Ph. Loubaton

Notions sur les signaux aléatoires.

Esipe 3 1/21

Introduction

Signaux dont on ne peut connaître les valeurs avant des les avoir observés : imprévisibles.

Mise en évidence de techniques permettant d'évaluer des propriétés statistiques (i.e. moyennes) pour en avoir une meilleure connaissance quantitative.

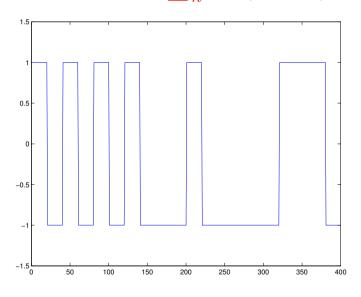
Exemples.

- Le bruit de fond b(t)
- Signal $x(t) = \sum_{n \in \mathbb{Z}} a_n g(t nT)$ transmis par un système de communication : la suite $(a_n)_{n \in \mathbb{Z}}$ est aléatoire.

Esipe 3 2/21

Réalisation d'un signal aléatoire II.

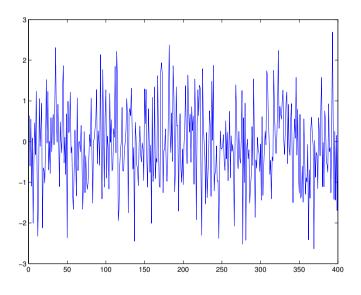
Exemple 1 : $\sum_{n} a_n g(t - nT)$



Esipe 3 3/21

Réalisation d'un signal aléatoire III.

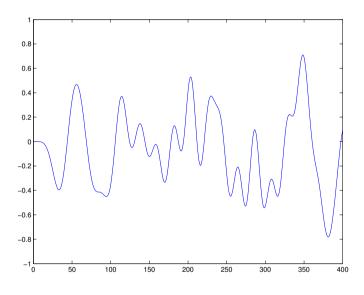
Exemple 2: bruit de fond.



Esipe 3 4/21

Réalisation d'un signal aléatoire IV.

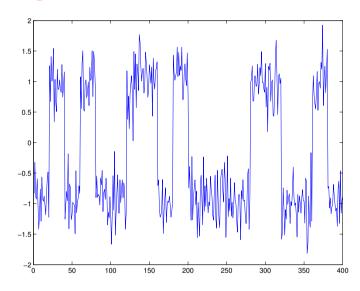
Exemple 3 : bruit de fond filtre.



Esipe 3 5/21

Réalisation d'un signal aléatoire V.

Exemple 4 : créneau bruité, SNR=10dB.



Esipe 3 6/21

Signaux aléatoires stationnaires I.

x(t) est dit stationnaire (au sens large) si

- E(x(t)) = m est indépendant de t
- $E(x(t+\tau)x(t)^*) = R(\tau)$ est indépendant de t.
- $E|x(t)|^2 = R(0)$ puissance moyenne

Exemples de signaux aléatoires stationnaires.

- Le bruit blanc : $E(x(t) = 0 \text{ et } E(x(t+\tau)x(t)^* = N_0\delta(\tau))$
- La sortie d'un filtre excité par un bruit blanc.

Propriété importante : la sortie d'un filtre excité par un signal aléatoire stationnaire est encore stationnaire.

Esipe 3 7/21

Signaux aléatoires stationnaires II.

Exemple de signal aléatoire non stationnaire.

 $x(t) = \sum_{n \in \mathbb{Z}} a_n g(t - nT)$ où la suite a est indépendante et identiquement distribuée (moyenne nulle et variance 1).

- E(x(t)) = 0 pour tout t, indépendant de t
- $E(x(t+\tau)x(t)^*) = \sum_{n\in\mathbb{Z}} g(t+\tau-nT)g(t-nT)$, dépendant de t.

 $t \to E(x(t+\tau)x(t))$ est périodique de période T : signal cyclostation naire.

Fonction d'autocorrélation de x(t) : $R(\tau) = \frac{1}{T} \int_0^T E(x(t+\tau)x(t)^*) dt$

 $R(0) = \frac{1}{T} \int_0^T E|x(t)|^2 dt$ puissance moyenne

Esipe 3 8/21

Densité spectrale des signaux (cyclo-)stationnaires I.

Motivation : Définir une quantité qui représente la puissance moyenne du signal à chaque fréquence.

x(t) aléatoire stationnaire : $\left| \int_{-\infty}^{\infty} x(t) e^{-2i\pi f t} dt \right|^2$: 2 problèmes.

- Quantité a priori aléatoire, dépend de la trajectoire
- N'a pas de sens mathématique en théorie car x(t) ne tend pas vers 0 si $|t| \to \infty$.

Esipe 3 9/21

Densité spectrale des signaux (cyclo-)stationnaires II.

La bonne définition.

$$S(f) = \lim_{A \to \infty} E\left[\frac{1}{2A} \left| \int_{-A}^{A} x(t)e^{-2i\pi ft} dt \right|^{2}\right]$$

- Le terme $\frac{1}{2A}$ avec $A \to +\infty$ évite la divergence de l'intégrale
- L'opérateur d'espérance mathématique exprime le caractère moyen de S(f)

Esipe 3 10/21

Densité spectrale des signaux (cyclo-)stationnaires IV.

Propriétés de la densité spectrale.

- $S(f) \ge 0$ pour tout f
- Si x(t) est (cyclo-)stationnaire, alors $S(f) = \int_{-\infty}^{\infty} R(\tau) e^{-2i\pi f \tau} d\tau$
- $R(\tau) = \int_{-\infty}^{\infty} S(f)e^{2i\pi f\tau}df$, $R(0) = \int_{-\infty}^{\infty} S(f)df$
- Si y(t) est la sortie du filtre H(f) excité par x(t), $S_y(f) = |H(f)|^2 S_x(f)$.

Esipe 3 11/21

Densité spectrale des signaux (cyclo-)stationnaires V.

Exemples.

- Le bruit blanc, $E(x(t+\tau)x(t)^*) = N_0\delta(\tau)$: $S(f) = N_0$ pour tout f
- Le bruit blanc dans la bande $[-B, B] : S(f) = N_0$ si $f \in [-B, B]$ et 0 ailleurs
- Le bruit blanc passe bande: $S(f) = \frac{N_0}{2}$ si $f \in [f_0 B, f_0 + B] \cup [-f_0 B, -f_0 + B]$
- $x(t) = \sum_{n} a_n g(t nT), S(f) = \frac{|G(f)|^2}{T}.$

La bande passante de $\sum_{n} a_n g(t - nT) = \text{bande passante de } g(t)$.

Esipe 3 12/21

Echantillonnage des signaux aléatoires.

Le théorème de Shannon est encore vérifié.

Si la bande passante de $x_a(t)$ est [-B, B], et si $T_e < \frac{1}{2B}$, alors :

$$x_a(t) = \sum_{n \in \mathbb{Z}} x_a(nT_e) \frac{\sin(\frac{\pi(t - nT_e)}{T_e})}{\frac{\pi(t - nT_e)}{T_e}}$$

Esipe 3 13/21

Signaux aléatoires stationnaires à temps discret I.

Suite $(x_n)_{n\in\mathbb{Z}}$ de variables aléatoires.

Stationnaire si $E(x_n) = m$ (on prendra m = 0), et si $E(x_{n+k}x_k^*) = R_n$ indépendant de k.

 $(R_n)_{n\in\mathbb{Z}}$ fonction d'autocrrélation de x.

Le bruit blanc : $E(x_{n+k}x_k^*) = \sigma^2 \delta(k)$

Esipe 3 14/21

Signaux aléatoires stationnaires à temps discret II.

Densité spectrale des signaux stationnaires à temps discret.

Défini par :

$$S(f) = \lim_{N \to +\infty} \frac{1}{2N+1} E\left[|\sum_{n=-N}^{N} x_n e^{-2i\pi nf}|^2 \right]$$

Si
$$E(x_{n+k}x_k^*) = \sigma^2 \delta(k), S(f) = \sigma^2.$$

Esipe 3 15/21

Signaux aléatoires stationnaires à temps discret III.

Propriétés fondamentales :

- $S(f) = \sum_{n \in \mathbb{Z}} R_n e^{-2i\pi nf}$
- si x est réel, S(-f) = S(f)
- Si y est la sortie du filtre H(f) excité par x, $S_y(f) = |H(f)|^2 S_x(f)$

$$x_n = x_a(nT_e)$$
 avec $x_a(t)$ stationnaire. Si $T_e < \frac{1}{2B}$, $S_x(f) = F_e S_{x_a}(fF_e)$

Esipe 3 16/21