Documentation for MMDR_ML package

Version 1.2

Alessandro Benfenati
alessandro.benfenati@unimi.it

Overview

MMDR-ML is a MatLab package which contains the functions devoted to solve two optimization prob-
lems. The former, solved via the Douglas—Rachford algorithm, is

aégrgin D¢ (C,S) + 10go(C) + p191(C) (1)
€Sn

where Dy is the Bregman divergence of a matrix spectral function f, S is the given data, go is the spectral
regularization term and g; is the regularization function acting on the whole matrix. po and pi are the
regularization parameters for go and g1, respectively.

The second problem which MMDR_ML solves is the non—convex problem

argmin log det (C_1 + O'2Id) + trace ((Id + 020)71 CS) + 10go(C) + p191(C) (2)
ces,

and it employs the Majorization-Minimization approach described in [1]. Matrix S is (usually) the given
empirical covariance matrix, while o2 is the noise level perturbing the data. The inner subproblems arising
in each MM step are solved using the Douglas—Rachford procedure, exploiting the proximal approaches
involving Bregman divergences depicted in [1].

This software is distributed under the GNU General Public License http://www.gnu.org/licenses/.

Contents
1 Using MMDR_ML

2 SideFuns
2.1 GenerateData.m e e e
2.2 ShowGraphOnMap it e e e e e e

3 Funs
4 Prox

5 Solvers
5.1 DRMAtTIX e e e e e e e e e
5.2 MMDR.IN o o v o e e e e

6 MAIN_comparison.m
7 Molene Dataset

8 Maintenance

11

1 Using MMDR ML

The archive MMDR_ML .tar.gz contains the following files and directories

e documentation.pdf e Solvers

e Funs e TEST parameters.mat
e MAIN comparison.m e GPL_licens.pdf

e Prox e Molene Data

e SideFuns e MAIN Molene.m

Extract the files and the folders in the desired directory. MAIN_comparison.m is devoted to illustrate the
comparison described in [1, Section 5]: it includes all the necessary folders and it loads the data for the
numerical tests regarding the Majorization-Minimization approach described in [1]. This main file shows also
how to choose the various options and how to set the parameters for the solvers DR_matrix and MMDR: the
functions in Solvers and in Prox can be used in any project and do not require any particular packages nor
mex files.

Main_Molene.m applies the MMDR algorithm (or the GLASSO approach) to real-world data set regarding
weather recordings done by several stations of Radome type located in a French region. It includes all the
necessary folders and automatically loads the data.

The directory Funs contains the m—files devoted to compute the value of the functionals employed in the
variational formulation. LogDet.m, VonNeu.m and Froben.m compute the Bregman divergence of the log det, of
the negative Von Neumann entropy and of the Frobenius norm, respectively. The other files simply calculate
the values of the function.

The directory Prox gathers the proximity operators m—functions for several choice of functionals. The
spectral approach is adopted, hence the proximity operators for matrix arguments are actually computed via
the eigenvalue decomposition (see again [1] for the details).

The directory SideFuns collects the functions needed for some particular tasks: for the moment it just con-
tains the function which generates the synthetic data used for the numerical experiments in MAIN_comparison.m.

The directory Solvers contains the m—functions implementing the optimization method. The novel files are
DR_matrix.m and MMDR.m, while covsel.m is also available in [3]

The directory Molene_Data contains the mat file with the data and the image file of the region map used to
depicted the eventual recovered graph.

2 SideFuns

For release 1.2 this folder contains
e the function GenerateData, used for the numerical validation of the proposed procedure;

e the m-file ShowGraphOnMap, used to show the recovered graph on the map contained in the file map.png
(in the Molene_Data folder).

This directory could be used as a collector for functions having ”side tasks”: e.g. computing some error

measurements, creating new test problems, m-files for figure creation and so on.

2.1 GenerateData.m

This function generate a synthetic data set. It is mainly based on the code available in [3]: some minor
adjustments are done to adapt it to the kind of data described in [1]. All the inputs are optional.

Input type ‘ Description ‘ Default
INPUT

"FEATS’ integer number of features 100

’SAMPLES’ | integer number of samples to generate 10*NFeats.

’PERC’ double percentage of nonzero elements in ISIGMA 0.001.

’NOISE’ double noise level 0

’NSEED’ integer random seed for generating samples. 0

’ESEED’ integer ‘ random seed for generating nonzero positions. 0

OouTPUT
’SIGMA° double array | Generated covariance matrix
’TSIGMA’ double array | Generated precision matrix
’S? double array | Empirical covariance matrix

FEATS is the number of features, namely the dimension of the desired covariance (and thus also of the precision)
matrix. SAMPLES is the number of realizations from the Gaussian multivalued random variable of zero mean
and covariance matrix SIGMA.

PERC is the percentage of the nonzero entries of the precision matrix: the default value create a very sparse
matrix. NOISE option governs the Gaussian noise affecting the data, as described in [1]. ESEED is the seed
used for the random generation of the nonzero entries’ position, while the seed NSEED is employed in order to
have some control on the noise generation. These options were included to assure the reproducibility of the
experiments without saving data on external files.

2.2 ShowGraphOnMap

A simple file which shows the recovered graph (by any method the user prefers) on the the map regarding the
region between 47°N-49°N and 2°S-6°S. The file is detailed below.

A = imread(’map.png’);

Read the image. If the user need to load a different file, provide the correct path and file name.

Ix = [-6,-2];
Fx = [1,1068];
Iy = [49,47];
Fy = [1,802];

f = 0(x,I,F) (F(2)-F(1)) / (I(2)-I(1)) *(x-I(1)) + F(1);

Since the region of interest lies in the rectangle 47°N-49°N (latitude) 2°W-6"W (longitude), the real coordinates
of the weather stations must be transformed by the function f from actual ones to the corresponding pixels
values. This transformation depends on the size of the image.

figure, imagesc(A), axis image, axis off, hold on
MapCoords = [f(coords(:,2),Ix,Fx), f(coords(:,1),Iy,Fy)];

gplot (C_fin,MapCoords)

This part of code shows the map, it transform the actual coordinates of the station in the related ones in the
image and finally the graph plot is drawn.

for i = 1:length(MapCoords)
plot (MapCoords(i,1) ,MapCoords(i,2),’0’,...
’MarkerSize’ ,5, ...
’MarkerFaceColor’,’w’, ...
’Color’,[0 0.4470 0.74101)
end

This cycle enlighten the weather stations on the map.

3 Funs

The available functions are

e Bounded.m * Froben.m * LogDet.m e Schatten2.m

e eclll.m e iSchattenl.m e Schattenl.m * VonNeu.m
The files marked with [e] simply compute the value of the functionals, while the ones marked with [*] compute
the Bregman divergence of functionals between the input arguments. Recall that the Bregman divergence is

not symmetric in general.
When the functionals are spectral functions, the computation is done on the eigenvalues if they are provided.

4 Prox
A list of proximity operators is given:

e prox_elll.m e prox_VonNeu_Schatten2.m

e prox_LogDet.m

=]

e prox_Froben Schattenl.

e prox_LogDet_Bounded.m
e prox_Froben_Schatten2.m

prox_LogDet_Schattenl.m

e prox_LogDet_iSchattenl.m prox_VonNeu_Schattenl.m

e prox_LogDet_Schatten2.m e prox._svd.m

This is a subset of the larger list presented n [1].

These proximity operator are coded in such way that the actual computation is carried only on the eigen-
values, exploiting the spectral properties of the functionals involved.

Suppose that the proximity operator of the function log det(C) 4 uoR1 (C) wrt Y to has to computed:

1
argmin log det(C) + poR1 (C) + %“C - Y|
c

with v = 1 and pg = 0.1. The steps to do are
1. create a function handle for the desired functional, namely prox_LogDet_Schattenl

2. invoke
prox_svd(Y, 1, prox_LogDet_Schattenl, 0.1)

In general, the proximity operator of the function myfun at Y is computed by the call
prox_svd(Y, gamma, myfun_handle, varargin)

The 4th argument of prox_svd can be of any length: this input provides the possibility of including some
further parameters for myfun.

5 Solvers

This folder gather the m-files implementing the optimization methods. covsel.m has been downloaded from
[3]: its documentation is not included here.

5.1 DR.matrix

Algorithm 1 of [1] is implemented in DR_matix.m. The mandatory input consist of the initial estimate, of the
given data S, of the parameter « for the inner proximity operators and of the regularization paramters o and
1. The optional inputs must be given in pairs: >KEYWORD’, value.

Input ‘ type ‘ Description ‘ Default
MANDATORY INPUT

Ck double array | initial estimate none

gamma double parameter for the proximal operator none

mu0 double regularization parameter for g0 none
mul double regularization parameter for gl none
S double array | given symmetric semidefinite positive matrix none

OPTIONAL INPUT

>ITER’ integer maximum number of iterations. 1000

iterations; 2’ stands for controlling the relative decreas-
ing of the objective function value below the tolerance
inn_tol. '3’ stands for checking the relative distance be-
tween two successive

>STOP’ integer stopping criterion for DR. ’1’ stands for running all the | 1
| |
| |
| |
| |
| |

>LAMBDA’ double DR parameter ‘ 1.5
B2 string Fit-to-data functional ‘ ’LogDet’
GO’ string eigenvalues regularization functional ‘ ’Shattenl’
’G1? string regularization functional ‘ ’ell_1°
’0BJ’ double array | Benchmark for computing performances. ‘ empty
’VERBOSE’ | integer Verbosity. ’1’ (or greater than 0) prints iterations infor- | 1
mation on the shell. 0’ stands for silence
’PARAMS’ double array | parameters needed for computing g0 and its proximal | [mu0, 0].
operators. See the help of the related function
OouTPUT
’Ck?’ double array | estimated solution
’Ck12’ double array | estimated solution (At convergence, Ck=Ck12)
>fobj’ double array | vector of functional’s values
’t_vec’ double array | employed time per iteration
’FPR’ double array | if obj is not empty, false positive rate wrt obj
>TPR’ double array | if obj is not empty, true positive rate wrt obj
’ERR’ double array | if obj is not empty, relative reconstruction error wrt obj

5.2 MMDR.m

The m—function MMDR.m implements the majorization—minimization approach for solving

argmin logdet (C™" + 0°I4) + trace ((Id + 02C)_1 CS) + 10g0(C) + p191(C)
ces,

and uses the Douglas—Rachford approach to compute the inner steps. It does not invoke the function in
DR_matrix.m: the DR solver is hard—coded in this function, future versions of this software will may include
further options for the inner solver.

Input ‘ type Description ‘ Default
MANDATORY INPUT

Ck double array | initial estimate none
gamma double parameter for the proximal operator none
mu0 double regularization parameter for g0 none
mul double regularization parameter for gl none

S double array | given symmetric semidefinite positive matrix none
sigma double noise level none

OPTIONAL INPUT
>INN_ITER’ ‘ integer ‘ maximum number of DR iterations. ‘ 100

>INN_STOP’ | integer stopping criterion for DR. Option 1 stands for running
all the iterations; options 2 stands for controlling the
relative decreasing of the objective function value below
the tolerance inn_tol. Options 3 stands for checking the

relative distance between two successive iterations.

le-6
1000

>INN_TOL’ ‘ double tolerance for the inner stopping criterion.

’EXT_ITER’ ‘ integer maximum number of MM iterations.

’EXT_STOP’ | integer
all the iterations; options 2 stands for controlling the
relative decreasing of the objective function value below
the tolerance inn_tol.

|
|
stopping criterion for MM. Option 1 stands for running | 1
|
|
|
|
|
|

’EXT_TOL’ \ double tolerance for the external stopping criterion. le-6
’LAMBDA’ ‘ double DR parameter 1.5
'F? ‘ string Fit-to-data functional ’LogDet’
’GO’ ‘ string eigenvalues regularization functional ’Shattenl’
’G1? ‘ string regularization functional ’ell_1’
’0BJ’ ‘ double array | Benchmark for computing performances. empty
’VERBOSE’ | integer Verbosity. ’1’ (or greater than 0) prints iterations infor- | 1
mation on the shell. 0’ stands for silence
’PARAMS’ double array | parameters needed for computing g0 and its proximal | [mu0, 0].
operators. See the help of the related function
OouTPUT
Cn12 double array | estimated solution
temp double array | estimated solution (At convergence, Ck=Ck12)
fobj double array | vector of functional’s values
Q cell cell containing the objective functional related to each
subproblem.
t_vec double array | employed time per iteration
ERR double array | if obj is not empty, relative reconstruction error wrt obj

6 MAIN comparison.m

Here the file MAIN_comparison.m is fully explained in its details.

clearvars
close all
clc

Clean the workspace, close all the windows and clean the shell: actually, the really important one is the first.

load TEST_parameters

The matrix A stored in TEST_parameters.mat contains the noise levels and the values for pg and py for all of
the three solvers employed in the numerical tests. A is organized as follows:

| MM | DR | GLASSO
o | pw | o m | p | m | m
0.1 | 0.0700 | 0.0400 | 0.0900 | 0.0400 | 0.0300
0.2 | 0.0699 | 0.0337 | 0.3000 | 0.0400 | 0.0300
0.3 | 0.0680 | 0.0322 | 0.3000 | 0.0400 | 0.0300

0.4 | 0.0700 | 0.0300 | 0.5300 | 0.0400 0.0300
0.5 | 0.0716 | 0.0278 | 0.8158 | 0.0367 0.0300

0.6 | 0.0700 | 0.0233 | 1.2204 | 0.0411 0.0300
0.7 | 0.0700 | 0.0200 | 1.6667 | 0.0479 0.0300
0.8 | 0.0600 | 0.0200 | 2.2100 | 0.0500 0.0300

The first column stores the noise levels. The second and the third column contain the regularization parameter
values for gy and gp, respectively, for the MM approach depending on the noise level. The fourth and the fifth
column contain the values for pg and p; for the DR algorithm and finally the last column stores the values for
w1 for each noise level for GLASSO approach. These values were manually searched, aiming to obtain the best
results for each algorithm in terms of reconstructed values, FPR and TPR. Thus, the i—th row contains the
values for the regularization parameters for noise level o = ¢/10.

Set the seed and generated the seeds

for different noise realizations for

each level

rng (’default’);

Lmax = 10;

SEED = round(le4*rand(8,Lmax));
Allocating memory for storing the performance evaluators
GLASSO

= zeros (Lmax,8);

= zeros (Lmax,8);

oo oo op

|
QQ
|

g

zeros (Lmax ,8) ;
zeros (Lmax ,8) ;

|

=

=
1]

=]
@ 3
]

zeros (Lmax ,8) ;
zeros (Lmax ,8) ;

1 U2 oo 1 U2 oo Y1 2 oo e
=
=
1]

o
o
1]

The seed is set in order to assure the reproducibility of the tests presented. Lmax sets the number of simulation
for each noise level: with the default option, for o; = i/10 10 different realization of noise are generated: then,
for each realization at i—th level the performance are stored in the allocated vectors. For example, vector F_MM
stores the FPR provided by the MM approach. The variable SEED is used for the synthetic data generation.

Generating data for each realization of noise level. Notice that
since the eseed option 1is set to the default, the position of the
nonzero entries is always the same. The nseed options 1is set for
having Lmax different realization of the noise level sigma

[SIGMA, ISIGMA, S] = GenerateData(’NOISE’,sigma,’nseed’,SEED(K,L));

de oo oo e

GenerateData create the covariance and the precision matrices, together with the empirical covariance matrix
computed on the realizations of a Gaussian multivalued random variable of zero mean and covariance SIGMA.
The variable SEED aims to generate different noise realizations, but the setting rng(’default’); previously
done assures that every time the code is run the results are the same.

%% BOYD

mul_boyd A(K,8);

[X, history]l = covsel(S, mul_boyd, 1, 1,’QUIET’,1);
S_GL(L,K) norm(inv (X)-SIGMA, fro’)/norm(SIGMA, fro’);
F_GL(L,K) sum(X(:)"=0 & ISIGMA(:)==0)/zero_obj;

The parameter for ¢; regularization is set (retrieving it from A) and then the method described in [2] is invoked.
The relative reconstruction error

Jen™ -5
1213

wrt to SIGMA is stored in position (L, K) of S_GL for the L-th realization of noise at level K. In the same
fashion the fpr is stored in F_GL. The matrix C9 stands for the precision matrix restored by GLASSO.

%% MMDR
J = rand(size(S));
J = JxJ’ + eye(size(J));

nz =120

Figure 1: Precision Matrix ISIGMA (left)
ESEED=1000%*rand and SAMPLES=100.

and empirical covariance matrix S (right) with NSEED=165,

optionsMMDR .muO = A(K,2);
optionsMMDR .muOb =1;
optionsMMDR.mul = A(K,3);
optionsMMDR . gamma = 1; % Prox parameter
optionsMMDR.INNITER = 2000; % number of iterations
optionsMMDR. innstop = 2; % stopping criterion
optionsMMDR. inntol = 1le-10; % tolerance for the criterion
optionsMMDR .EXTITER = 20; % number of iterations
optionsMMDR.extstop = 2; % stopping criterion
optionsMMDR.exttol = le-8; % tolerance for the criterion
optionsMMDR. lambda =1;
optionsMMDR.F = ’LogDet’;
optionsMMDR. g0 = ’iSchattenl’;
optionsMMDR. init = J; %S + eye(size(S));
optionsMMDR . params = [A(K,2), sigmal;
[C_fin, Cn, fobjG, Q, t_vecG, RMSEC] = MMDR(optionsMMDR.init,...

optionsMMDR.gamma, A(K,2), A(X,3), S, sigma,

>INNITER’, optionsMMDR.INNITER, ...

>INNSTOP’, optionsMMDR.innstop, ...

>INNTOL, optionsMMDR. inntol, ...

’EXTITER’, optionsMMDR.EXTITER, ...

’EXTSTOP’, optionsMMDR.extstop, ...

EXTTOL, optionsMMDR.exttol, ...

>LAMBDA’, optionsMMDR.lambda, ...

F, optionsMMDR.F, ...

’GOo”’, optionsMMDR.gO, ...

’0BJ’, ISIGMA, ...

’verbose’, 0,...

>PARAMS’, optionsMMDR.params);
S_MM(L,K) = norm(inv(C_fin)-SIGMA,’ fro’)/norm(SIGMA,’ fro’);

F_MM(L,K) sum(C_fin(:)"=0 & ISIGMA (:)==0)/zero_obj;

The MMDR function is invoked: all the settings are stored in the structure optionsMMDR. The spirit behind this
choice is that one can save in a .mat file the settings for a particular problem, storing thus just one variable
(optionsMMDR) instead of the list of choices. S_MM and F_MM are stored in the same fashion of the previous

method.

%% DR

optionsDR optionsMMDR;
optionsDR.mu0 = A(K,4);
optionsDR.mul = A(K,5);

optionsDR.params = A(K,4);

[C£E_DR,”,fobjDR,t_vecDR,FPR,TPR,RMSE] = DR_matrix(optionsDR.init, ...
optionsDR.gamma, optionsDR.mu0O, optionsDR.mul, S,...

>ITER’, optionsDR.INNITER, ...
’STOP’, optionsDR.innstop, ...
’TOL’, optionsDR.inntol, ...
>LAMBDA "’ , optionsDR.lambda, ...
’F?, optionsDR.F, ...

GO, optionsDR.gO0, ...
’0BJ’, ISIGMA, ...

>VERBOSE’, O0,...
>PARAMS’, optionsDR.params);

S_DR(L,K)
F_DR(L,K)

norm(inv (Cf_DR)-SIGMA, ’fro’)/norm(SIGMA, ’fro’);
FPR(end);

The Douglas—Rachford algorithm is applied in the same manner of the MM approach, employing the optionsDR
variable!. S_DR and F_DR store the same error measurements as the two other methods.

%% Plotting the result
h = plot(1:8,mean(S_MM,1),’-0’,’Linewidth’,2);

h.MarkerFaceColor = h.Color;

hold on

h = plot(1:8,mean(S_DR,1),’:>’,’Linewidth’,2);
h.MarkerFaceColor = h.Color;

h = plot(1:8,mean(S_GL,1),’--<’,’Linewidth’,2);

h.MarkerFaceColor = h.Color;
legend (MM’ ,’DR’,’GLASS0’)
title(’Covariance rmse’)
axis([1 8 0 1])

figure

h = plot(1:8,mean(F_MM,1),’-0’,’Linewidth’,2);
h.MarkerFaceColor = h.Color;

hold on

h = plot(1:8,mean(F_DR,1),’:>’,’Linewidth’,2);
h.MarkerFaceColor = h.Color;

h = plot(1:8,mean(F_GL,1),’--<’,’Linewidth’,2);
h.MarkerFaceColor = h.Color;

legend (’MM’,’DR’,>GLASS0’)

title (’fpr’)

axis([1 8 0 .45])

Last lines of code that plot the results as presented in [1]. When using this code for other tests, please remove
the commands for the axis limitation, in order to have the proper visualization of the new results.

7 Molene Dataset

The M-file MAIN_Molene.m allows to choose between MMDR.m, covsel.m [3] or DR_matrix.m to address the
problem of graph estimation related to data extracted from the Molene weather dataset, available at [4]. The
file is fully explained below.

clearvars
close all
clc

Clean the workspace, close all the windows and clean the shell: actually, the really important one is the first.

addpath SideFuns/
addpath Funs/
addpath Solvers/

IFuture version may include the invocation as [results] = SolverFUN(options), where all the options for the method are
extracted from the options structure.

addpath Prox/
addpath Molene_Data/

These lines add to the MatLab path the folders containing the m—files and the m—functions needed.

load WindData.mat

This line loads the data used for the experiment (in the Molene_Data folder). This file contains

wind_direction: a double array belonging to R3°*72 containing the hourly recordings done by 30 weather
stations of the direction of the wind from 1st January 2014 to 3rd January 2014;
wind_intensity: a double array belonging to R3*72 containing the hourly recordings done by 30 weather
stations of the intensity of the wind from 1st January 2014 to 3rd January 2014;
wind_dirXint: a double array belonging to R3°*72 containing the hourly recordings of the direction
multiplied (component—wise) by intensity of the wind from 1st January 2014 to 3rd January 2014: this

array is computed as wind_direction.*wind_intensity;

S_direction: a double array consisting in the covariance matrix of wind_direction;
S_intensity: a double array consisting in the covariance matrix of wind_intensity;
S_dirXint: a double array consisting in the covariance matrix of wind_dirXint;
sigma_direction: the standard deviation of the elements of wind_direction;
sigma_intensity: the standard deviation of the elements of wind_intensity;
sigma_dirXint: the standard deviation of the elements of wind_dirXint;

coords: double array belonging to R39%3

weather stations

containing the coordinates (latitude and longitude) of the

NameCoords: cell array containing the names of the weather stations.

D: double array belonging to R30%30

an upper triangular matrix.

containing the relative distances between the stations; it consists of

The Molene_Data folder contains also the map.png file, which represent the region between 47°N-49°N and
2°S-6°S: this file is used in the m—file ShowGraphOnMap.m for the superimposition of the recovered graph on the
actual map, enlightening also the position of the weather stations.

S = S_dirXint;
sigma = sigma_dirXint;
D = D+D’;

D = 0.1.7D;

S = D.xS;

S and sigma are the covariance matrix S and the noise level o, respectively, in the variational formulation (2).
The default values are the ones referring to directionxspeed of the wind modulated by the distance matrix D
(see [1, Section 5] for further details).

S;

The starting point for the methods

method = ’MMDR’;

The file MAIN_molene.m contemplates the application of MM algorithm, the algorithm [3] or the Douglas—
Rachford procedure, by setting the variable method to *MMDR’ (default), GLASSO or DR, respectively.

10

Figure 2: A recovered graph superimposed on the region.

if strcmp(method,’MMDR’)
elseié'étrcmp(method,’GLASSO’)
elseif.;trcmp(method,’DR’)
else

error (’Unknown method.’)
end

Invocation of the selected method; an error message will be displayed if the method variable refers to an
unknown algorithm. Please refer to Section 5.2 for the options and settings for MMDR.m, to [3] for the options
and settings for GLASSO and to Section 5.1 for the options and settings for DR_matrix.m.

ShowGraphOnMap

M-file (contained in SideFuns folder) which superimposes the recovered graph on the map contained in the file
map.png (cfr Figure 2).

8 Maintenance

This package is available at http://www-syscom.univ-mlv.fr/~benfenat/ProjSoft.html and at http:
//www-syscom.univ-mlv.fr/~chouzeno/Logiciel.html.

It does not need any particular package nor MatLab toolbox.

For bug reporting, suggestions and/or problem please send an email to

alessandro.benfenati@unimi.it
References

[1] A. Benfenati, E. Chouzenoux and J.—C. Pesquet, Prozimal Approaches for Matriz Optimization Problems:
Application to Robust Precision Matriz Estimation, submitted

11

[2] S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed Optimization and Statistical Learning
via the Alternating Direction Method of Multipliers, Found. Trends Mach. Learn., 3, 2011, 1-122,

[3] http://stanford.edu/~boyd/papers/admm/covsel/covsel_example.html

[4] https://www.data.gouv.fr/fr/datasets/donnees-horaires-des-55-stations-terrestres-de-la-z
one-large-molene-sur-un-mois/

12

