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Motivation

Matrix factorization: Given a set of data entries x; € R?, 1 < j < n, and

a dimension r < min(p, n), we search for r basis elements wy, 1 < k <'r
such that

r
X~y wichi(k)
k=1

with some weights h; € R".
Equivalent form:

X ~ WH

> X e RP*"st. X(:,j) =xjfor1<j<n,
> WeRP st. W(,k)=wyforl<k<r,
> HeR™ M st. H(:,j) = h for 1<j<n.
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Motivation

= low-rank approximation / linear dimensionality reduction

Two key aspects:

1. Which loss function to assess the quality of the approximation ?

Typical examples: Frobenius norm, KL-divergence, logistic,
Itakura-Saito.

2. Which assumptions on the structure of the factors W and H ?

Typical examples: Independency, sparsity, normalization,
non-negativity.

NMF: find (W,H) st. X~ WH, W >0,H>O0.




Example: Facial feature extraction

r
X, 5) ~ Z W(:. k) H(k,j) = WH(.j)
—— o —— N — ——

jth facial image facial features importance of features approximation
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Decomposition of the CBCL face database [Lee and Seung, 1999]

= Some of the features look like parts of nose or eye. Decomposition of a
face as having a certain weight of a certain nose type, a certain amount of
some eye type, etc.



Example: Spectral unmixing

X(:,7) 2 E W(:, k) H(k,j)
N——— =i N—— N——
spectral signature spectral signature abundance of kth endmember
of jth pixel of kth endmember in jth pixel
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Decomposition of the Urban hyperspectral image [Ma et al., 2014]

= NMF is able to compute the spectral signatures of the endmembers and
simultaneously the abundance of each endmember in e%ch pixel. _




Example: Topic modeling in text mining

Goal: Decompose a term-document matrix, where each column represents
a document, and each element in the document represents the weight of a

certain word (e.g., term frequency - inverse document frequency). The

ordering of the words in the documents is not taken into account (=
bag-of-words).

X(.j) =~ W, k) H(k,j)
I e =i oo Ne——r
jth document kth topic

importance of kth topic

in jth document

Topic decomposition model [Blei, 2012]

= The NMF decomposition of the term-document matrix yields

components that could be considered as “topics”, and decomposes each
document into a weighted sum of topics.
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Multiplicative algorithms for NMF

Challenges: NMF is NP-hard and ill-posed. Most algorithms are only
guaranteed to converge to stationary point, and may be sensitive to
initialization.

We present here a popular class of methods introduced in [Lee and Seung,

1999], relying on simple multiplicative updates. (Assumption: X > 0).
* Frobenius norm: || X — WH|%

W<+ Wo

WHHT

wT X
H < Ho w/rwn
* KL-divergence: KL(X, WH)

2ot=1(HieXie/[WH]ic)

VVik — W /=1 Zk[ f;_lk[ 4

Z ( lkXU/[WH]U)
Z,_l Vvlk

ij < ij
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Sketch of proof

The multiplicative schemes rely on the use of separable surrogate
functions, majorizing the loss w.r.t. W and H, respectively

x Frobenius norm: For every (X, W,H,H) >0,and 1 <j <n

Hy oz \2
[[Whj — XI5 < Z [Wh ] 4 Z Wik Hij ( I,:I—U[Whj]i)

* Kl-divergence: For every (X, W,H,H)>0,and 1< <n

P

KL, Whi) <Y (X log X — X + [Whj]i
i=1
X;; Hei -
Wi A log [ 2 [Wh;
[Wh], Z kMkj Og<ij[ il ))
=] =) = = Al
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Weighted NMF

* Weigthed Frobenius norm: ||£ o (X — WH)||%

(ZoX)HT

W Wo s wmyar
WT(XoX)
H < H o s owin)

x Weigthed KL-divergence: KCL(X, Diag(p) WHDiag(q))

Wik + Wi Zizal

HieXie/ (pi[WH]ie))
> o—1 9eHie

ij < ij

Sory (Wi Xi/ (g [WH];))
Zp

i—1 Pi VVik
v A typical application is matrix completion to predict unobserved data,

for instance in user-rating matrices. In that case, binary weights are used,
signaling the position of the available entries in X.
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Regularized NMF

* Regularized Frobenius norm:

1 W v
SIX = WHIE + Sy HIE + XMl + 2w

XHT
W Wo wmm—i

HeHo WTX-AL yn
the penalty terms.

(WT Wul)H
v The ambiguity due to rescaling of (W, H) and to rotation is frozen by
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Other NMF algorithms

Multiplicative updates (MU) are simple to implement but they can be slow
to converge, and are sensitive to initialization. Other strategies are listed
below (for the Least-Squares case):

» Alternating Least Squares: First compute the unconstrained solution w.r.t.
W or H and project onto nonnegative orthant. Easy to implement but
oscillations can arise (no convergence guarantee). Rather powerful for
initialization purposes.

» Alternating Nonnegative Least Squares: Solve constrained problem exactly,
w.r.t. W and H, in alternate manner, using inner solver (e.g., projected

gradient, Quasi-Newton, active set). Expensive. Useful as refinement step of
a cheap MU.

» Hierarchical Alternative Least Squares: Exact coordinate descent method,
updating one column of W (resp. one line of H) at a time. Simple to
implement, and similar performance than MU.



