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Abstract

In cooperative networks, a variety of resource allocation problems can be formu-

lated as constrained optimization with system-wide objective e.g., maximizing the total

system throughput, capacity or ergodic capacity, subject to constraints from individual

users, e.g. minimum data rate, transmit power limit, and from the system, e.g. power

budget, total number of subcarriers, availability of the channel state information (CSI).

Most constrained resource allocation schemes for cooperative networks require rigorous

optimization processes using numerical methods since closed-form solutions are rarely

found. In this paper, we show that the Lambert-W function can be efficiently used to

obtain closed-form solutions for some constrained resource allocation problems. Simu-

lation results are provided to compare the performance of the proposed schemes with

other resource allocation schemes.

Index Terms
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1 Introduction

Cooperative transmissions have attracted much attention over the last few years. It has been

demonstrated that the benefits of multi-antenna transmission can be achieved by cooperative

transmission without requiring multiple antennas at individual nodes (for example see [1]-

[3]). Cooperation is particularly relevant when the size of mobile devices limits the number

of antennas that can be deployed.

Wireless Mesh networks (WMN) and relay networks are among the main networks that

use cooperative communication. The main distinguished characteristic of mesh and relay

networks is possibility of multi-hop communication. In Mesh networks, traffic can be routed

through other mobile stations (MS) and can also take place through direct links. Nodes are

comprised of mesh routers and mesh clients and thus routing process is controlled not only

by base station (BS) but also by mobile station MS [4]. Each node can forward packets

on behalf of other nodes that may not be within direct wireless transmission range of their

destination. In case of relay networks, the network infrastructure consists of relay stations

(RSs) that are mostly installed, owned and controlled by service provider. A RS is not

connected directly to wire infrastructure and has the minimum functionality necessary to

support multi-hop communication. The important aspect is that traffic always leads from or

to BS. The realization of the performance improvement promised by cooperation in wireless

mesh and relay networks depends heavily on resource allocation (among other things).

Recently, resource allocation for OFDMA WMN with perfect CSI has been an active

research topic. In [5], a fair subcarrier and power allocation scheme to maximize the Nash

bargaining fairness has been proposed. Instead of solving a centralized global optimization

problem, the authors proposed a distributed hierarchical approach where the mesh router

allocates groups of subcarriers to the mesh clients, and each mesh client allocates transmit

power among its subcarriers to each of its outgoing links. In [6] an efficient intra-cluster

packet-level resource allocation approach taking into account power allocation, subcarrier
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assignment, packet scheduling, and QoS support has been studied. The authors employ the

utility maximization framework to find the joint power-frequency-time resource allocation

that maximizes the sum rate of a WMN while satisfying users minimum rate requirements.

The benefits of optimal resource allocation in cooperative relay networks with perfect CSI

has also been investigated by several authors (see, e.g., [7], [8] and references therein).

However, when the channel variations are fast, the transmitter may not be able to adapt

to the instantaneous channel realization. Hence, CSI-aware resource allocation is not suitable

for environments with high mobility. When the channel state can be accurately tracked at

the receiver side, the statistical channel model at the transmitter can be based on channel

distribution information feedback from the receiver. We refer to knowledge of the channel

distribution at the transmitter as CDIT. In [9], CDIT-based constrained resource allocation

problem for non-cooperative OFDMA based networks is studied. The authors derive an

optimal power allocation algorithm in closed-form. In [10], a dynamic resource allocation

algorithm aiming to maximize the delay-limited capacity of a cooperative communication

with statistical channel information is developed. In [11], a power allocation problem for

ergodic capacity maximization in relay networks under high SNR regime is solved using

numerical methods.

In this paper, we present a new result on how the Lambert-W function can be used to ef-

ficiently find closed-form solution of constrained resource allocation problems for cooperative

networks.

There are two significant benefits from using the Lambert-W function in the context of re-

source allocation for cooperative networks. Most resource allocation schemes for cooperative

networks require rigorous optimization processes using numerical methods since closed-form

solutions are rarely found. By using the Lambert-W function, resource allocations can not

only be expressed in closed-form but they can also quickly be determined without resorting

to complex algorithms since a number of popular mathematical softwares, including Maple

and Matlab, contain the Lambert-W function as an optimization component.
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The Lambert-W function has several uses in physical and engineering applications [12]-

[15]. In [14], the Lambert-W function is used for the purpose of diode parameters determi-

nation in diode I-U curve fitting. Recent work in [15] shows that the Lambert-W function

also finds utilization in Astronomy to calculate the position of an orbiting body in a central

gravity field.

The remainder of this paper is organized as follows. In Section 2, we provide a con-

cise introduction to the Lambert-W function. In Section 3, we show how the Lambert-W

function is applied to a subcarrier allocation problem in WMNs. The use of the Lambert-W

function to a power allocation problem in relay networks with statistical channel information

is discussed in Section 4. In Section 5, we show the performance of the proposed resource

allocation methods by simulation. Finally, conclusions are drawn in Section 6.

2 The Lambert-W Function

The Lambert function W (x) is defined to be the multivalued inverse of the function f(x) =

xex [12]. That is, Lambert W(x) can be any function solution of the transcendental equation

W (x)eW (x) = x. (1)

Actually, for some values of x, equation (1) has more than one root, in which case the

different solutions are called branches of W . Since the values of interest in our work are

real, we will concentrate on real-value branches of W . If x is real, then for −1/e ≤ x < 0,

there are two possible real values of W (x) (see Fig. 1). The branch satisfying W (x) ≤ −1 is

denoted by W0(x). The branch satisfying W (x) ≥ −1 is denoted by W (x) and it is referred

to as the principal branch of the Lambert-W function.
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The nth derivative of the Lambert-W function is given by [12].

dnW (ex)

dxn
=

qn (W (ex))

(1 + W (ex))2n−1 for n ≥ 1, (2)

in which the polynomials qn, given by

qn(w) =
n−1
∑

i=0

〈〈

n − 1

i

〉〉

(−1)iwi+1, (3)

contain coefficients expressed in terms of second-order Eulerian numbers and q1(w) = w.

In (3), the second order Eulerian number

〈〈

n

m

〉〉

corresponds to the number of

permutations of the multiset {1, 1, 2, 2, ..., n, n} with m ascents which have the property that

for each i, all the numbers appearing between the two occurrences of i in the permutation

are greater than i [24].

The application of the Lambert-W function to obtain a closed-form solution for resource

allocation problems in wireless mesh and relay networks constitutes the principal contribution

of this papaer.

3 The Lambert-W Function for Subcarrier Allocation

in Wireless Mesh Network

3.1 Problem Formulation

We consider a single cluster OFDMA WMN that consists of one mesh router (MR) and K

mesh clients (MC) as illustrated in Fig. 2. The MR serves as a gateway for the MCs to the

external network (e.g. Internet). The MCs can communicate with the MR and with each

other through multi-hop routes via other MCs. We label the MR as node 0 and the MC

nodes as k = 1, ..., K. A link (k, j) exists between node k and node j when they are within
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transmission range of each other, i.e., they are neighboring nodes.

There are a total of N subcarriers in the system. Each subcarrier has a bandwidth B.

The channel gain of subcarrier n on link (k, j), which connects MC k to MC j, is denoted

by Gn
kj and the transmit power of MC k on subcarrier n is denoted by pn

k . MC k has a

transmit power limit of pk and a minimal rate requirement of Rk. Let nk be the number

of subcarriers to allocate to MC k, using only information available at the MR, i.e. the

average channel gain of all outgoing links at MC k, Gk. Based on Gk and uniform power

allocation assumption over all the nk subcarriers (pn
k = pk/nk,∀k), the MR determines an

approximated rate for MC k as

rk (nk) = nkB log2

(

1 +
Gk

Γσ2
n

pk

nk

)

, (4)

where σ2
n is the thermal noise power, and Γ is the SNR gap related to the required bit-error-

rate (BER). The main reason that the MR determines an approximated rate instead of the

exact rate is that the MR knows only the average channel gain Gk, but not the complete

channel gain Gn
kj. In general, exact and complete information needed to determine the exact

rate is rarely available at the MR. For practical SNR values (SNR > 5 dB), the gap between

the exact rate and its approximate (4) is very small and (4) can be viewed as the rate realized

at MC k.

There are various constraints associated with resource allocation in OFDMA-based WMNs.

At each node k, the sum of the transmit power on the allocated subcarriers is bounded by

a maximum power level pk. We assume that each subcarrier can only be allocated to one

transmission link in a cluster. Different traffic types require different packet transmission

rates. For example, voice packets require a constant rate; video traffic has minimum, mean,

and maximum rate requirements; while data traffic is usually treated as background traffic

whose source rate is dynamic. In our problem formulation, we only take the minimum rate

requirement of these three traffic types, if any, into account.
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The resources to allocated are defined as a set of subcarriers, and the total transmit power

available at each node. We consider a distributed hierarchical resource allocation, where the

MR only performs a rough resource allocation with limited information (the average channel

gain of all outgoing links at MC or the statistical channel information) and the MCs perform

more refined resource allocation with full information that is available locally. In this section,

we focus on subcarrier allocation at MR and we assume that each MC k distributes its

transmit power limit pk equally over all its allocated subcarriers. After subcarrier allocation,

the optimal power allocation is performed at each MC k. The optimal power allocation is

not developed in this paper. Mathematically, the subcarrier allocation problem at MR can

be formulated as

max
nk

K
∑

k=1

nkB log2

(

1 +
αk

nk

)

subject to:

nkB log2

(

1 +
αk

nk

)

≥ Rk

K
∑

k=1

nk ≤ N

(5)

where αk = Gkpk

Γσ2
n

.

3.2 Solution method

We propose a solution method based on the Lagrange dual approach and the Lambert-W

function. First we express the Lagrangian of the primal problem (5) as

L (nk, λk, µ) =
K
∑

k=1

nkB log2

(

1 +
αk

nk

)

+
K
∑

k=1

λk

(

nkB log2

(

1 +
αk

nk

)

− Rk

)

− µ

(

K
∑

k=1

nk − N

) (6)
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where λk and µ are the Lagrangian multipliers associated with the minimum rate constraint

of MC k and the total subcarrier constraint.

By KKT first optimality condition, we take the derivative of (6) with respect to nk for

fixed (λk, µ) and set the derivative to zero to obtain

ln

(

1 +
αk

nk

)

−
αk

nk

1 + αk

nk

− µ
B

ln 2
(1 + λk)

= 0. (7)

By solving equation (7) for nk, for given (λk, µ), the optimal value of subcarriers to be

allocated to MC k is given by (see Appendix A)

n∗
k =

−αkW
(

− exp
(

−1 − µ
B

ln 2
(1+λk)

))

1 + W
(

− exp
(

−1 − µ
B

ln 2
(1+λk)

)) . (8)

The optimal values of µ and λk still need to be found. They correspond to the ones that

satisfy the total subcarrier constraint with equality and the individual rate constraints. We

substitute nk in equation (6) by n∗
k to form the dual problem

min
λk,µ

L (n∗
k, λk, µ) . (9)

The optimal λ∗
k, for fixed µ, are found using KKT conditions. To derive L (n∗

k, λk, µ) over

λk, we make use of the formula of the nth derivative of the Lambert-W function given by

(2). Applying (2) for n = 1, we obtain that the optimal λ∗
k has to satisfy (see Appendix B)

fm (λ∗
k) −

Rk

αk

= 0, (10)

where

fm (λ∗
k) =

w∗
k

1 + w∗
k

·
[(

B

ln 2
+

µ

(1 + λ∗
k) (1 + w∗

k)
2

)

ln (−w∗
k)

+
µ

(1 + λ∗
k) (1 + w∗

k)
+

µ2

(1 + λ∗
k)

2 (1 + w∗
k)

2

]
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with w∗
k = W

(

− exp
(

−1 − µ
B

ln 2
(1+λ∗

k
)

))

.

It can be shown that fm is a strictly increasing function of λ∗
k and fm (λ∗

k) > 0 for all

λ∗
k ≥ 0. Thus, the inverse function, f−1

m , of fm, exists. The optimal λ∗
k can then be deduced

as

λ∗
k = f−1

m

(

Rk

αk

)

. (11)

Now we turn to find the optimal µ∗. Substituting λk in (8) by the optimal value obtained

in (11) and using the constraint
∑K

k=1 nk = N , we obtain

K
∑

k=1

−αkW
(

− exp
(

−1 − µ
B

ln 2
(1+λ∗

k
)

))

1 + W
(

− exp
(

−1 − µ
B

ln 2
(1+λ∗

k
)

)) = N. (12)

Let

gm(µ) =
K
∑

k=1

−αkW
(

− exp
(

−1 − µ
B

ln 2
(1+λ∗

k
)

))

1 + W
(

− exp
(

−1 − µ
B

ln 2
(1+λ∗

k
)

)) . (13)

Proposition 1 An inverse function for gm, g−1
m , exists (see Appendix C. for proof).

Thus

µ∗ = g−1
m (N). (14)

3.3 Extension to Mesh Router with Statistical Channel Informa-

tion

In some fading environments, there may not be a feedback link sufficiently fast to convey

the full CSI to the MR. The MR may know only the channel distribution information (CDI)

and may use the CDI to allocate resource. Following the approach in [9], we can formulate

an ergodic rate maximization problem at the mesh router with only channel distribution

information (CDI) as
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max
nk

Eα

{

K
∑

k=1

nkB log2

(

1 +
αk

nk

)

}

subject to:

Eαk

{

nkB log2

(

1 +
αk

nk

)}

≥ Rk

K
∑

k=1

nk ≤ N

(15)

where α = [α1, α2, ..., αk, ..., αK ], and Eα {.} represents the statistical expectation with re-

spect to α.

Using the solution method proposed in 3.2, the optimal subcarrier allocation solution of

(15) can be obtained by solving the following equation for ñk

Eαk

{

ln

(

1 +
αk

ñk

)

−
αk

ñk

1 + αk

ñk

− µ
B

ln 2
(1 + λk)

}

= 0. (16)

To express the left hand side of (16), we need to find the probability density function

(pdf) of the random variable

f̃m (αk) = ln

(

1 +
αk

ñk

)

−
αk

ñk

1 + αk

ñk

− µ
B

ln 2
(1 + λk)

. (17)

It can be observed that f̃m is monotonically nondecreasing and non-negative with respect

to αk. Thus, there exists a unique inverse function, f̃−1
m , of f̃m.

Let F̃αk
(αk) and T̃αk

(αk) denote the cumulative distribution function (cdf) and the pdf

of αk. We assume that F̃αk
(αk) and T̃αk

(αk) are known at the MR.

First, using the same derivation as in Appendix A where the right hand side of equation

(A.1) is f̃m instead of 0, we can express the inverse function of f̃m as

α̃k

(

f̃m

)

=
−ñ∗

k

(

1 + W
(

− exp
(

−1 − µ+f̃m

B

ln 2
(1+λk)

)))

W
(

− exp
(

−1 − µ+f̃m

B

ln 2
(1+λk)

)) . (18)
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Using expression (18) for the root, we derive the cdf of f̃m as [19]

F̃f̃m

(

f̃m

)

= Fαk

(

α̃k

(

f̃m

))

. (19)

The pdf of f̃m is then given as the derivative of (19) with respect to f̃m as

T̃f̃m

(

f̃m

)

= T̃αk

(

α̃k

(

f̃m

))

(

1 + α̃k

(

f̃m

))2

B

ln 2
(1+λk)

ñ∗2
k

. (20)

Finally, using (20), the optimal subacarrier assignment ñ∗
k is obtained by solving the

following equation for ñ∗
k

∫ ∞

0

f̃mT̃f̃m

(

f̃m

)

df̃m = 0. (21)

For given multipliers λk and µ, equation (21) can be solved numerically.

The optimal values of λk, (k ∈ [1, K]) and µ still need to be found. They correspond

to the ones that satisfy the individual rate constraints and the total subcarriers constraint

(with equality). If some of the individual rate constraints are exceeded, the corresponding

λk is equal to zero. Unlike in the instantaneous allocation where we have derive closed forms

for λk and µ, here it is not easy to obtain a close form. We use an iterative search algorithm

to find the optimal set of λk and µ.

4 The Lambert-W Function for CDIT-based Power Al-

location in Relay Networks

In this section, we show how the Lambert-W Function can be used for constrained resource

allocation in relay networks.
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4.1 Problem Formulation

Consider the relay network operating in receiver cooperation mode as illustrated in Fig. 6.

The transmitter at the source node sends a signal x. Let x1, y1 denote the transmitted and

received signals at the relay node respectively. We assume that the relay node operates in

the full duplex mode, i.e. the relay can receive and transmit simultaneously on the same

frequency channel [7]. Thus, the received signals at the relay node and the destination node

are given by

y1 = h2x + z1

y = h1x +
√

gh3x1 + z,

(22)

where z1 and z are independent identically distributed (i.i.d) zero mean circularly symmetric

complex Gaussian (ZMCSCG) additive noise with unit variance.

The capacity cut set bound of the relay network of Fig. 6 operating in a full duplex mode

with perfect CSI can be expressed as [11]

Cinst = max
0≤ρ,β≤1

min

{

log2

(

1 + βP
(

1 − ρ2
)

(γ1 + γ2)
)

,

log2

(

1 + βPγ1 +
(

(1 − β) g + 2ρ
√

β (1 − β) g
)

Pγ3

)

}

,

(23)

where ρ represents the correlation between the transmit signals of the transmitter and the

relay, and γi = |hi|2.

We assume Rayleigh fading where each channel gain hi, i = 1, 2, 3, is i.i.d. and normalized

to have unit variance; hence the corresponding channel power gain is i.i.d. exponential

with unit mean. The average channel power gain between the relay and the receiver is

g. We assume that g characterizes only path-loss attenuation, hence g = 1/dα, where d

is the distance between the relay node and the receiver node and α is the path-loss power

attenuation exponent. As in receiver cooperation mode the relay is assumed to be close to

the receiver, the scenario of interest is when d is small.
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We consider a fast fading environment, where the receiver has CSI to perform coherent

detection, but there is no fast feedback link to convey the CSI to the transmitter. Hence

the transmitter only has CDI, but no knowledge of the instantaneous channel realizations.

Ergodic capacity is used to characterize the transmission rate of the channel.

We assume the channel has unit bandwidth. We further assume an average network

power constraint on the system:

E
[

|x|2 + |x1|2
]

≤ P, (24)

where the expectation is taken over repeated channel uses.

The network power constraint model is applicable when the node configuration in the net-

work is not fixed [11]. Note that, when the node configuration is fixed, the individual power

constraint model reflects the practical scenarios more than the network model. However, the

power allocation problem is, in general, more tractable under network power constraint.

The total power P is optimally allocated between the transmitter and the relay, i.e.:

E
[

|x|2
]

≤ βP, E
[

|x1|2
]

≤ (1 − β)P, (25)

where β ∈ [0, 1] is parameter to be optimized based on CDI and node geometry g.

It has been shown in [7] that the capacity upper bound in the asynchronous channel

model, i.e. the channel model where the nodes don’t have complete CSI, can be found

by setting the correlation ρ to zero. Since the CDI channel model falls into this case,

the ergodic capacity upper bound can be found by taking the expectation of (23) over the

channel distribution and setting ρ = 0. Making use of the high SNR (P >> 1) approximation

log(1 + xP ) ≈ log(xP ), the ergodic capacity upper bound is then given by
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Cerg = max
0≤β≤1

min

{

E [log2 (βP (γ1 + γ2))] ,

E [log2 (βPγ1 + (1 − β) Pgγ3)]

}

.

(26)

The problem is to find the optimal power allocation, i.e. the optimal value of β, that gives

the capacity upper bound Cerg(β) of (26). Mathematically the power allocation problem can

be formulated as

max
0≤β≤1

min

{

E [log2 (βP (γ1 + γ2))] ,

E [log2 (βPγ1 + (1 − β) Pgγ3)]

}

.

(27)

Problem (27) has been addressed in [11] and a numerical solution has been proposed, but

no closed-form expression has been provided. This contrasts with what will be done here.

4.2 Solution Method

To find the optimal power allocation in closed-form, we propose an approach that uses the

Lambert-W function.

First we need to evaluate the expected value of the capacity expression over the channel

fading distribution. For this end, we make use of the following formula for i.i.d. exponential

random variables X1, X2 with unit mean:

E [log (a1X1 + a2X2)]

=











a1 log a1 − a2 log a2

a1 − a2

− log eγ if a1 6= a2

log a1 + log e1−γ if a1 = a2,

(28)

where a1, a2 are positive scalar constants and γ is Euler’s constant.

Applying formula (28), the first term and the second term inside the min{.} in expression

(26) are given respectiveley by
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E [log2 (βP (γ1 + γ2))] = log2 P + log2 β + log2 e1−γ, (29)

and

E [log2 (βPγ1 + (1 − β) Pgγ3)] = log2 P

+
g (1 − β) log2 (g (1 − β)) − β log2 β

g (1 − β) − β
− log2 eγ.

(30)

Expression (29) is an increasing function of β. It is easy to show that expression (30) is

a decreasing function of β ( for g of interest, i.e. g > 1). Thus the optimal value β∗ solution

of the maximization problem (27) can be found by equating expressions (29) and (30) as

log2 P + log2 β∗ + log2 e1−γ = log2 P

+
g (1 − β∗) log2 (g (1 − β∗)) − β∗ log2 β∗

g (1 − β∗) − β∗
− log2 eγ.

(31)

Equation (31) is equivalent to

ln (β∗) + 1 =
g (1 − β∗) ln (g (1 − β∗)) − β∗ ln (β∗)

g (1 − β∗) − β∗
, (32)

where ln(x) is the natural logarithm of x.

After some algebraic manipulations, (32) can be rewritten equivalently as

−β∗

g (1 − β∗)
exp

( −β∗

g (1 − β∗)

)

= −1

e
. (33)

It can be recognized that equation (33) is in the form of a transcendental equation (1).

Thus we have

W

(

−1

e

)

=
−β∗

g (1 − β∗)
. (34)

The optimal value β∗ is deduced from (34) as
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β∗ =
Kg

Kg + 1
, (35)

where K = −W
(

−1
e

)

= 1.

It is interesting is to observe that the optimal power allocation is obtained in closed-form

and depends only on g, i.e. on the distance d between the relay node and the destination

node and the path-loss power attenuation exponent α.

4.3 Comparison with CSIT-based Power Allocation

In order to assess the relevance of the CDIT-based approach, it has to be compared to the

allocation scheme based on perfect CSIT. Perfect CSIT is unrealistic, but for the purpose

of comparison, let us assume perfect CSIT. Then the power allocation can be formulated to

maximize the instantaneous capacity instead of the ergodic capacity. Mathematically, the

CSIT-based power allocation can be formulated as

max
0≤ρ,β≤1

min

{

1

2
log2

(

1 + βP
(

1 − ρ2
)

(γ1 + γ2)
)

,

1

2
log2

(

1 + βPγ1 +
(

(1 − β) g + 2ρ
√

β (1 − β) g
)

Pγ3

)

}

.

(36)

The optimal values of ρ and β solution of (36) have been found in [11] as

ρ∗ =
1

√

g2 + 2g + 2
, (37)

β∗ =
g2 + 2g + 2

g2 + 3g + 2
. (38)

The instantaneous capacity upper bound for high SNR regime is deduced as

Cinst = log2

(

2 (g + 1)

g + 2
P

)

. (39)
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Both CDIT-based and CSIT-based optimal power allocation expressions (35) and (38) are

in closed-form and very fast to compute. Thus, the complexity is almost the same. The main

difference between the two allocation schemes is the amount of feedback required to perform

power allocation. Recall that, for the CSIT-based scheme, the allocation is performed after

each symbol period. Let Ns be the number of symbol periods after which the CDIT-based

resource allocation is performed. Then a rough estimation tells us that the feedback needed

to perform CDIT-based power allocation is reduced by 1
Ns

compared to the perfect CSIT

scheme.

5 Simulation Results

In order to assess the performance of the proposed resource allocation methods, we conduct

simulations and compare the simulation results with other baseline schemes.

5.1 Simulation Results for wireless mesh networks

We consider a cluster with 4 wireless nodes with the scheduling tree topology shown in Fig.

3 and a total number of subcarriers N = 128 over a 1-MHz band. The relative effective SNR

difference between MC 1 (the closest MC to the MR) and MC 2, 3, and 4 are 3dB, 6dB, and

10 dB respectively. The minimum rate requirements are chosen to be the same for all MCs,

the maximal power at each MC k is pk = 50mW , the thermal noise power is σ2
n = 10−11W .

We assume a Rayleigh fading. Thus, for the CDI-based allocation, the αk follow a χ2

distribution with 2Lk degree of freedom, where Lk is the number of outgoing links at MC k.

For MC with a single outgoing link, αk is reduced to an exponential distribution.

We name the proposed scheme with optimal allocation at MR and MCs as full opti-

mal resource allocation (FORA). For comparison, we also implement the following resource

allocation schemes:

1. MR-based optimal resource allocation (MORA) where the MR performs the proposed
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optimal subcarrier assignment, but each MC performs uniform power allocation among

its outgoing links.

2. Full uniform resource allocation (FURA) where each MC is assigned the same number

of subcarriers and transmit power at each MC is uniformly distributed over the assigned

subcarriers and the active links.

We evaluate system performance in terms of sum rate, and satisfaction of minimum rate

requirements.

In Fig.4, the performance of the proposed optimal resource allocation (FORA) is com-

pared to that of the optimal resource allocation at MR under uniform power allocation at

MCs (MORA) and the full uniform allocation (FURA). The result shows that the proposed

optimal resource allocation brings significant gain over uniform resource allocation, especially

for low SNRs.

Fig. 5 shows the user’s rate for different allocation schemes when the users minimum data

rate demands are constrained to Rk = 1Mbps for all MCs. We observe that under optimal

allocation, the need of all users in terms of data rate is satisfied. This is not the case under

uniform allocation. With uniform allocation, there is an over-allocation for closer MCs to

the MR (MCs 1 and 2) while the rate demand of farer users with bad channel conditions

(MCs 3 and 4) are not satisfied.

5.2 Simulation Results for Relay Networks

In all the simulations, we assume a path-loss power attenuation exponent of 2, and hence

g = 1/d2. The distance d between the relay node and the receiver node varies from 0.1 to 1.

In Fig. 7, the ergodic capacity achieved using the proposed power allocation scheme is

compared to the one obtained with uniform power allocation (β = 0.5,∀d ∈ [0.1, 1]). We

consider system average network power constraints of P = 10 and P = 100. It can be

observed that the achieved capacity using the proposed optimal power allocation method
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outperforms the capacity obtained with uniform allocation.

Fig. 8 illustrates the achieved capacity using the proposed CDIT-based optimal power

allocation (35) in comparison with the capacity of the CSIT-based optimal power allocation

(38). The CSIT-based capacity is averaged over the same number of channel realizations Ns

over which the distribution is taken to evaluate the ergodic capacity. The result shows that

the gap between the average capacity and the ergodic capacity is small. Thus, even with

CDIT only, optimal power allocation improves performance of relay networks.

The trade-off between reduced feedback and performance degradation of the proposed

CDIT-based optimal power allocation in comparison with the perfect CSIT-based optimal

power allocation is shown in Fig.9. We observe that adapting the transmission strategy to

the short-term channel statistics, increases the performance but also increases the amount

of feedback. However, if the transmission is adapted to the long term channel statistics,

the amount of feedback decreases significantly but with a penalty on the performance. For

a CDIT-based allocation with a distribution taken over 16 symbol periods, the amount of

feedback is reduced by 93.75% while the performance degradation in terms of capacity is less

than 12%.

6 Conclusion

We have addressed constrained resource allocation problems for wireless mesh and relay net-

works. For mesh networks, we have formulated a distributed subcarrier allocation problem to

maximize the sum rate while satisfying minimum rate demand. For relay networks, we have

formulated power allocation problem to maximize the ergodic capacity under total power

constraint. Both cases of perfect and statistical channel knowledge at the transmitter have

been considered. We have shown how the Lambert-W function can be use to efficiently find

the optimal resource allocation in closed-form. By using the Lambert-W function, resource

allocation can quickly be determined since a number of popular mathematical softwares, in-
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cluding Maple and Matlab, contain the Lambert-W function as an optimization component.

The Lambert-W function can be combined with the Lagrange dual approach to solve variety

of wired and wireless resource allocation problems without resorting to complex numerical

algorithms.

Appendix

Appendix A: Derivation of (8)

Equation (7) can be rewritten as

ln

(

nk

nk + αk

)

− nk

nk + αk

+ 1 +
µ

B
ln 2

(1 + λk)
= 0. (A.1)

Equation (A.1) can be rewritten equivalently as

− nk

nk + αk

e

“

−
nk

nk+αk

”

= − exp

(

−1 − µ
B

ln 2
(1 + λk)

)

(A.2)

Expression (A.2) is in the form of the Lambert-W function W (x), which is the solution

to W (x)eW (x) = x. Thus, from (A.2) we can deduce that

W

(

− exp

(

−1 − µ
B

ln 2
(1 + λk)

))

= − nk

nk + αk

(A.3)

which when then solved for nk gives (8).

Appendix B: Derivation of (10)

Let wk (λk, µ) = W
(

− exp
(

−1 − µ
B

ln 2
(1+λk)

))

.

Replacing nk in (6) by its optimal value given by (8), we get the dual function
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L (λk, µ) =
K
∑

k=1

−αkwk (λk, µ)

1 + wk (λk, µ)
B log2

(

− 1

wk (λk, µ)

)

+
K
∑

k=1

λk

(−αkwk (λk, µ)

1 + wk (λk, µ)
B log2

(

− 1

wk (λk, µ)

)

− Rk

)

− µ

(

K
∑

k=1

−αkwk (λk, µ)

1 + wk (λk, µ)
− N

)

.

(B.1)

Equation (B.1) can be rewritten as

L (λk, µ) = µN −
K
∑

k=1

λkRk − µ

K
∑

k=1

−αkwk (λk, µ)

1 + wk (λk, µ)

+
K
∑

k=1

(

(λk + 1)
αkwk (λk, µ)

1 + wk (λk, µ)
B log2 (−wk (λk, µ))

)

(B.2)

Applying (2) for n = 1 and using the property of the derivative of a composite function,

we obtain the derivative of wk with respect to λk for fixed µ as

dwk (λk, µ)

dλk

=
wk (λk, µ)

1 + wk (λk, µ)
· µ ln 2

B
· 1

(1 + λk)
2 . (B.3)

Using (B.3), we calculate the derivative of L (λk, µ) with respect to λk for fixed µ as

dL (λk, µ)

dλk

= −Rk +
B

ln 2
· αkwk (λk, µ)

1 + wk (λk, µ)
· ln (−wk (λk, µ))

+
µ

1 + λk

· αkwk (λk, µ)

1 + wk (λk, µ)
· ln (−wk (λk, µ))

+
µ

1 + λk

· αkwk (λk, µ)

(1 + wk (λk, µ))2

+
µ2 ln 2

B (1 + λk)
2 · αkwk (λk, µ)

(1 + wk (λk, µ))3 .

(B.4)

Applying KKT optimality conditions, we set the derivative (B.4) to zero to obtain
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− Rk

αk

+
B

ln 2
· wk (λ∗

k, µ)

1 + wk (λ∗
k, µ)

· ln (−wk (λ∗
k, µ))

+
µ

1 + λ∗
k

· wk (λ∗
k, µ)

1 + wk (λ∗
k, µ)

· ln (−wk (λ∗
k, µ))

+
µ

1 + λ∗
k

· wk (λ∗
k, µ)

(1 + wk (λ∗
k, µ))2

+
µ2 ln 2

B (1 + λ∗
k)

2 · wk (λ∗
k, µ)

(1 + wk (λ∗
k, µ))3 = 0,

(B.5)

where λ∗
k is the optimal value of λk.

We see that equation (B.5) can be rewritten in the form of equation (10).

Appendix C: Proof of Prop. (1)

Let

gk,m (µ) =
−αkw̃k (µ)

1 + w̃k (µ)

where

w̃k (µ) = W

(

− exp

(

−1 − µ
B

ln 2
(1 + λ∗

k)

))

.

The derivative of w̃k with respect to µ is given by

dwk (µ)

dµ
=

wk (µ)

1 + wk (µ)
·
(

− 1
B

ln 2
(1 + λ∗

k)

)

. (C.1)

Using (C.1), we can calculate the derivative of gk,m (µ) with respect to µ as

dgk,m (µ)

dµ
=

αk · wk(µ)
1+wk(µ)

·
(

− 1
B

ln 2
(1+λ∗

k
)

)

(1 + wk (µ))2 < 0. (C.2)

Thus

dgm (µ)

dµ
=

K
∑

k=1

dgk,m (µ)

dµ
< 0. (C.3)
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namely, gm (µ) is a strictly decreasing function of µ. This completes the proof.
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Figure 1: The two real branches of the Lambert-W function

Figure 2: Illustration of a wireless mesh network

Figure 3: Network topology used in the simulations
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Figure 4: Maximized sum rate versus mean SNR for various resource allocation schemes
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Figure 5: Per mesh client rate for Rk=1Mbps

Figure 6: Illustration of a relay network operating in receiver cooperation mode.
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Figure 7: Maximized capacity vs. distance d for CDIT-based optimal power allocation and
uniform power allocation.
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Figure 9: Trade-off between feedback reduction and performance degradation of the CDI-
based allocation compared with the perfect CSIT-based allocation.
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