D3T3) %TI‘ (DTQ)
O eI 1— 275 Tt 1— 275
(55)
Equation (43) is established, and the first step of the proof is completed.
B. Identification of the variance
In order to finish the proof, it remains to prove that:
1do?(t ~
mel) = 29720 where o2(1) = log (1~ t()3(1) (56)
To this end, we first begin by computing the derivativesypft) and~,,(¢). We shall prove that
e _Q%Tr (D*T%) 47 (DT?) - I (D*T?) i (DT?) -
dt 1 —t2v7 dt 1— 1277 '

ol

We only derive 7, the computations being similar in the other case. We first expand the expression of

4, and obtain:
& _ 15 pd

2
~ 1~ o d 1 d 1 o
== T2 = N P | ————— | =—2—(td(t)) =Tr (D3T?) . 58
dt njzld]dt JJ njzldjdt (1+t6(t)dj> dt(é( ))n r( ) (58)
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Let us now computé’(¢):

N /
/ _ ) 1 — A _ N}
0= >4 (Hts(t)d) 23(1) — 413'(1) | (59)

S|

A similar computation yieldsS’(t) = —%4(t) — 4td'(t). Combining both equations yields:
5 130 — 0
1 -2y
We now plug this into (58) and obtain:

dj _ %Tr (f)3’f3) ((5 — t’yg)

dat 1— 297 (60)
Recall now that the mere definition &, T, § and 4 yields
toDT =1—-T
N (61)
téoDT =1-T
Using (61), we obtain:
nITr (DT2) = n'Tr (DT (I - tSDT)) — 05— toy (62)
n1Tr (f)’ia) = n 'r (f)’i‘ (I — téf)’i‘)) =0 —t67 . (63)

It remains to plug (62) in (60) to conclude the proof of (57).
We are now in position to prove (56). The main idea in the following computations is to express (55)

as a symmetric quantity with respect oand T on the one hand andl and T on the other hand. To

this end, we splity, (t) in (55) asnn(t) = === (n™ +n® + n®)). We first work onp®:

t365°LTr (DT%)  #155°y 2 Tr (D3T?)
1 — 2975 1 — 295
2317y (D?T3) LTy (DT? 1
= - ( ) +t*50—Tr (D3T?) .
1 — 295 n
where (a) follows from (62), and(b) from (63). We now look at;(?):

—

a

=

®3)

Ui

—
=

=1 1 1 ~
n@ 4 £255=Tr (DPT3) = 15 <Tr <D2T3 i (D2T2 (téDT)))) — ty7
n n n
where the last equality follows (61) again. We therefore have
) 91T (DT9) LTy (DT?) #2517y (DT9) L1r (DT?)

1) =
G R - 77 - 77

—

@ L2993 + 1295 + 2175
21—y

_ _Ld 25
= 5 le(1=17)

where (a) follows from (57). This concludes the identification of the variance.
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C. Integration of the differential equatiof#3)

Let us introduceK,,(u, p) = wn(u,p)e%"i(p). Due to (43),K,(u, p) readily satisfies the following

differential equation:
0K, (u,t)
ot

As in Section IV-C, one can easily prove tHaf,(t)| < £ for everyt € [0, p]. As K,(u,0) = 1, we get

= en(u, t)eggi(t) . (64)

w2

P 2
Ky (u,p)=1 +/ en(u,t)e T dt .
0

Due to Proposition 5¢2(t) is bounded from above uniformly in andt € [0, p]. This fact, together

with |e, ()] < £ implies that:

1
Kofup)=1+0(1)
n
This in turn yields
Uo(u,p) = (140 (n7))e 5o0)

_ 52 +0(n™Y,
where the last equality follows from the fact that(p) is uniformly bounded by: by Proposition 2.

APPENDIX
A. Proof of Proposition 1

Let us first establish the existence and uniqueness of the solution of (2). To this end, we plug the
expression of in (2). The system of two equations reduces to the single equatienf(t,d) where
f(t,6) is defined by

3 —1
F(t,5) = %Tr (Dn (IN FoT (ﬁn (1, + 15D, 1) Dn> ) (65)

which is itself equivalent tg(d,¢) = 1 where

B -1
g(t,8) = f(i;’é) TN (Dn <5IN + %Tr (5]5n (In + t5f)n) 1) Dn> ) .

T
The functiond — g¢(¢,6) is continuous, decreasing and satisfigs,0) = +oo and g(¢,4+00) = 0.

Therefore, the equation(t,§) = 1 has a unique solutiofi(t) > 0.

The integral representation (3) &fands is related to the Stieltjes representation of a class of analytic
functions. We refer to [9, Section 3.2] where a more general result is proven and skip the details. Be aware
however thaw in this paper and in [9] slightly differ (but are related byeee(2) = 2 16pap(—271)),
so do thed's.
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In order to prove Proposition 2, it is sufficient to first prove that t>v7 is bounded away from zero

B. Proof of Proposition 2
and then to prove that the same quantity is strictly lower than 1, uniformby. M/e shall proceed into
four steps.
1) A priori estimates fow, 4, v and4: The mere definition of andJ yields:
N n 5
1 i Ndmax ~ 1 d; ~
==Y d _ < 2 and 0=—) —F < dpax - (66)
N 1+1td;d n n i 1+ tdjo
Using these upper estimates, one gets the following lower estimates:
iy D, ~ Ly f)n
n = and § > ~ = (67)
1+ ﬁtdmaxdmax

6>
1 + tdmaxdmax
One can notice that due to Assumpti@hkR), these lower bounds are uniformly boundechiaway from
(68)

N~
(69)

< —-

zero. Finally a straightforward application of Jensen’s inequality yields:
n 2 . . "’2 ~
i.e Né <~ , Similarly 06 <#.

1< ’
2) An estimate ovefi—f: The following equalities are straightforward (see for instance (59)):
FO(t) — 43" (t) -

5'(t) = —vo(t) —~td'(t) and &'(t)
< Nn~'d2,. dmax Which is eventually bounded. Recall thatadmits

In particular, |§(0)| = 5(0)8(0)
the following representation:
o(t) =
®) o 1+tX
where i is a nonnegative mesure satisfyipgR*) = %Tr D,. In particular, one obtains:
- 0 Nji(dN) < g
= - = < N max - 7
0 < &) /0 TR < 00 < Nn (70)
3) The quantityl — t2~7 is bounded away from zero, uniformly inand fort € [0, p]: Eliminating

D, T?
n

0’ between the two equations in (69) yields:

%(1 —247) = Atdy —6) = %Tr D, T, (tSDnTn - 1N>

where the last equality follows from the identil§,, = (Iy + toD,,)~" which yields(t6D,, T, — Iy) =

—T,,. Otherwise stated:
1~ 295 = T Dn Ty

n(=0'(t))
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This immediatly implies thal — t247 is positive. In order to check that it is bounded away from zero
uniformly in n, notice first that,~'Tr D,, T2 > d_. ~. Collecting now the previous estimates (68) and

(70), we obtain:
. on? 522
e Na B

max-"max

Using (67) and AssumptiofA1), we obtain thatl — t>v7 is bounded away from zero, uniformly im

and fort € [0, pl.

4) The quantityl — 247 is strictly bounded above from 1, uniformly im The inequalities (68)
together with (67) yield:

sup (1 — tQVﬁ) < sup (1 — t2%5252> < 1.
n n

This completes the proof of Proposition 2.

C. Proof of Theorem 3

We first give a sketch of the proof to emphasize the main ideas over the technical aspects of the proof.
1) We first prove that the asymptotic behaviourrof' Tr (A, (R,, — T,,)) is directly related to the
behaviour ofa(t) — 4(¢). Similarly, n='Tr A,, (ﬁn - 'Tn) is related tod(t) — &(t).

2) We extend the definition af from ¢t € R* to z € C\ R_ and establish an integral representation:

aft) = / v(d\)

R+ 14+ Mt

As a consequence of the integral representations’far and o, we prove thats, 6 and « are
bounded analytic functions on every compact subset 9fR_.
3) As a consequence of this detour in the complex plane, we prove the following weaker result. For
every uniformly bounded diagonal matrk,,, the following holds true:
n!Tr (A Ry) =n"1Tr (A, T,) + o(1)
nTr (A,R,) =n"'Tr (A, T,)+ o(1)
4) We then refine the previous result in order the get the sharper rate of conve@ence instead
of o(1).

The theorem will then be proved.
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1) The asymptotic behaviour of !Tr (A, (R,, — T,,)) and its relation witha(t)—3(¢): The standard
matrix identity
R, - T,=R,(T,! -R, T,

immediatly yields

DT (Ap(R, —Ty)) = t(3(t) — o"z(t))%Tr (A,R,D,T,) and

1 ~ o~ = < - 1 o~~~

n~ Ty (Dn(Tn —Rn)) = 3(t) = alt) = talt) = 3(1)) - Tx (DanDnTn> .

Therefore,

2 UTe (An(Ry — T)) = £(alt) — 5(75))%Tr (B,R.D,T,) %Tr (AR, D,T,) . (71)

2) An integral representation fax, and bounds over, § andé: Recall thai(t) = E[n~'Tr (D,,(Iy+
tn=YY,, Y?)~1)]. This function readily extends from e R* to z € C \ R~. Moreover, the following

representation holds true:

B oo v(d\)

where v is a uniquely defined positive measure Bri such thatv(R*) = 1TrD,. To prove this,

we introduce the eigenvalue/eigenvector decomposition of matriXy, Y = ZiN:1 Aiu;ul where

(N, 1 <i< N)and(u;, 1 <i < N) represent its eigenvalues and eigenvectors respectively. The
random variable3(z) = LTr D, (I + 2 Y2 Y2)~! can be written as

sy = L N ar nui_/+°° w(d\)
Z_n:1 Ni—z  Jo 1+’

wherew is the nonnegative random measure defined by

1N
= =S wD,us(A - A) .
w n;:luz u; )

Consider now the measuredefined byr = E[w], that isv(B) = E|w(B)] for every Borel setB C R™.

It is clear thata(z) = E[3(z)] is given by (72), and that(R") = E[w(R™)] is given by

N
1 1
+) — * | = ak
v(RT)=E [n ;:1 u; DnuZ] =E ET}? D, ( EZ ului)] .

As > uwul = Iy, v(RY) = %Tr D,, as expected and representation (72) implies th{ad is analytic
overC\R™.
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Let dis{w, R*") stand for the distance from elemente C to R*. Then the following holds true for

everyz € C\R™:

1 1 1 N 1 1
<-Tr(Dp)—————< —dpax———— . 73
@ O i) = 0 T disi L) )
Similarly, (3) yields that
Ndmax 1
6(2)] < (74)

n|z| dist(—%,]RJf) '
A similar result holds ford(z). These upper bounds imply in particular thatz), 6(z) and é(z) are

uniformly bounded on each compact subseCof R_.

3) A weaker result as a consequence of Montel's theoré/a:first establish that for every diagonal

matrix A,, uniformly bounded,

N =n"!Tr 0
{ nITr (AnRy) = n1Tr (AnT,) + o(1) 5)

n'Tr (A,R,) =n"'Tr(A,T,)+o(1)
We take (71) as a starting point. MatricBs,, R,,, T,,, and T,, have their spectral norms bounded by
one fort € R* and matricesA,,, D,,, and D,, are also uniformly bounded by assumption. Therefore,
the termsn—'Tr (an{nﬁn'f‘n> andn~'Tr (AR, D, T,) are also bounded. In order to prove (75),
it is sufficient to prove thaty(t) — d(t) = o(1). To this end, we make use of Proposition 5 and write
a(t) —i(t) as
at) — 5(t) = %Tr (D(Roy — T0)) + en(t) |

wheree, (t) = O(n~2) . Using relation (71) forA,, = D,,, we immediately get that:
a(t) = 5(t) = (a(t) —6(1)* Tt (DuR,D,T,) “Tr (DRD,T,) +e,(t) . (76)
n n
As sup, ([ Roll, IRall, I Tall, [ Tall) <1, we have:

72
dmax

< 2cd?

1 e o~ =~ \ 1 N . -
1o (DanDnTn) “Tr (DR, D, Ty) < — 2 2
n n n

A

max

as soon aég < 20%, where/" is defined in (1). Therefore, if < ¢y := (2dmaxdmaxV¢T) ", then
2l (ﬁnf{nﬁﬁn> 1 (D,R,D,T,) <
n n 2
for n large enough. Eq. (76) thus implies that

o (t) — 6,(1)] < 2len(t)], de. alt)—d8(t) =Om2) for t<tq. (77)
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This in particular implies thatv,(t) — 6,(t) = o(1) for ¢t < to; however, it remains to establish this
convergence for > t,. To this end, observe that,(z) — J,(z) is analytic inC \ R_ and bounded on

each compact subset @f\ R_. Montel's theorem asserts that the sequence of functigsis) — d,,(z)

is compact and therefore that there exists a converging subsequence which converges towards an analytic
function. Since this limiting function is zero of0, to[ by (77), it must be zero everywhere due to the
analycity. Therefore from every subsequence, one can extract a subsequence that converges toward zero.
Necessarilya,(z) — 0,(z) converges to zero for every € C \ R~ and in particular fort > 0. This
establishes (75).

Even if the convergence rate of,(t) — d,(t) is O(n~?) for t < to, Montel's theorem does not imply

that the convergence rate of,(z) — 4,(z) remainsO(n—?2) elsewhere. Therefore, there remains some

work to be done in order to prove that,(t) — §,(t) = O(n~2) for eacht > 0.

4) End of the proof:We take (76) as a starting point. Equations (75) imply that for gaeh),

n1Tr (DR, (#)D,Ty(t)) —y(t) =o(1) (78)
n~ 1Ty (f)nf{n(t)f)n’i‘n(t)) A1) =o(1)
wherev,, = n'Tr D2T2 and¥, = n~'Tr D2T2. Thanks to Proposition 6, (78) implies that

n

inf (1 - tz%Tr (DR (D, T (1) %Tr (ﬁnf{n(t)ﬁn’f‘n(t))) >0,

Equation (76) thus clearly implies thatt) — 6(¢) is of the same order of magnitude ag(t), i.e. that
a(t) — 4(t) = O(n=2). Theorem 3 is proved.

D. Proof of Proposition 4-1) - Variance controls

Consider firs®(Y) = 1 Tr (AHYEY"). We use Poinc&rNash inequality (20) to control the variance

of ®. It writes

(79)

+ZdeE

=1 j=1

o] o fuan

=1 j=1

ol

We haved(Y) = (1/n?) Z;;’T:l > =1 apbgHy Yrg Yy From the differentiation formula (14) we have

0
oYy

- t N —-— —-— ) .
(Her,.quq) = _ngi [yj H|,.Y,qYpq + HprYped(r —1)é(qg — j) -

Therefore, after a straightforward computation we obtadry0Y;; = qﬁz(]l.) + qbz(.?) with

; 1
6 = —— [yJHYBY'AH], and ¢ = —b; [y;AH], .
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The first term of the right hand side of inequality (79) can be treated as follows:
N ok @/
ZdeE 23" 3 did; (E ‘%‘ +E gbij‘
i=1 j=1

=1 j=1
2t2 * * NNk
= SSE [Tr (HYBY AHDHAYBY*HYDY )}

il

+%E {T&« (AHDHAYBQﬁY*)} . (80)

Let A = sup ||A||. Using inequalities (8), (9), (11) and Cauchy-Schwarz inequality, we have

2i2E [Tr (H YBY* AHDHA YBY* H Y]SY*)}

212 2
< t [\/Tr HYBY AHDHAYBY*H \/ YDY* >]

2t2 *
< 2B |mp Al 1 ((vBY)Y), [T ((YDY*)’
2max A%t? | 1 YBY* YDY*
n n n
K
n

where the last inequality is due to (12). Turning to the second term of the right hand side of (80), we
have

%E [Tr (AHDHAYBQﬁY*)] < 2’4:2““1@ [iTr <71LY3215Y*>} < % . (82)
The second term of the right hand side of Inequality (79) is treated similarly. This provestiié@t =

O(n=2).

Consider nowd(Y) = 1Tr (AHDHYEY"). The proof being quite similar to the previous one, we
just give its main steps. By (20) we halgél (Y)?] < SN | Py did; (E[|0% /dY; ;%] + E[|o¥/9Y; ;%))
A computation similar to above yield$V /0Y;; = wi(;) + %(32) + wg’) where

(1) t

v = -5 [yjHDHYBY AH],,

y@ = —i[y]HYBY*AHDH]
1

W9 = Lo, y;AHDH),
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We have

N n
> didE

i=1 j=1

2

IN

0w
Y;,

1%9)‘2] +IE[

wgﬂ +E[

N n
3) ) did <IE [
i=1 j=1

2
e ])
3t2

= SE [Tr (HDH YBY* AHDHA YBY* HDH Y]SY*)}

t2 , -
) [Tr (H YBY* A (HD)HA YBY* H YDY*)}
n
3 3 21V
+5E [Tr (A (HD)? HA YB?DY )} .
The first two terms of the right hand side can be bounded by a series of inequalities similar to inequalities
(81). The third term can be bounded as in (82). This ends the proofs of the variance controls in Proposition
4.

E. Proof of Proposition 42) - Approximation rules

Consider firstd(Y) = 2Tr (AHYBY"). we write ®(Y) =n=2Y0"_, 3" apb;E [V;H,iY,;] and
apply the Integration by parts formula (19) to the summand. Using identity (15), we have
R I - £ o
E Yy HpiYy;] = did;E [81/ (Hm'ij)] =~ did;E [[Hyj]pHiiﬁj} + did;6(i — p)E [Hp] .
v
By taking the sum over the index we obtainE [[Hyj]p%} = —td;E [ﬁ [Hyj]pﬁ} + dpd;E [Hpyp).

Writing now 3 = % + o and then grouping together the terms V\EEF{ [Hyj]p@}, we obtain:
E “Hyj]p%} = _tdjij [5 [Hyj}pym} + dpdjij [pr] :

We now sum overj andp, and obtain:

1 YBY* 1 ja= N\ 1
E [Tr <AH )] = Tr (DRB) “Tr (AD E[H]) + ¢,
n n n n

with

o

e=—tE

n n

° 1 YDRBY*
B =Tr <AH>
n

_E|pim (AHYDRBY)
n
Applying Cauchy-Schwarz inequality, Proposition 3 and the variance controls in Proposition 4, we get
le| = O(n™2).
By Theorem 3,1 Tr (ﬁﬁB) =n 1Ty (ﬁ’TB) + O(n~2). By Theorem 3 and Proposition 5, we
obtainn~!'Tr (AD E[H]) = n~'Tr (ADT) + O(n~2). This ends the proof of (23).
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Consider now¥(Y) = iTr (AHDHYBY") | In order to computeE¥(Y), we shall need the
following intermediate result:

Lemma 1:In the setting of Theorem 1, I&(Y) = 1Tr (DHDH). Then

1) The following estimate holds true:

2) moreover,

o 1
EYXYY)|=—>5—=+0(—]) .
T =295 <n2>
Proof: In order to prove Lemma 1-(1), we use the Resolvent identity (10) and write:

DHDH = DHD — tn 'DHDHYY" .

Sincevar(X +Y) < 2var(X) + 2var(Y), we only need to deal with each term of the right handside.
By Proposition 3yar(n~'Tr DHD) = O(n~2) and by Proposition 4-(1xar(tn 2Tr DHDHYY"*) =
O(n~2) and the proof of Lemma 1-(1) is completed.

Let us now prove Lemma 1-(2). The Resolvent identity (10) yields:

[HDHYY*] ] . (83)
pp

E {[HDH]W} = d,E [H,,) — tE

n

n

We then writeE [[HDHYY*]W} = n7t Y S0 diHyw HyiYi;Y,,;, and apply the differentiation
formula (14) to the summand. After derivations similar to (47—-48), we obtain:

1 £ 1
“E|[HDHy,] ;| = ——d;iE {[Hyj}pypjnTr (DHDH)]

t-_ o -

+%dpdjij [HDH],,| . (84)

Taking the sum ove)jj and combining with (83) yields:

—_—
E[[HDH]W} =  n,E [HYDR] L1 (DHDH)
pp

+t*r,E | 3 [HDH

+rpdpE [Hpp| - (85)
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Taking now the sum ovep, we obtain:

N
1 1
E {nTr (DHDH)] == Z:ldpE [[HDH]W} =x1+ X2+ X3, (86)
o
where
1 YDRY*\ 1
xi = t?E|=Tr <DRHR> —Tr (DHDH)] ,
mn mn n
o1 YDRY*
x2 = t*E|3-Tr (DRHDHR)] ,
n n
1
x3s = —Tr (D*RE[H]) .
mn

Let us first deal with the termg, and y3. Cauchy-Schwarz inequality together with Proposition 3 and
Proposition 4-(1) yieldy> = O(n~2). Proposition 5 together with Theorem 3 yield = v + O(n~2).
We now look aty;. Due to Proposition 4-(1) and to Lemma 1-(1), we have:
1 YDRY* 1 1
x1 = t*E [Tr (DRHR> E [Tr (DHDH)] +0 <2> ,
n n

n n

—

@ 2.5 [1Tr (DHDH)} +0 <12) :

n n
where (a) follows from (23) in Proposition 4. It remains to plug the values obtainedyfory, and xs
into (86) to obtain:

(1—t*4%)E [1Tr (DHDH)] =y+0(n?%).
n
Recalling Proposition 2, we can divide ¥ — ¢>v5) and obtain the desired resuilt. |
We can now go back to the computation B¥(Y). Let us give the main steps of the derivation.
ExpandingEV (Y) yields:

N n
1 YBY* 1 —
E |:nTI' <AHDH n ):| = 7’L2p§:1 ]El apb;E [[HDHYJ]p YZ’U} :

We replace the summand 'E [[HDHyj]p@} by the expression given by (84). We then replace the
termE [[HDH]pp] in (84) by the expression given by (85). We sum oweandj and notice afterwards

that the terms Wheré is involved are of orde®(n~2). We therefore end up with:

. pTr <AHDHYBY )] _ YDRBY)
n n

n

1 1
—Tr (DHDH) —Tr (AH
n n

12 ~ ~
+oTy (DRB) E

n

1 1 YDRY*
—Tr (DHDH) —Tr (ARDHR)]
n n

n
1, ==\ 1 ) 1
+—Tr (DRB) ~Tr (AD?REH) + O ( — ) .
n n
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We first decorrelate by using the variance estimates in Proposition 4-(1) and Lemma 1-(1) and obtain:

1 YBY* 1 1 YDRBY*
E[Tr <AHDH>} — —tIE[Tr (DHDH)]IE T [AHE—/ T
n n n n n
1 . 1 1 YDRY*
42Ty (DRB)E[Tr (DHDH)}E 11 (ArRDHYPRY'
n n n n

i (DRB) 17 (AD?REH) + 0 (12)
n n n

It remains to apply Theorem 3, Proposition 4 and Lemma 1-(2) to the terms in the right hand side of

the previous equality to conclude.
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