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Inverse problems and large scale optimization
[Microscopy, ISBI Challenge 2013, F. Soulez]

Original image Degraded image

x ∈ R
N z = D(Hx) ∈ R

M

◮ H ∈ R
M×N : matrix associated with the degradation operator.

◮ D : RM → R
M : noise degradation.

Inverse problem:
Find a good estimate of x from the observations z , using some
a priori knowledge on x and on the noise characteristics .
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Inverse problems and large scale optimization

Inverse problem:

Find an estimate x̂ close to x from the observations z = D(Hx) .

◮ Inverse filtering (if M = N and H is invertible)

x̂ = H−1z

= H−1(Hx + b) ← if b ∈ R
M is an additive noise

= x + H−1b

→ Closed form expression, but amplification of the noise if H is

ill-conditioned (ill-posed problem).
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Inverse problems and large scale optimization

Inverse problem:

Find an estimate x̂ close to x from the observations z = D(Hx) .

◮
✭
✭
✭
✭

✭
✭
✭✭

Inverse filtering
◮ Variational approach

x̂ ∈ Argmin
x∈RN

f1(x)︸︷︷︸
Data fidelity term

+ f2(x)︸︷︷︸
Regularization term
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Find an estimate x̂ close to x from the observations z = D(Hx) .

◮
✭
✭
✭
✭

✭
✭
✭✭

Inverse filtering
◮ Variational approach

x̂ ∈ Argmin
x∈RN

f1(x)︸︷︷︸
Data fidelity term

+ f2(x)︸︷︷︸
Regularization term

Examples of data fidelity term

◮ Gaussian noise
(∀x ∈ R

N) f1(x) =
1

σ2
‖Hx − z‖2

◮ Poisson noise

(∀x ∈ R
N) f1(x) =

M∑

m=1

(
[Hx ](m) − z(m) log([Hx ](m))

)
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Examples of regularization terms (1)

◮ Admissibility constraints

Find x ∈ C =
M⋂

m=1

Cm

where (∀m ∈ {1, . . . ,M}) Cm ⊂ R
N .
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Examples of regularization terms (1)

◮ Admissibility constraints

Find x ∈ C =
M⋂

m=1

Cm

where (∀m ∈ {1, . . . ,M}) Cm ⊂ R
N .

◮ Variational formulation

(∀x ∈ R
N) f2(x) =

M∑

m=1

ιCm
(x)

where, for all m ∈ {1, . . . ,M}, ιCm
is the indicator function

of Cm:

(∀x ∈ R
N) ιCm

(x) =

{
0 if x ∈ Cm

+∞ otherwise.
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Examples of regularization terms (2)

◮ ℓ1 norm (analysis approach)

(∀x ∈ R
N) f2(x) =

K∑

k=1

∣∣∣[Fx ](k)
∣∣∣ = ‖Fx‖1

F ∈ R
K×N : Frame decomposition operator (K ≥ N)

F

signal x frame coefficients
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Examples of regularization terms (2)

◮ ℓ1 norm (analysis approach)

(∀x ∈ R
N) f2(x) =

K∑

k=1

∣∣∣[Fx ](k)
∣∣∣ = ‖Fx‖1

◮ Total variation

(∀x = (x (i1,i2))1≤i1≤N1,1≤i2≤N2 ∈ R
N1×N2)

f2(x) = tv(x) =

N1∑

i1=1

N2∑

i2=1

‖∇x (i1,i2)‖2

∇x (i1,i2) : discrete gradient at pixel (i1, i2).
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Inverse problems and large scale optimization

Inverse problem:

Find an estimate x̂ close to x from the observations z = D(Hx) .

◮
✭
✭
✭
✭

✭
✭
✭✭

Inverse filtering
◮ Variational approach (more general context)

x̂ ∈ Argmin
x∈RN

m∑

i=1

fi (x)

where fi may denote a data fidelity term / a (hybrid) regularization
term / constraint.
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Inverse problems and large scale optimization

Inverse problem:

Find an estimate x̂ close to x from the observations z = D(Hx) .

◮
✭
✭
✭
✭

✭
✭
✭✭

Inverse filtering
◮ Variational approach (more general context)

x̂ ∈ Argmin
x∈RN

m∑

i=1

fi (x)

where fi may denote a data fidelity term / a (hybrid) regularization
term / constraint.

→ Often no closed form expression or solution expensive to
compute (especially in large scale context).

◮ Need for an efficient iterative minimization strategy !
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Main challenges

◮ How to exploit the mathematical properties of each term
involved in f ? How to handle constraints efficiently ? How to
deal with non differentiable terms in f ? Which convergence
result can be expected if f is non convex?

◮ How to reduce the memory requirements of an optimization
algorithm? How to avoid large-size matrix inversion?

◮ What are the benefits of block alternating strategies? What
are their convergence guaranties?

◮ How to accelerate the convergence speed of a first-order
(gradient-like) optimization method?
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Outline

1. Introduction to optimization
◮ Notation/definitions
◮ Existence and unicity of minimizers
◮ Differential/subdifferential
◮ Optimality conditions

2. Majoration-Minimization approaches
◮ Majorization-Minimization principle
◮ Majorization techniques
◮ MM quadratic methods
◮ Forward-backward algorithm
◮ Block-coordinate MM algorithms
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Introduction to optimization
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Domain of a function

Let f : RN → R ∪+∞.
◮ The domain of f is dom f = {x ∈ R

N | f (x) < +∞}.
◮ The function f is proper if dom f 6= ∅.
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Indicator function

Let C ⊂ R
N .

The indicator function of C is

(∀x ∈ R
N) ιC (x) =

{
0 if x ∈ C

+∞ otherwise.

Example:
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Epigraph

Let f : RN → R ∪+∞. The epigraph of f is

epi f =
{
(x , ζ) ∈ dom f × R

∣∣ f (x) ≤ ζ
}

Examples:
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Lower semi-continuous function

Let f : RN → R ∪+∞.
f is a lower semi-continuous function on R

N if and only if epi f is
closed
Examples:
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Convex set

C ⊂ R
N is a convex set if

(∀(x , y) ∈ C 2)(∀α ∈]0, 1[) αx + (1− α)y ∈ C
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Coercive function

Let f : RN → R ∪+∞.
f is coercive if lim‖x‖→+∞ f (x) = +∞.
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Convex function

f : RN → R ∪+∞ is a convex function if
(
∀(x , y) ∈ (RN)2

)
(∀α ∈]0, 1[)
f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y)

◮ f is convex ⇔ its epigraph is convex.

Examples:
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Strictly convex function

f : RN → R ∪+∞ is strictly convex if

(∀x ∈ dom f )(∀y ∈ dom f )(∀α ∈]0, 1[)
x 6= y ⇒ f (αx + (1− α)y) < αf (x) + (1− α)f (y).
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Existence/unicity of minimizers

Theorem

Let f : R
N → R ∪ +∞ be a proper l.s.c. coercive

function.
Then, the set of minimizers of f is a nonempty compact
set.

Convex case
• Let f : RN → R ∪+∞ be a proper convex function such that
µ = inf f > −∞. Then, every local minimizer of f is a

global minimizer . Moreover, if f is strictly convex, then there exists at

most one minimizer.

• Let C a closed convex subset of RN . Let f : RN → R ∪+∞ proper,

convex, lsc such that dom f ∩ C 6= ∅. If f is coercive or C is bounded ,

then there exists x̂ ∈ C such that f (x̂) = infx∈C f (x). If, moreover, f is
strictly convex, this minimizer x̂ is unique.
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Subdifferential

Let f : RN → R ∪+∞ be a proper function. The (Moreau)

subdifferential of f , denoted by ∂f is such that

∂f : RN → 2R
N

x → {u ∈ R
N | (∀y ∈ R

N) 〈y − x |u〉+ f (x) ≤ f (y)}

f (y)

f (x) + 〈y − x |t〉

y

x

t ∈ ∂f (x)
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Optimality conditions

Fermat’s rule : 0 ∈ ∂f (x)⇔ x ∈ Argmin f

Differentiable case

Let C be a nonempty convex subset of RN . Let f : RN → R ∪+∞
be Gâteaux differentiable at x̂ ∈ C . If x̂ is a local minimizer of f
over C , then

(∀y ∈ C ) ∇f (x̂)⊤(y − x̂) ≥ 0.

If x̂ ∈ int(C ), then the condition reduces to

∇f (x̂) = 0.



Introduction Introduction to optimization Majoration-Minimization approaches

Optimization for data processing at a large scale 22/32

Majoration-Minimization approaches
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Majorant function

Let f : RN → R. Let y ∈ R
N .

h(·, y) : RN → R is a majorant function of f at y if:

{
(∀x ∈ R

N) f (x) ≤ h(x , y),

f (y) = h(y , y).

f

y

h(·, y)
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Majorization-Minimization algorithm

Problem: Minimization of function f : RN → R.

MM Algorithm

xn+1 ∈ Argmin
x∈RN

h(x , xn)

where h(·, xn) is a majorant function
for f at xn.

f

xn xn+1

h(·, xn)

⇒ The sequence (f (xn))n∈N is decreasing:

(∀n ∈ N) f (xn+1)≤
M
h(xn+1, xn)≤

M
h(xn, xn) = f (xn)
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Majorization-Minimization algorithm

Problem: Minimization of function f : RN → R.

MM Algorithm

xn+1 ∈ Argmin
x∈RN

h(x , xn)

where h(·, xn) is a majorant function
for f at xn.

f

xn+2xn+3 · · ·

h(·, xn+2)

⇒ The sequence (f (xn))n∈N is decreasing:

(∀n ∈ N) f (xn+1)≤
M
h(xn+1, xn)≤

M
h(xn, xn) = f (xn)



Introduction Introduction to optimization Majoration-Minimization approaches

Optimization for data processing at a large scale 25/32

Majorization techniques

◮ Subdifferential inequality

◮ Descent lemma

◮ Proximity operator

◮ Even smooth functions

◮ Jensen’s inequality
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Majorization techniques

Even differentiable function

Let f be defined as

(∀x ∈ R) f (x) = ψ(|x |)

where
(i) ψ is differentiable on ]0,+∞[,

(ii) ψ(
√·) is concave on ]0,+∞[,

(iii) (∀x ∈ [0,+∞[) ψ̇(x) ≥ 0,

(iv) limx→0
x>0

(
ω(x) := ψ̇(x)

x

)
∈ R.

h(.,y)

f

y

Then, for all y ∈ R,

(∀x ∈ R) f (x) ≤ f (y) + ḟ (y)(x − y) +
1

2
ω(|y |)(x − y)2.
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Examples of functions f

f (x) ω(x)

|x | − δ log(|x |/δ + 1) (|x |+ δ)−1

{

x
2 if |x | < δ

2δ|x | − δ2 otherwise

{

2 if |x | < δ

2δ/|x | otherwise

C
o
n
ve
x

log(cosh(x)) tanh(x)/x

(1 + x
2/δ2)κ/2 − 1 (κ/δ2)(1 + x

2/δ2)κ/2−1

1− exp(−x
2/(2δ2)) (1/δ2) exp(−x

2/(2δ2))

x
2/(2δ2 + x

2) 4δ2/(2δ2 + x
2)2

{

1− (1− x
2/(6δ2))3 if |x | ≤

√
6δ

1 otherwise

{

(1/δ2)(1− x
2/(6δ2))2 if |x | ≤

√
6δ

0 otherwise

N
o
n
co
n
ve
x

tanh(x2/(2δ2)) (1/δ2)(cosh(x2/(2δ2)))−2

log(1 + x
2/δ2) 2/(δ2 + x

2)

(λ, δ) ∈]0,+∞[2, κ ∈ [1, 2]
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Examples of functions f

−1 −0.5 0 0.5 1

0

1

2

3

4

5

6

x

f (x) = (1 + x2

δ2
)1/2 − 1, f (x) = log

(

1 + x2

δ2

)

, f (x) = 1− exp(− x2

2δ2
).
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Majorization techniques

Consequences of Jensen’s inequality

Let ψ : RN → R be a convex function.

• (∀(x , y , c) ∈ (]0,+∞[N)3) ψ
(
c⊤x

)
≤

N∑

i=1

c(i)y (i)

c⊤y
ψ

(
c⊤y

y (i)
x (i)
)
.

• Let ω ∈ [0,+∞[N such that
∑N

i=1 ω
(i) = 1 and ω(i) = 0 iff c(i) = 0.

(∀(x , y , c) ∈ (]−∞,+∞[N)3)

ψ
(
c⊤x

)
≤

N∑

i=1

ω(i)ψ

(
c(i)

ω(i)
(x (i) − y (i)) + c⊤y

)
.
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MM algorithms

◮ Separable MM approach

◮ MM quadratic algorithm

◮ 3MG algorithm

◮ Forward-backward algorithm

◮ Block-alternating MM schemes
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Acceleration via block-alternation

Problem: Minimization of f : RN → R.
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Acceleration via block-alternation

Problem: Minimization of f : RN → R.

x ∈ R
N

x
(1)∈ R

N1

x
(2)∈ R

N2

x
(J)∈ R

Nj

×J
j=1R

Nj = R
N
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Acceleration via block-alternation

Problem: Minimization of f : RN → R.

xf = f

x
(1)

x
(2)

x
(J)
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Acceleration via block-alternation

Problem: Minimization of f : RN → R.

xf = f

x
(1)

x
(2)

x
(J)

⇒ Block-coordinate strategy: Instead of updating the whole
vector x at iteration n ∈ N, restrict the update to a block
jn ∈ {1, . . . , J}.
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Concluding remarks

◮ In large scale optimization, we search for the best possible tradeoff
in terms of computational complexity and convergence rate.

◮ Availability of theoretical convergence results is important, to assess
the reliability of an optimization scheme.

◮ There is rarely a single technique available for the resolution of an
optimization problem.

◮ It is thus always recommended to test and compare different
strategies, for a given application.

Not treated in this course: stochastic optimization, distributed
algorithms, primal-dual strategies, etc.
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