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Graphical models

« A graph G consists of a pair (V, ), with V the set of vertices and £ the
set of edges.
* In graphical models, each vertex represents a random variable, and the

graph gives a visual way of understanding the joint distribution P of a set
of random variables X:
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* In graphical models, each vertex represents a random variable, and the
graph gives a visual way of understanding the joint distribution P of a set
of random variables X:

* In an undirected graph, the edges have no directional arrows. We say
that the pairwise Markov property holds if, for every (j, k) € V2, the
absence of an edge between XU) and X(¥) is equivalent to the
conditionally independence of the corresponding random variables, given
the other variables:

xU) LX(M‘X(V\{M}).
x Undirected 4 pairwise Markov = conditional incilepe%ldenqe graph ’TlOdvqu;w
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Gaussian graphical model

* A Gaussian graphical model (GGM) is a conditional independence graph with

a multivariate Gaussian distribution:

with positive definite covariance matrix ¥ € RP*P.

XP)y ~ N(0,%)
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—Kik/ Kjj,

« Consider the linear regression: XU) = ﬂ,((j)X(k) + EreV\{j,k} 5£j)X(’) + €V
Bi(k) = —Kii/ Kik

with €U) zero-mean and independant from X(), r € V'\ {j}. Then,
)
k
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Gaussian graphical model

* A Gaussian graphical model (GGM) is a conditional independence graph with

a multivariate Gaussian distribution:

..... X)) ~ N(0, %)
with positive definite covariance matrix ¥ € RP*P.
« The partial correlation between XU) and X*) given X(V\U:k}) equals:
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Pik|V\{jk}y = —

with K=x71
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—Kik/ Kjj,

« Consider the linear regression: XU) = ﬂ,g)X(k) + EreV\{j,k} 5£j)X(’) + €0)
Bi(k) = —Kix/ Kik
* The edges in a GGM are then related to ¥, K and § through:

with €U) zero-mean and independant from X(), r € V'\ {j}. Then,
)
k
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Nodewise regression

* We aim at inferring the presence of edges in a GGM. Nodewise
regression consists in performing many regressions [Meinshausen et al.,
2006/, relying on the fact that:

X0 =S EXO 0, o1
i

1) For j=1,...,p, apply a variable selection method providing an
estimate S(J) of

§m={ﬂ@D#Qr=L“wmr#&

~ Lasso regression of XU) versus {X(),r = j} yields 3U), which then
yields the support estimate $U) = {r|ﬂ(f #+ 0}

2) Build an estimate of the graph structure, using AND/OR rule:
Edge present between nodes j and k < k € SU) AND/OR j e 5K



Graphical LASSO

* We aim at inferring GGM parameters (u, ) from n i.i.d realizations:

X1,. .., Xp of N(u,X) with p € RP and ¥ € RP*P sdp. We introduce the
sample mean and the empirical covariance matrix:

A

p=ntY X, S=ntY (X - p)Xi— )
i—1 i—1

Then, the negative Gaussian log-likelihood reads

n (= 7YXy, ..., X,) = —logdet T~ 4 trace(SX 1) 4 constant.

% GLASSO is an estimator of ¥ ! based on the use of ¢; penalty:

51 = argming 1.y — logdet ¥ + trace(SE 1) + |7,
with |[Z71|; = > i<k ]Zﬁ(ll, and X > 0 regularization parameter.
« Convex optimization problem. Several solvers available.
Example: ADMM algorithm.
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Four different GLASSO solutions for the flow-cytometry data with p = 11
proteins measured on n = 7466 cells [Sachs etﬁ]al., 2003L
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Example

A=0.424

A=0.412

Six different GLASSO solutions for the genomic dataset about riboflavin
al., 2010].

production with Bacillus subtilis, p = 160 and n = 115. [Meinshausen et
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