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NMR is a tool of choice for the measurement of diffusion coefficients of species in solution. The DOSY
experiment, a 2D implementation of this measurement, has been proven to be particularly useful for the
study of complex mixtures, molecular interactions, polymers, etc. However, DOSY data analysis requires
to resort to the inverse Laplace transform, in particular for polydisperse samples. This is a known difficult
numerical task for which we present here a novel approach. A new algorithm based on a splitting scheme
and on the use of proximity operators is introduced. Used in conjunction with a Maximum Entropy and
/1 hybrid regularisation, this algorithm converges rapidly and produces results robust against experimental

Received 25th August 2016,
Accepted 3rd January 2017

DOI: 10.1039/c6an01902a

noise. This method has been called PALMA. It is able to reproduce faithfully monodisperse as well as poly-
disperse systems, and numerous simulated and experimental examples are presented. It has been
implemented on the server http://palma.labo.igbmc.fr where users can have their datasets processed
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www.rsc.org/analyst automatically.

1. Introduction

Diffusion coefficients can be efficiently measured by NMR
using magnetic field gradients. The most classical approach
consists of applying a symmetric pair of pulsed field gradients
(PFG) of varying intensity, separated by a diffusion delay A.
Random displacements of the molecule during A because of
Brownian motion result in modulation of the signal intensity I
following the Stejskal-Tanner equation:"?

I(q) = I, exp(—DAg?) (1)

where D is the diffusion coefficient of the molecular species
and g = ydg, the measure of the phase dispersion created by
the PFG. Here, y is the gyromagnetic ratio of the studied spin,
and ¢ and g are the duration and intensity of the PFG, respect-
ively. A least squares fit of the experimental values to an expo-
nential decay provides an estimate of the value of D. The DOSY
experiment, introduced by Johnson,” is a representation of this
measure as a 2D spectrum, with chemical shifts presented
horizontally and diffusion coefficients vertically. DOSY has
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been used intensively to analyse molecular interactions, to sort
the components in complex mixtures, or to evaluate molecular
size distributions.*™®

A monodisperse sample presents a well-defined diffusion
coefficient, and a simple exponential adjustment of eqn (1)
allows the determination of D. When several compounds share
the same chemical shift, resulting in overlapping lines in the
NMR spectrum, the result of a mono-exponential fit becomes
incorrect. A simple column-wise least squares fit to two or
more exponentials presents instabilities in noisy datasets,
which make this approach difficult to use in complex cases.

Several methods have emerged in the literature for the ana-
lysis of complex mixtures of monodisperse species, where the
difficulty mostly arises from the presence of many overlapping
species in the spectrum. Approaches based on a global ana-
lysis of the whole experimental matrix have been proposed
based on a clever decomposition of the 2D spectrum matrix
into a multivariate model, which allows to extract the spectra
of each species along with their respective diffusion profiles.”®
Some developments on this approach have been based on a
harmonic analysis of the decay.”* The exponential hypothesis
can even be relaxed using methods related to blind source
deconvolution.">"®

All these approaches model the sample as a mixture of
species with a characteristic decay pattern. Some samples such
as polydisperse polymers, dendrimers, nanoparticles, gels and
aggregated species, because of the variation in the size, length
or aggregate state of the different molecules in the sample,
present a distribution of diffusion coefficients rather than a
single coefficient. Moreover, the presence of common decay
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patterns at different chemical shifts cannot really be assumed
anymore, as in these complex systems a subtle coupling
between the chemical shift and the size usually broadens the
spectral line, with each spectral channel sampling a slightly
different subset of the species, so each spectral channel has to
be processed independently.

For these strongly polydisperse samples a precise determi-
nation of the diffusion distribution is of great analytical import-
ance, it is however a difficult task. Because of this difficulty,
polydispersity is commonly measured by a polydispersity index
(PDI) defined as the ratio of the mass average molar mass
M,, to its number average molar mass M,: PDI = M,,/M,,. This
quantity characterises the breadth of the distribution indepen-
dently of the details of its shape, a PDI of 1.0 indicates mono-
dispersity. The PDI is commonly measured by size exclusion
chromatography, (electron) microscopy, light or X-ray scatter-
ing, or even NMR-DOSY."’

A polydisperse sample has to be analysed with a distri-
bution X(D) of diffusion coefficients and eqn (1) becomes:

Dinax

X(D) exp( — DAg*)dD (2)

9= |
Dmin

Determining the distribution X(D) from I(g) requires to
solve the Laplace inversion of the g> dependency of I(q).

The shape of the distribution X can be modelled by a
Gaussian function or by any other symmetric or asymmetric
analytical shape, and the parameters for this shape are fitted
to the experimental data.*® This straightforward approach
is very sensitive to the choice of the shape, and will fail if it is
not well adapted to the data, or if the distribution contains
several isolated wide shapes and it should be used with care.

In this work, we present a general approach that solves the
Laplace inversion problem presented in eqn (2). A new algo-
rithmic approach based on a splitting scheme and on the use
of proximity operators is introduced. Used in conjunction with
Maximum Entropy and ¢; regularisations, the algorithm is
stable against experimental noise, reproduces faithfully mono-
disperse as well as polydisperse situations, and converges
rapidly.

2. Theory

2.1 Problem description

We assume that the diffusion experiment was performed over
a series of M values of g (by varying 6, g or both) and measured
as a series of intensities y,, for a given chemical shift value.
The problem stated by eqn (2) can be rewritten in a discrete
form to be solved numerically:

N
Y = Ex,, exp( — DpAgn?)
n=1

with D, ranging from Dy, to Dyax. As this expression is linear
in x,, it can be rewritten as follows:

Y = HX (3)
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where Y = {y,,, 1 < m < M} is the experimental series, X =
{xn, 1 < n < N} is a sampling of the distribution, and H is an
M x N matrix with entries H,,, = exp(~D,Agy>). In this work,
we call X the Laplace spectrum of Y. Determining X from
the knowledge of H and Y is an ill-posed problem as the
experimental points are inevitably tainted with noise, and H is
usually a non-square matrix, with N > M. A simple inversion
does not provide a valid solution, and one has to resort to
alternative approaches.

2.2 Lagrangian formulation

A general approach for solving eqn (3) is to generate a solution
X that solves the following regularised minimisation problem:

minimise||HX — Y||*+u¥(X). (4)
xeRY

The first term evaluates the distance between data and the
reconstruction, while the second term is the regulariser, the
Lagrangian coefficient 4 > 0 acting as a weight between the
two. The regularisation function ¥ is aimed at selecting
among all possible distributions, the most natural one, given
the experimental evidence, using some a priori information on
the problem. It is usually built as a measure of the cost of the
reconstruction (in terms of energy, information, number of
signals, etc. see below) and tends to favour an empty spectrum.
Depending on the expression chosen for ¥, the problem can
be solved by different approaches. The CONTIN method>'
solves this problem for ¥(X) = ||I'X||>, where I is a matrix that
contains prior assumptions about the data. Classical choices
are I' = Id which selects the solution with the least energy, or
the first or second derivatives thus removing fluctuations not
required for a faithful reconstruction. CONTIN has shown
great success since its introduction more than 30 years ago,
however it suffers from slow convergence and over-smoothed
solutions. Choosing the opposite of the entropy as the regular-
isation function (¥(X) = Y (x./a)log(x,/a)) allows to produce the
distribution with the least information in the sense of
Shannon.*” This Maximum Entropy (MaxEnt) approach has
been shown to be of great efficiency and robustness for solving
the DOSY problem® and has been widely used. However,
because of the strong curvature of the entropy function, the
classical implementations®>*** of this approach are known to
present slow convergence rates. Kazimierczuk et al.>> proposed
recently to use Y(X) = X |x,| = ||X|l1, where ¥ is the ¢; norm of
X. Their approach relies on previous reports that have shown
that this is equivalent to selecting the spectrum with the fewest
non-null values. The principal advantage of their approach is to
rely on recent major advances in the field of convex minimis-
ation and compressed sensing. The algorithm ITAMeD they
developed is based on the soft thresholding approach and
allows a rapid convergence toward the solution. Enforcing a
minimum number of non-null values in X is a good approach
when the sample is a mixture of monodisperse compounds,
and the Laplace spectrum a set of sharp lines, it is not appro-
priate however for the analysis of polydisperse samples that
may present very large distributions. Urbanczyk et al.*®
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recently extended this work to minimising the ¢, norm
1
(HX”p = \xn|p)l’> with 1 < p < 2. As expected, the authors

show that adapting the p parameter to this kind of data allows
reconstruction of spectra of various widths. However, the
choice of p is somewhat ad hoc and has to be adapted to each
situation. In addition, the authors rely here on the IRLS*
algorithm that is slower than ITAMeD. The TRAIn method?®
that has been proposed recently is not explicitly based on a
regularisation approach, but rather on an early stopping
strategy, in conjunction with a trust region algorithm. This
method is claimed to be efficient in polydisperse distributions.
The early stopping approach creates a bias in the final solution
which can be assimilated to an implicit regularisation albeit
with no analytical definition, and this could be seen as a
deficiency.*

2.3 Constrained formulation

The Lagrangian coefficient u involved in eqn (4) may be
difficult to adjust in practice. However, one has often some
precise knowledge about the level of noise corrupting the data.
We propose to adopt a more practical formulation by solving
the following constrained optimisation problem:

minimise ¥ (X)

subject to
XeRY

|HX - Y| <n  (5)
where 5 > 0 is related to the expected quality of the fit, based
on an estimate of the experimental noise. This has the advan-
tage to shift the burden of determining the adequate value of
a Lagrangian coefficient to the much simpler task of estimat-
ing a noise level.

2.4 Hybrid regularisation

In order to favour both smooth (polydisperse) and sparse
(monodisperse) shapes in the estimated signal, we propose a
novel regularisation defined as follows:

¥(X) = Jent (X,a) + (1 — )0 (X) (6)

where ent (X,a) is given by

N
X, X,
Z—" log <—"> ifx, >0
ent (X,a) = n=1 ¢ a’s
0 ifx,=0
+-00 elsewhere,

and is the opposite of the Shannon entropy with a flat prior a
> 0, typically chosen here from an estimate value of Y x,. ¢;(X)
is the ¢; norm of the vector X defined as:*°

t(X) :lenl

and 4 €[0,1] allows to control the balance between the sparsity
prior and the entropy prior.

2.5 Proximity operator

The general problem expressed in eqn (5) can be elegantly
solved by the convex optimisation algorithm PPXA+, based on

This journal is © The Royal Society of Chemistry 2017
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the use of proximity operators.’’ This allows a generic
solver for any choice of convex function ¥ while ensuring a
very rapid convergence toward the optimal solution. Note that
the proximal approach is also the basis of the ITAMeD
method. The FISTA algorithm on which ITAMeD is based®” is
derived from the soft-thresholding operator, the proximity
operator of the ¢; norm operator. To our knowledge, it has
never been applied to the MaxEnt penalty nor to a hybrid
approach as proposed here.

It can be shown®’ that the proximity operator of the func-
tional ¥ used in eqn (6) can be expressed as follows (see ESI
sections 1 and 2} for details):

propy (X) = (p(xn)), <n<N (7)
where
P(xn) = g"/f” %exp W—Hog(a)—l }, if 2€]o0,1],
sign (x,) max (|x,| — (1 —4),0), if 21=0.
(8)

In the above expression, #" stands for the Lambert func-
tion, defined as the inverse function of f:z — ze® for all
zeC*ie.:

z=we" & w=7W(2).

In the current context, only a restriction of % to R' is
required. It should be noted that for pure Maximum Entropy
(4 = 1) we recover the result from Combettes and Pesquet:*>

Dent (x) = %W(a exp(x) + log(a) — 1).

Similarly, pure ¢; regularisation (4 = 0) brings the soft
thresholding operator:

o, (x) = sign (x) max (|x| —1,0).

2.6 Algorithm

With the expression of the proximity operator given in eqn (7)
and (8), the convex optimisation problem (5) can be easily
solved using a proximal splitting algorithm. At each iteration,
such a method alternates between the proximity operator ¥
and the proximity operator associated with the constraint
||HX — Y|| <5 (i.e. the projection operator onto this constrained
set).

In order to ensure good convergence properties of our
algorithm, we adopt the PPXA+ approach from Pustelnik
et al.,’® generalizing the PPXA method from Combettes and
Pesquet.’” These algorithms both rely on the Douglas-
Rachford scheme,*® which consists of replacing the involved
proximity operators by their reflections (see ESI sections 3, 4
and 571 for details).

This leads us to the so-called PALMA algorithm, standing
for “Proximal Algorithm for L; combined with MAxent prior”.
This algorithm is fully detailed in the ESL ¥
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3. Materials & methods

3.1 Simulations

Several simulated datasets, chosen to represent various analyti-
cal situations, were used for the evaluation of the algorithm. Set
A consists of three monodisperse components with diffusion
coefficients 16 pm? s™, 63 pm?* s™" and 230 ym?* s~', with the
respective intensities of 1.0, 0.33 and 0.66. This dataset is
equivalent to the simulation used in Urbanczyk et al.>® Set B is
a wide distribution, simulated as a log-normal distribution
centred at 35 pm?® s™!, which presents a PDI estimated to be
6.26. Sets C1 and C2 are asymmetric distributions built from
15 log-normal components, ranging from 18 to 85 pm” s~ ", with
intensities ranging from 0.1 to 10, and they have PDIs estimated
respectively to be 1.79 and 1.32. In all simulations, 64 gradient
values were simulated, and a Gaussian noise equal to 0.001%,
0.01%, 0.1%, or 1% of the initial point was added. The gradient
values were chosen with a harmonic progression for set A, and
with linear increments for sets B, C1, and C2. All Laplace
spectra were reconstructed on 256 logarithmically sampled
points. Other simulations with varying distributions and noise
levels are also presented in the ESI (see section 67).

3.2 NMR measurement

A set of PEO standards were purchased from American
Polymer Standards Corporation (Mentor, OH, USA), and
3 samples were prepared. Sample (a) is a standard PEO with
M,, = 2343.3 g mol" and PDI = 1.07; sample (b) is a standard
PEO with M,, = 4051.2 g mol ™' and PDI = 1.28; sample (c) is a
mixture prepared from standard PEOs ranging from 350 to
5250 g mol™" for a theoretical M,, of 3238.5 ¢ mol™" and a
theoretical PDI of 2.01. Each sample was prepared and
measured as described by Viéville et al.®

The crude plant extract was obtained from the brown algae
Sargassum muticum as described in Vonthron-Sénécheau.*® Two
equivalent samples were prepared by dissolving each time
18.3 mg in 0.75 mL MeOD plus 0.4 mL D,O, and chloroquine
was added to one sample at a concentration of 0.16 mg mL™"
(1% w/w of plant dry extract). The NMR experiments were run
on an Avance III Bruker spectrometer, operating at 700 MHz,
and equipped with a TXI cryo-probe. DOSY spectra were
acquired with the convection compensated experiment using
bipolar pulses*® (dstebpgp3spr pulse program). 50 gradient
increments from 0.5 G em™ to 52.5 G cm™" were used, with a
cosine roll-off PFG shape. Each elementary PFG had a duration
of § = 1.1 ms and the diffusion delay A was set to 150 ms. For
each gradient intensity, 64 scans were acquired with a relaxation
of 1.5 s, for a total experimental time of 1 hour 50 minutes.
Each 1D spectrum was apodised with an unshifted sine-bell,
zero-filled once and Fourier transformed. A spline baseline
correction was applied, as well as a correction of small shifts
caused by possible instabilities of the temperature control.**

3.3 Processing

The PALMA algorithm was implemented with the program-
ming language python version 2.7 using the numpy/scipy
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libraries. The algorithm was then packaged in a plugin to the
SPIKE program developed by our group.*?> All programs are
available from the authors. All computations were performed
on a Macintosh Mac Pro dual Xeon with a total of 8 cores,
equipped with 32 GB of memory and running MacOsX 10.7.

The DOSY experiments presented in Fig. 2 and 3 were pro-
cessed column-wise with 2 = 0.01. The noise level along the
gradient axis was estimated by the difference of the actual data
from the result of a polynomial smoothing, this value being
used to estimate 5 in eqn (5) (see ESI section 5.2F for more
details). The diffusion axis was logarithmically sampled from
50 to 10 000 pm? s™* over 256 points.

Experiments on PEO were processed with a maximum of
20 000 iterations, for a total time of about 30 seconds for
110 DOSY profiles computed. Experiments on plant extract
were performed taking all signals with an estimated SNR
above 20 (26 dB) in the first 1D spectrum of the experimental
matrix, with a maximum of 200 000 iterations, for a total time
of about 1 hour for 1200 to 1400 DOSY profiles.

The algorithms ITAMeD, £, tailored-ITAMeD, and TRAIn uti-
lised in the ESI were used as downloaded from their respective
websites, using MATLAB program version R_2013b on MacOs.

3.4 Server

A Web server is available at http:/palma.labo.igbmc.fr, where
users may submit datasets for automatic processing. The
python code of the PALMA algorithm is available on the same
server as well as at https:/github.com/delsuc/PALMA.

4. Results

4.1 Tests on simulated data

The PALMA algorithm described above was first tested on a
series of simulated datasets. Fig. 1la presents the results
obtained on the simulated experiment A consisting of the
superposition of three monodisperse species, separated by less
than a factor of 4 in diffusion coefficients, equivalent to the
test used in Urbafczyk et al.*®> When analysed with PALMA
using a null A value, indicating a pure ¢; regularisation, a
Laplace spectrum consisting of 3 sharp peaks is produced as
expected. Using the pure MaxEnt mode (4 = 1) on the same
dataset, a broader spectrum is reconstructed. PALMA allows
the weight between the two approaches to be freely varied.
When doing so a narrowing of the MaxEnt distribution for the
decreasing value of 1, characteristic of a bias toward mono-
disperse distributions, can be observed, with a sudden tran-
sition to sharp lines for 2 = 0. As shown in Fig. 1b the same
procedure was applied on a broad Gaussian line simulating a
polydisperse polymer with a PDI of about 6, corresponding to
experiment B. Again it can be observed that a null 4 gives rise
to sparse spectra with sharp lines this time only sampling the
broad line in an inadequate manner. However, in contrast to
the previous case, all the non-null values of 1 lead to a nearly
perfect reconstruction of the line-shape, with a correct
determination of its width. In this example, the minimal

This journal is © The Royal Society of Chemistry 2017
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Fig. 1 PALMA reconstruction for various values of 1 of the simulated
experiments, with an added 0.1% Gaussian noise. (a) Experiment A with
3 monodisperse species, indicated by the black vertical lines, and the 1 =
0 spectrum was divided by 3 for clarity; (b) experiment B with a large
polydisperse Gaussian profile 1 = 0 spectrum was divided by 8 for clarity.

reconstruction error was obtained for 4 = 0.05. The tests per-
formed on asymmetric distributions (see ESI Fig. S5 and S6
and Table S1}) show the same tendency, with stable results for
all non-null values of A. It should be noted that, since the
algorithm maintains the analysis within the noise distance of
the data, ie. ||[HX — Y|| < 7 (see eqn (5)) all the reconstructed
Laplace spectra fit equally well the data. They differ only in
how they match the regularisation term, a term which holds
and expresses the a priori information we have on the dataset.
The PALMA algorithm was tested against ITAMeD,”* ¢,
tailored-ITAMeD*® and TRAIn*® algorithms, using the same
simulated data as above. Table 1 presents the synthetic results,

Table 1 Quality of reconstruction of signal B with different algorithms
” Xsim H

” Xsim - Xcalc H

in dB. For each noise level, the highest quality results are given in italics

for various noise levels. Quality is computed as expressed

Noise level

Algorithm 1% 0.1% 0.01% 0.001%
ITAMeD 3.37 18.65 29.04 29.40
ITAMeD with ¢, 6.06 25.26 36.69 37.08
TRAIn 24.75 28.63 26.53 19.47
PALMA 1 =0.01 20.54 28.57 41.69 53.25
PALMA 4 =0.05 24.01 32.51 48.28 51.37

This journal is © The Royal Society of Chemistry 2017
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and the extensive results are presented in the ESI (see Fig. S7
to S14 and Tables S2 and S37).

In our hands, PALMA and TRAIn present the best results in
terms of faithfulness and robustness, in particular for poly-
disperse datasets, with TRAIN showing better results on the C2
dataset, while PALMA behaving better for data sampled with a
small number of data points.

4.2 Application to polydisperse polymers

It is acknowledged that experimental data are quite different
from the simulated data, with a mixture of sharp and large
diffusion distribution, tainted with instrumental artifacts and
non-stationary noise. With respect to the behaviour of the
method on polydisperse systems, the program was first
applied on DOSY experiments measured from poly-ethylene-
oxide (PEO) polymers in water with calibrated chain lengths
and polydispersity. Fig. 2 presents the results obtained for
three PEO samples with polydispersity ranging from 1.07 to
2.0 measured in a standard manner, and processed with
PALMA. The polydispersity of the different samples can be
clearly seen in the profile widths. Sample (a) is a standard PEO
polymer, with a rather low polydispersity. Sample (c) was pre-
pared from a set of rather monodisperse polymers, in order to
cover regularly a wide range of chain lengths. Sample (b) on
the other hand is a PEO polymer given to have a standard poly-
dispersity, however the details of the composition are not
known.

4.3 Application to plant extract

To test the robustness of the approach, it was applied to crude
ethanolic plant extract obtained from brown algae.

Fig. 3 shows the aliphatic region of the DOSY experiment
performed on this algae extract. Only the more abundant
species are visible at this plot level. This kind of analysis on
complex mixtures has been extensively used to analyse natural

1.0k — all

0.8}

0.2

0.0
102

10*
1

Diffusion in um? sec™

Fig. 2 DOSY profile of the main NMR signal of different standard PEO
samples, (a) a reference PEO with a PDI of 1.07, (b) a reference PEO with
a PDI of 1.28, and (c) a mixture of reference PEOs with a global PDI
of 2.01.
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Fig. 3 DOSY experiment on a brown algae methanol/water extract
showing only the major constituents. Dashed horizontal label lines are
indicated for fatty acid chains (220 um? s™%), glycerol and short polyol
(380 um? s7%), and methanol (1100 pm? s™3).

products, plant extract,”® or even adulteration of herbal and
dietary supplements.** Here the presence of a particular mole-
cule or a family of molecules is characterised by the alignment
at the same diffusion coefficient of the characteristic lines
located at their corresponding chemical shift positions. For
instance, in Fig. 3, the polyol and fatty acid signals are out-
lined. The fatty acids are certainly partly aggregated in this
sample, as indicated by the width of the line, both along the
spectral and Laplace axes. The DOSY is useful in this context
because it provides a high dynamic analysis, where the most
intense lines do not “hide” less intense ones.

In Fig. 4, the chloroquine molecule was added at a low con-
centration (1% w/w) to the same sample. While the aromatic
signals of chloroquine, located in a rather empty region of the
spectrum, are easily detected, the aliphatic chain signals fall
in the crowded region where they are difficult to observe. The
methyl groups that fall at positions 1.3 ppm and 1.45 ppm are
completely buried under the fatty acid signals and the
diffusion coefficients are not different enough. In contrast, the
signals from the methylene moieties are observed around

m‘!ﬂl il W%@”@%ﬂ U

a) x4

o b g

ppm [

Fig. 4 Comparison of two DOSY experiments on brown algae extracts.
(a) The aromatic (empty) and aliphatic regions of the same experiment
as shown in Fig. 3, but plotted at a level four times lower; (b) the same
brown algae extract with 0.16 mg mL™! of chloroquine added, showing
the aromatic signals the methyl signal outlined with an arrow in the
spectrum, and the dashed horizontal label is at 285 pm? s™%; (c) the 1D
spectrum of the brown algae extract with added chloroquine. In all
three spectra, the aromatic panel is plotted four times lower than the
aliphatic panel.
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1.9 ppm in a relatively free spectral region. Despite being
about x100 smaller than the larger signals (methanol, polyol
or fatty acid chains), the signal is well separated in the DOSY
spectrum, and is aligned with the aromatic signals.

One can also observe the reproducibility of the PALMA-
processed DOSY spectra, as the main features of the spectra
are nearly identical for both samples.

5. Discussion

The hybrid regularisation proposed in eqn (6) implements two
well-known approaches, namely the ¢; regularisation, which
tends to minimise the number of non-null signals required to
explain the data, and the MaxEnt regularisation which is
usually presented as a way to maximise the posterior prob-
ability of the analysis while preserving the positivity of the
retrieved spectra.”®> While both regularisations are well estab-
lished and based on clear principles, the MaxEnt is known to
be somewhat more difficult to implement. The hybrid regular-
isation proposed here allows to obtain very robust results even
in the case of complex signals such as the one presented in
the experimental examples.

The constrained problem is solved using a new convex
optimisation algorithm, based on the use of proximity oper-
ators and a split version of the Douglas-Rachford procedure.
The use of the proximity operators allows implementation of a
simple incremental step, requiring no inner line-search mini-
misation step, where the main burden is three applications
of the linear operator H or of its generalised inverse B =
(I + H'H)™". This algorithm allows a rapid convergence even
with the hybrid regularisation used here. In the simulation
presented here, an approximate solution is obtained very
rapidly (in less than a second). The results presented in this
work were obtained with longer convergences, using typically
10 000 to 100 000 iterations, however thanks to the rapidity of
the iterative step, this corresponds typically to a few seconds
on a laptop.

Because of the constrained approach used here, there is no
need to determine a Lagrangian parameter as in most other
techniques (sometimes called a smoothing parameter).
Nevertheless, the approach requires some parameters, of
which the prior a and the noise threshold ; can readily be esti-
mated from the experimental dataset, using respectively the
first point of the decay and an estimate of the noise level from
a polynomial smoothing of the experimental dataset (see the
ESI section for detailst). The weight 1 between the MaxEnt and
the ¢; regularisations embodies a prior assumption on the
presence of sparse components in the Laplace spectrum. In
the simulations of a sparse theoretical spectrum (Fig. 1a) A =0
corresponding to a pure ¢; regularisation provides the best
reconstruction as expected. Simulations performed on several
wide distributions (Fig. 1b and ESI Fig. S4, S6, S15, and S167)
show that the method recovers faithfully the position of the
signal and the theoretical profile, for most non-null values of
the 1 parameter, even in the presence of noise. The results are
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more contrasted for the sparse spectrum in Fig. 1a, where the
pure MaxEnt analysis (4 = 1.0) presents large features located
at the position of the three components, and a narrowing of
the MaxEnt distribution for decreasing value of 1 can be
observed. The results of pure MaxEnt analysis produced by the
PALMA algorithm were checked to be equivalent to the results
obtained with the original algorithm®® based on a fixed point
approach, however the convergence is much faster, and process-
ing times are about 10 times shorter for the same results. It
should be recalled that the MaxEnt analysis produces a statisti-
cal analysis of the data, where the final spectrum is the density
distribution which maximises the posterior probability of
finding a signal.*>*® The width of the actual signals can thus
be considered as an uncertainty on the position of the mono-
disperse components, uncertainty that is present in the pure
¢y case as errors in the position of the lines, but not directly
manifest. These results suffer however from a lack of resolu-
tion power, and the possibility to bias toward a sparser result
is certainly a plus. In a general approach, the optimal value for
A should be chosen from assumptions on the data based on
explicit previous knowledge, however on a practical point, this
is not feasible. Even on a sample known to be composed solely
of monodisperse species, the choice of a null 4 is problematic.
On the one hand, some polydisperse impurities might be
present with the risk of overlooking them as we observe in
Fig. 2 and 3; on the other hand, most instrument imperfec-
tions such as temperature drift, gradient non-linearity, phase
distortions, convection, etc. will distort the pure exponential
decay and create some apparent polydispersity. Confronted
with the same difficulty Urbanczyk et al.*® chose to vary the
p parameter of their tailored-ITAMeD algorithm, somewhat
similar to 4 and chose the larger value which allows a minimal
residual. The same approach could easily be used here,
however considering the fact that polydisperse samples are
correctly analysed for most non-null values of A, with the
better results obtained for small values, we suggest using
values between 0.01 and 0.05 as monodisperse data are well
described with these values.

The quality of these results is in sharp contrast to equi-
valent analyses presented in the literature. The 4 = 1 mode
reproduces the classical MaxEnt regularisation®® although in
less processing time. In the 4 = 0 mode, compared to the
¢, based ITAMeD approach,® the final resolution resulting from
PALMA reconstruction is much higher, as observed in our
simulations, in agreement with what has been published.
Intermediate values of A, creating a bias of the MaxEnt solu-
tion toward more sparse data, produce more resolved spectra,
which usually better match the patterns expected in solution
NMR.

To summarize, we recommend using a value of 4 in the
range 0.01 to 0.05 for safer results, with the possibility to
adapt this value in particular cases (for instance extreme poly-
dispersity or spectral superposition). We do not recommend
using the pure ¢; mode (4 = 0), even in the case of mono-
disperse samples, because the instrumental fluctuations
mentioned above certainly disturb this pure behaviour, and
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because of the difficulty to estimate the uncertainty of the
result from a sparse spectrum alone.

6. Conclusion

The DOSY experiment holds a special position among the
different experiments available to NMR spectroscopists. Whilst it
provides invaluable information on the size and the interaction
of the molecules in solution, it presents an important challenge
for its acquisition and its analysis. The acquired data are usually
corrupted by many artefacts produced by the very high sensi-
tivity of this experiment to instrument imperfections such as
temperature drift, non-linearity of the gradients and of the detec-
tion electronics, phase distortions, convection, etc. In parallel,
while the parameter dependency expressed in the basic evolu-
tion equations is extremely simple, it is well established that a
simple fit of the data to this equation usually fails to provide a
faithful analysis of the data in the general case, and one has to
resort to the inverse Laplace transform for the analysis step, a
problem well known to be of extreme noise sensitivity. For these
reasons, the stability and robustness of the acquisition and pro-
cessing schemes are of great importance for the quality of DOSY
spectroscopy, and many acquisition schemes and many process-
ing procedures have already been proposed in the literature for
this purpose. In this work, we have introduced a general method
to solve the inverse problem as found in the analysis of DOSY
experiments that we believe provides an unequalled level of
quality and robustness in the processing step.

The method is based on a constrained regularisation of the
least squares problem, and we showed that a hybrid regularis-
ation, combining the maximum sparsity and Maximum
Entropy, provides optimal results in the general case. This
approach is controlled by a single parameter A weighting
between these two criteria, and the results are not very sensi-
tive to the exact value of this parameter as long as extreme
values are not chosen. This method, which we called PALMA,
is faster and more robust than previous MaxEnt implemen-
tation and provides better results. It requires only weak
assumptions from the user, and can be run in a fully auto-
matic manner. It has been implemented on a server freely
available at http:/palma.labo.igbmec.fr, where users may
submit their datasets for automatic processing. The code of
the algorithm is available at the same address.
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