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Original image Degraded image
x € RN z =D(Hx) € RM

» H e RM*N: matrix associated with the degradation operator.
» D: RM — RM: noise degradation.

Inverse problem:
Find a good estimate of X from the observations z, using some
a priori. knowledge on X and on the | noise characteristics .
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Inverse problems and large scale optimization

Inverse problem:

Find an estimate X close to X from the observations _

» Inverse filtering (if M = N and H is invertible)

X=H1z
= H Y (HX+b) <« if b€ RM is an additive noise
=X+ H'b

— Closed form expression, but _ if His

ill-conditioned (ill-posed problem).
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Inverse problems and large scale optimization

Inverse problem:

Find an estimate X close to X from the observations _

> Inv itefing
» Variational approach
X € Argmin f(x) + f(x)
XERN ~—— ——

[Data fidelity term
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Inverse problems and large scale optimization

Inverse problem:

Find an estimate X close to X from the observations _

> Inv itefing
» Variational approach
X € Argmin f(x) + f(x)
XERN ~—— ——

[Data fidelity term

Examples of data fidelity term

» Gaussian noise 1
(vx eRY)  A(x)= allAx = z||?

» Poisson noise M

(xeRY)  A(x)=Y ([Hx](’") — z(m |og([Hx](m)))

m=1
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Examples of regularization terms (1)

» Admissibility constraints
M
Find xeC=[)Cn

m=1

where (Ym € {1,...,M}) C,, C RV.



Introduction Introduction to optimization Majoration-Minimization approaches
00000000 000000000000 00000000000

Optimization for data processing at a large scale 5/32

Examples of regularization terms (1)

» Admissibility constraints
M
Find xeC=[)Cn

m=1

where (Ym e {1,...,M}) C,, C RV,

» Variational formulation
M
(vxeRY)  H() =) e, (%)
m=1

where, for all m e {1,..., M}, ¢, is the _

of Cp:
0 if x e Cp,

+00 otherwise.

(Vx € RV) te,(x) = {
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Examples of regularization terms (2)

» /1 norm (analysis approach)

K
(vx e RY)  hx) =D [IAID] = 1Al
k=1

F € R¥*N: Frame decomposition operator (K > N)

signal x frame coefficients
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Examples of regularization terms (2)

» /(1 norm (analysis approach)

K
(e BY) () =Y |IAV)] = 1Ay
k=1

» Total variation

(VX — ()((1.171-2))]-Sl.lSNL]-SIESN2 c RN1><N2)
N1 Ny

h(x) =t(x) = > [[VxtR)

i1=1ih=1

Vx(i:2) - discrete gradient at pixel (i1, i2).



Introduction Introduction to optimization Majoration-Minimization approaches
00000000 000000000000 00000000000

Optimization for data processing at a large scale 7/32

Inverse problems and large scale optimization

Inverse problem:

Find an estimate X close to X from the observations _

> Inv itefing
» Variational approach (more general context)

where f; may denote a data fidelity term / a (hybrid) regularization
term / constraint.
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Inverse problems and large scale optimization

Inverse problem:

Find an estimate X close to X from the observations _

> Inv itefing
» Variational approach (more general context)

where f; may denote a data fidelity term / a (hybrid) regularization
term / constraint.

— Often no closed form expression or solution expensive to
compute (especially in large scale context).

» Need for an efficient iterative minimization strategy !



Introduction Introduction to optimization Majoration-Minimization approaches
00000080 000000000000 00000000000

Optimization for data processing at a large scale 8/32

Main challenges

> How to exploit the mathematical properties of each term
involved in 7 How to handle constraints efficiently ? How to
deal with non differentiable terms in f 7 Which convergence
result can be expected if f is non convex?

» How to reduce the memory requirements of an optimization
algorithm? How to avoid large-size matrix inversion?

> What are the benefits of block alternating strategies? What
are their convergence guaranties?

> How to accelerate the convergence speed of a first-order
(gradient-like) optimization method?
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1. Introduction to optimization
> Notation/definitions
> Existence and unicity of minimizers
> Differential /subdifferential
» Optimality conditions

2. Majoration-Minimization approaches
» Majorization-Minimization principle
> Majorization techniques
> MM quadratic methods
» Forward-backward algorithm
» Block-coordinate MM algorithms
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Introduction to optimization
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Domain of a function

Let f : RN - R U +o0.
> The [domain of f is dom f = {x € RV | f(x) < +o0}.
» The function f is E if dom f # @.

Domains of the functions?

\ f(x)s ; f(x) &

1 I

)

X

i
=
9

e

domf =R dom f =]0, ¢]
(proper) (proper)
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Indicator function

Let C c RN,

The [indicator function of €' is

0 ifxecC
(x €RY)  ic(x) = e

+o00 otherwise.

Example:

C = [61,02]
A F(X) = 15,0, (X)
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Epigraph

Let f: RV — R U +o00. The [epigraph of  is
epif = {(x,¢) edomf xR | f(x) < (}
Examples:

fx) =1« F(x) = t-s.0(x)
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Lower semi-continuous function

Let f: RN 5 RU +o0.

fisa _ function on R" if and only if epi f is

closed
Examples:

» |.s.c. functions?

f(x)
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C CRY is - |EOTNEHEE i

(Y(x,y) € C?)(Va €]0,1]) ax+(1—a)yeC

Convex sets ?
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Coercive function

Let f: RN - RU +oo0.

fis - if Iim||X||_>+oo f(X) = +00.

Coercive functions ?
1 F(X) , F(X) “f(x)
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Convex function

f: RN — RU +oo is a |convex function  if
(¥(x,y) € (R")?)(Va €]0,1])
flax+ (1 —a)y) < af(x) + (1 - a)f(y)

> f is convex < its epigraph is convex.
Examples:

f(x) = t[=s.5)(x)
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Strictly convex function

f RN — RU oo is strictly convex  if
(Vx € dom f)(Vy € dom f)(Va €]0, 1])
x#y = flax+(1-a)y)<af(x)+(1—-a)f(y).

Strictly convex functions ?
f(x) f(x) A
N ’

f(x)
.
4
’
4
N v,
N~ 7
v
7N
z ~
~
~
4 >
~
X

~ 7’

\j
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Existence/unicity of minimizers

Let f : RV — R U 400 be a proper l.s.c. coercive

function.
Then, the set of minimizers of f is a nonempty compact
set.

Convex case
o Let f: RY — R U +o0 be a proper [€onvex function such that
u=inf f > —oo. Then, every local minimizer of f is a

_. Moreover, if f is strictly convex, then there exists at

most one minimizer.

e Let C a closed convex subset of RV, Let f: RY — R U 400 proper,

convex, Isc such that domf N C # (. If _ or _

then there - X € C such that f(X) = infxec f(x). If, moreover, f is

strictly convex, this minimizer X is unique.
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Subdifferential

Let f: RN — R U +o0 be a proper function. The (Moreau)

_, denoted by Of is such that

of - RN — oR"
x = {u e RN |(Vy € RN) (y — x|u) + f(x) < f(y)}

t € 0f(x)
f(y)
f(x) + (y —x[t)
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Subdifferential

Let f: RN — R U +o0 be a proper function. The (Moreau)

_, denoted by Of is such that

of - RN — oR"
x = {u e RN |(Vy € RN) (y — x|u) + f(x) < f(y)}

) t € 0f(x)
FO) + (y = x[t)

xk--
<
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Optimality conditions

Fermat's rule : 0 € 0f(x) < x € Argmin f

Differentiable case
Let C be a nonempty convex subset of RV, Let f: RV — RU +oo
be Gateaux differentiable at x € C. If X is a local minimizer of f
over C, then

(Vy € C) Vf()?)T(y —Xx)>0.

If X € int(C), then the condition reduces to

VF(R) = 0.
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Majoration-Minimization approaches
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Majorant function

Let f : RN — R. Let y € RV,

o) 8 is ARG TR]

{(vx ERV)  f(x) < h(x,y),
f(y) = h(y,y)-

h(-,y)
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Majorization-Minimization algorithm

‘ Problem: Minimization of function f : RN — R.

MM Algorithm h(-, xn)

Xn+1 € Argmin h(x, x,)
x€RN

where h(-, x,) is a majorant function
for f at x,.

Xn Xn+1
— The sequence (f(xp)),cy is decreasing:

(Vn €N)  F(xn+1) < h(Xn+1, Xn) < h(Xn, Xn) = F(Xn)
M M
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Majorization-Minimization algorithm

‘ Problem: Minimization of function f : RN — R.

MM Algorithm

Xn+1 € Argmin h(x, x,)
x€RN

where h(-, x,) is a majorant function
for f at x,.

. . Xn+1Xn+2
— The sequence (f(xp)),cy is decreasing:

(Vn €N)  F(xn+1) < h(Xn+1, Xn) < h(Xn, Xn) = F(Xn)
M M
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Majorization-Minimization algorithm

‘ Problem: Minimization of function f : RN — R.

MM Algorithm

Xn+1 € Argmin h(x, x,) h(-, Xny2)
x€RN

where h(-, x,) is a majorant function
for f at x,.

. . Xn+2Xn43 -+ - -
— The sequence (f(xp)),cy is decreasing:

(Vn €N)  F(xn+1) < h(Xn+1, Xn) < h(Xn, Xn) = F(Xn)
M M
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Majorization techniques

» Subdifferential inequality
» Descent lemma

» Proximity operator

» Even smooth functions

> Jensen's inequality
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Majorization techniques

Even differentiable function
Let f be defined as

(Vx eR)  f(x) =(|x])
where
(i) « is differentiable on ]0, +oc],
(i1) 1¥(y/*) is concave on 10, +o0], h.y)
(iii) (Vx € [0,4o0[) zp(x) >0,
AT — P(x)
(iv) ||m;;8 (w(x) = ¢T) eR.

Then, for all y € R, .
(x €R)  £(x) < f(y) +F(Y)(x —y) + sw(ly)(x - y)*
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f(x) w(x)
|x| — 6 log(|x|/d + 1) (x| + )7
« x2 if|x| <& 2 if x| <&
(%
2 28|x| — 6% otherwise 20/|x| otherwise
S log(cosh(x)) tanh(x)/x
(1+X2/62)n/2_1 (H/62)(1+X2/52)1</2—1
1 — exp(—x/(26%)) (1/6) exp(—x*/(26%))
9 x2/(26% + x?) 46%/(26% + x*)?
2l [1- (1 =x%/(66%)° if|x| < V60 (1/6%)(1 — x*/(66%))* if|x| < V665
§ 1 otherwise 0 otherwise
2 tanh(x?/(26%)) (1/6%)(cosh(x?/(26%))) 2
log(1 4 x?/6?) 2/(6% + x?)

(), 6) €]0, 400, s € [1,2]
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Examples of functions f

Fx) = (1+2)"2 1, F(x) = log (14 % ), F(x) = 1 — exp(~357).
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Majorization techniques

Consequences of Jensen's inequality

Let ¢ : RN — R be a convex function.

N

() (1) Ty .
o(¥(xy,0) € 00 +ooM) b (<Tx) = 30 S mw (S

1=

e Let w € [0, +oo[N such that Zfil w) =1 and w =0 iff ¢() = 0.

(V(x,y,¢€) € (] = 00, +00[")?)

L. (O )
c
Y (ch> <) wliy (m(x(’) —yy+ cTy) .
i=1
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MM algorithms

» Separable MM approach

» MM quadratic algorithm

» 3MG algorithm

» Forward-backward algorithm

» Block-alternating MM schemes
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Acceleration via block-alternation

‘ Problem: Minimization of f : RN — R.
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Acceleration via block-alternation

‘ Problem: Minimization of f : RN — R.

1
o
J

x € RN xR = RN

M
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Acceleration via block-alternation

‘ Problem: Minimization of f : RN — R.

e
g

RN
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Acceleration via block-alternation

‘ Problem: Minimization of f : RN — R.

e
g

U

= Block-coordinate strategy: Instead of updating the whole
vector x at iteration n € N, restrict the update to a block

Jne{l,..., J}.
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Concluding remarks

> In large scale optimization, we search for the best possible tradeoff
in terms of computational complexity and convergence rate.

» Availability of theoretical convergence results is important, to assess
the reliability of an optimization scheme.

» There is rarely a single technique available for the resolution of an
optimization problem.

» |t is thus always recommended to test and compare different
strategies, for a given application.

Not treated in this course: stochastic optimization, distributed
algorithms, primal-dual strategies, etc.
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