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a b s t r a c t 

Latent factor models have been used widely in collaborative filtering based recommender systems. In re- 

cent years, deep learning has been successful in solving a wide variety of machine learning problems. Mo- 

tivated by the success of deep learning, we propose a deeper version of latent factor model. Experiments 

on benchmark datasets shows that our proposed technique significantly outperforms all state-of-the-art 

collaborative filtering techniques. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Today much of retail business is online. Retail ecommerce is

aving such an impact on economy that economists are dubbing

t as the ‘Amazon effect’. Ecommerce is generating more jobs and

hecking inflation rates (at least in the USA). Most of its success is

wing to recommender systems. 

Unlike physical stores, ecommerce portals deal with literally

illions of products. It is not possible for the customer / user to

ift through all the products in a finite amount of time to find out

hat he / she needs. The users rely on the suggestions from the

ecommender system to zero-in on products they like. 

The benefit of recommender system goes in both ways. If the

ecommendations are not good, the user may stop relying on its

uggestions and stop using the ecommerce portal. This harms the

ser – as he / she does not get what is required; it is also detri-

ental to the portal – as it loses out on revenue. To improve cus-

omer satisfaction, goodwill and revenue, it is thus mandatory for

he ecommerce portals to have a very accurate recommendation

ystem. 

In the initial days of recommender systems, classical informa-

ion retrieval based approaches such as content based filtering

ere used. However, such techniques relied on expert opinions

nd were very sector specific (fashion and books would be treated

ompletely differently) and hard to generalize as algorithms. This
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ed to its early demise. For the last two decades collaborative filter-

ng has been the de facto approach behind recommender systems. 

Collaborative filtering can be categorized into several branches.

he initial approach was based on neighbourhood based models.

hey were intuitive, easy to understand and implement but lacked

n accuracy. The second approach was based on classification. This

ields slightly better results but is very hard to explain. The third,

nd the most prominent approach today is based on latent factor

odels. This class of techniques is more abstract and requires good

nderstanding of mathematics for interpretation, but are neverthe-

ess more accurate. 

In the last half a decade deep learning has made inroads into

lmost all aspects of applied computer science – speech process-

ng, computer vision, NLP etc. It has also seen some applications

n information retrieval. Motivated by the success of deep learning,

e propose a deep latent factor model. This would be a new deep

earning tool, specifically tailored for collaborative filtering prob-

ems. 

The shallow / standard latent factor model was based on the

atrix factorization approach. The advent of deep learning, gener-

lized matrix factorization to deeper versions. In this work, we fol-

ow the same idea and extend the latent factor model to a deeper

ersion. However, it must be noted that the extension from deep

atrix factorization techniques to our deep latent factor model is

on-trivial. In the former, all the observations are known but, in

ur case, only a partial set of observations are known – this makes

he problem more challenging. 
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2. Literature review 

2.1. Neighborhood/similarity based models 

Neighborhood based models try mimicking the nature of hu-

man interaction. It finds out users having similar taste as that of

the active user. Among these similar users, weight is given accord-

ing to the similarity; i.e. more the similarity more the weight. The

rating on a particular item from the similar users is multiplied by

these weights to estimate the rating from the active user. 

To find out the active user’s rating on a particular item, the rat-

ings of the similar users are interpolated. This is given by, 

v a, j = 

∑ 

i ∈ neighbours (a ) 

w i v i, j (1)

Here a is the active user; we want to predict the missing rating

of user a for the item j . For this, we look at all the neighbours

of a , indexed by i and interpolate their rating by multiplying it by

the linear interpolation weights w i . Such a technique is called user-

user recommendation [1 , 2] . 

The way we have looked at collaborative filtering from the

user’s perspective, we can also look at it from the items perspec-

tive. The two are exactly similar. This leads to the item-item col-

laborative filtering [3 , 4] . Here instead of trying to find similar users

one has to find similar items. The score of a user on the active

item is found by interpolating the ratings given the same user on

similar items. The interpolation weights, as previously are usually

based on normalized similarity measure. 

There are many variants to these basic approaches. Some stud-

ies combine the item and the user-based models [5] . Other studies

have posed such similarity based collaborative filtering as a graph

signal processing problem [6] ; however the basic approach remains

the same there in. Such techniques are simple to understand and

analyze. They cannot compete with more recent abstract mathe-

matical models but may be preferred by practitioners for the ease

of implementation and understanding. Since neighborhood based

models is not the topic of our interest, we do not discuss it any

further. The interested reader can peruse [7] . 

2.2. Latent factor models 

In content based filtering, one had to exclusively specify the fac-

tors that were thought responsible for user’s choice on a particular

class of items. As a result, the algorithms were not generalizable;

the factors responsible for footwear were different from the ones

responsible for selecting for instance movies. That is the primary

reason for its failure. 

Latent factor model [8-10] is a generalization of content based

filtering. It is based on the assumption that the factors responsible

for the user’s choice on an item need not to be explicitly known.

A user i can be defined by its affinity towards these latent factors,

represented by u i and an item j can be defined by its correspond-

ing latent factor v j . The rating is high when the two latent factors

match (same as content based filtering). This is best modeled by

the inner product between the user’s and item’s latent factors. The

rating of the i th user on the j th item is modeled as: 

x i, j = u i v j , ∀ i, j (2)

Considering the entire ratings matrix for M users and N items,

(2) can be represented as: 

X = UV where U = [ u 1 | ... | u M 

] and V 

T = [ v 1 | ... | v N ] 
Had the full ratings matrix be known, the problem would be

trivial. What makes it challenging is the fact that the matrix is only

partially observed; the goal is to infer the missing ratings. Once
his is done, one can suggest items to users with high predicted

atings. Mathematically we can express it as: 

 = R · X = R · (UV ) (3)

ere R is a binary sampling mask consisting of 0 s where ratings

re missing and 1 s where they are present; symbol ′ · ′ indicates

lement-wise product. 

One can estimate the latent factor matrices for the users and

he items by solving the following problem. 

in 

U,V 
‖ 

Y − R · (UV ) ‖ 

2 
F + λ

(‖ 

U ‖ 

2 
F + ‖ 

V ‖ 

2 
F 

)
(4)

here ‖ . ‖ F denotes the Frobenius norm. The ridge regression type

enalties are used to overcome over-fitting. There are many algo-

ithms for solving (4) starting from simple alternative least squares

o multiplicative updates or block conjugate gradients. For all prac-

ical purposes, the simple alternating least squares usually yields

ood results. 

The cost function involved in the factorization problem (4) is

i-linear in the variables U and V . Therefore, there is usually no

uarantee of convergence of iterative solvers to a global mini-

um; guarantees typically hold only for convergence to local min-

ma. This issue can be overcome by directly solving for the ratings

hemselves instead of the latent factors. 

The assumption here is that the ratings matrix is of low-rank.

his follows directly from the latent factor model; the rank of the

atrix is the same as the number of factors. The most direct way

o solve for the ratings would be to find an X explaining optimally

he data Y , and with a minimal rank. But the rank minimization

s known to be NP hard and hence there is no tractable solution

every algorithm is as good as brute force search). To alleviate this

roblem, theoretical studies [11-13] have shown that one can guar-

ntee a low rank solution (under certain assumptions) by relaxing

he NP hard rank minimization problem to its closest convex sur-

ogate – relying on the nuclear norm. Mathematically this is ex-

ressed as, 

in 

X 
‖ 

Y − R · X ‖ 

2 
F + λ‖ 

X ‖ NN (5)

Here ‖ · ‖ NN denotes the nuclear norm; defined as the sum

f singular values. Problem (5) is a convex problem that can be

olved, for instance, by semi-definite programming solvers. Today

ore efficient algorithms exist [14] . 

The number of entries in Y are actually far fewer than the

umber of entries in X ; for academic problems, only 5% of the

ata is available and in practical scenarios, less than 1% of the

ata is available. This makes collaborative filtering a highly under-

etermined problem. In such a context, any secondary informa-

ion is likely to improve the results. For example, studies like

15 , 16] have shown that using the associated metadata (user’s de-

ographic and item’s metadata) can indeed improve recommen-

ation accuracy. Other studies [17 , 18] showed that harnessing the

ower of neighborhood based models into the latent factor based

ethod can also improve the results. In this work, we are not con-

erned about using associated information, and hence these tech-

iques will not be discussed any further. 

.3. Representation learning 

Restricted Boltzmann machine (RBM) [19 , 20] ( Fig. 1 ) is popu-

ar today as a building block for deep belief network; but it was

riginally introduced for solving the collaborative filtering problem.

owever, owing to its inherent restrictions, foremost among them

eing the constraint on the input to be 1 or 0, RBMs never became

opular in the context of collaborative filtering. Neither are the

odified Gaussian Bernoulli RBMs, which expect continuous val-

ed inputs in the range between 0 and 1, suitable for such inputs.
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Fig. 1. Restricted Boltzmann machine. 

Fig. 2. Autoencoder. 
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Fig. 3. Latent factor model. 

Fig. 4. Neural network interpretation. 
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rawing similarity with the latent factor models, one can see that

he network weights can be seen as users’ latent factors and the

epresentation as items’ latent factors. The RBM is learnt by con-

rastive divergence. This is a cumbersome technique not amenable

o mathematical manipulations. 

In recent times, autoencoder based collaborative filtering tech-

iques have shown promising results [21-26] . They rely on a typi-

al neural network where the output is the same as the input. The

chematic diagram is shown in Fig. 2 . When used for collaborative

ltering, the input (and output) has missing values. When there

re such missing entries in the data, the corresponding network

eights are not updated. Once the training is finished, the repre-

entation from the encoder is multiplied by the decoder to get the

ull ratings matrix. 

Deep / stacked autoencoders have also been used for collabo-

ative filtering. Conceptually, the input and the outputs remain the

ame. The only difference between the shallow ( Fig. 2 ) and deep

utoencoder is that the later has multiple layers of encoders and

ecoders. However, there is no significant gain in going deeper as

as shown in [23 , 24] . 

In recent years, with the success of deep learning in almost

ll areas of applied machine learning, such techniques have been

everaged for collaborative filtering as well; see for instance [23-

5] . 

Most other studies in deep learning based collaborative filter-

ng are somewhat heuristic. For example, in [26] , the inputs to the

eep neural network are simply the IDs of the user and the item

nd the output is the corresponding rating. Such a model is likely

o be arbitrary since the ID of the user and the item do not carry

nformation about each other. Therefore, it makes limited sense to

redict rating from such inputs. 

The work [27] is worthy to be mentioned. Instead of using

ser’s and item’s IDs as inputs, it characterizes each user by his/her

atings on all items and characterizes each item by all its available

atings. This too uses a classification based framework where the

utput is the corresponding rating of the user on the item. Though

 more meaningful approach than [26] , using ratings for both in-

uts (user and item) and as the output (class) appears difficult to

ustify. Unsurprisingly, neither [26] nor [27] provides any justifica-

ion for their model. 

The most thorough and logical approach to deep learning based

ollaborative filtering has been proposed in [28] . It relies on a deep

eural network based regression framework. It uses user’s past his-

ory (of item ratings) as input and the top recommended new item
s output. Note that this approach does not perform collaborative

ltering in the conventional sense since it does not predict ratings.

There are two studies that proposed deep matrix factorization

29 , 30] . These studies factor a fully observed matrix into multi-

le matrices. They do not pertain to collaborative filtering where

he task is to recover a partially observed matrix. Nevertheless, we

ention these studies owing to their relationship with matrix fac-

orization. 

. Proposed deep latent factor model 

.1. Latent factor model as neural network 

Fig. 3 depicts the standard latent factor model. We have as-

umed users to be along the rows and items along the columns.

he entire ratings matrix is expressed as a product of user latent

actor matrix and item latent factor matrix. Being a product of two

atrices it is expressed mathematically in the form of matrix fac-

orization. For the convenience of the reader, we repeat (2) . 

 = UV 

here U denotes the user latent factors and V the item latent fac-

ors. 

In this work we look at the latent factor model as a neural net-

ork. Instead of looking at the user latent factors as vectors, we

an think of them as connections from the item latent factors to

he ratings. This is shown in Fig. 4 . 

The input to this neural network are all the users’ ratings on the

 th item denoted by x j (black nodes) in Fig. 4 . Their corresponding

epresentation is the latent factors for the corresponding item v j 
gray nodes). Following (2) , the relationship between both is ex-

ressed as x j = U v j - this is same as the equation of a neural net-

ork, albeit in an opposite direction from the representation to the

nput. Each row u i of U is the user latent factor for the i th user. 

Once we have the neural network type interpretation of col-

aborative filtering, it is easy to conceptualize deeper extensions.

n deep learning architectures, the latent representation from one

ayer acts as an input to the subsequent layer. We follow the same

rinciple in proposing the deep latent factor model. 

.2. Deep latent factor model 

A deeper (2-level) latent factor model is shown in Fig. 5 . This

an be extended to deeper layers. Like all other deep learning tools,

e suffer from the limitations of mathematical interpretability. In-

uitively speaking, as one goes deeper, more abstract representa-

ions are observed. For example, the latent factor model stems
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Fig. 5. Deep latent factor model. 

Fig. 6. Factorization type interpretation. 
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from the assumption that there are only a few factors that guide

or decision in choosing a book or a movie. For a book, it may be

just the name of the author, or the genre or the publisher. For

movies the number of factors may be slightly more – it can be the

star cast, the director, the main technical crew. It is not possible to

capture all the factors objectively, which justifies the latent factor

model. In a deeper latent factor model, instead of capturing the su-

perficial factors (author, actor etc.) it is likely that deeper personal-

ity traits are captured. For example, the deeper nodes may refer to

five classic personality traits [31] – introversion, extroversion, neu-

roticism, openness and conscience . Expressing the models based on

such abstract fundamental traits is likely to make it more robust

and accurate. 

The neural network type interpretation is not mandatory, but it

is easier to align with other deep learning methods. One can ex-

press the deep latent factor model in the more usual matrix fac-

torization form ( Fig. 6 ). 

Mathematical formulation 

In the standard latent factor model the ratings matrix is ex-

pressed as a product of user and item latent factors. 

X = UV (6)

Usually non-negativity is enforced on the latent factors, in a

similar manner than in the rectified linear unit (ReLU) type acti-

vation function in neural network. 

In our deeper model, we will have multiple levels of user latent

factors and one final level of item latent factors. In the case of 2

layers, this can be expressed as, 

X = U 1 U 2 V (7)

Here U 1 and U 2 are the two levels of item latent factors and V

consists of the deep user latent factors. Such a deep factorization

model has been proposed before [29 , 30] . In each level, a ReLU type

activation was imposed by non-negativity constraints. The formu-

lation (7) can be easily extended to N layers: 

X = U 1 U 2 ... U N V (8)

Techniques for solving deep matrix factorization have already

been developed [29 , 30] when the data is fully observed. Unfortu-

nately, in collaborative filtering, the ratings matrix is only partially

observed, i.e.: 

 = R · X (9)

where X is the full ratings matrix, R the binary matrix of 1 ′ s and

0 ′ s and Y the acquired ratings matrix. 

We incorporate the deep matrix factorization framework

(7) into the partially observed model (8) to yield our deep latent
actor model. 

 = R · X = R · ( U 1 U 2 ... U N V ) (10)

olution 

We will show the algorithm for three layers; it will be generic

nough for more or fewer layers. The formulation for three layers

s –

min 

 1 , U 2 , U 3 ,V 

1 
2 ‖ 

Y − R · ( U 1 U 2 U 3 V ) ‖ 

2 
F suchthat 

 1 U 2 U 3 V ≥ 0 , U 1 ≥ 0 , U 2 ≥ 0 , U 3 ≥ 0 , V ≥ 0 

(11)

This is equivalent to the following, 

min 

 1 , U 2 , U 3 ,V,X 

1 
2 ‖ 

Y − R · ( U 1 U 2 U 3 V ) ‖ 

2 
F (12)

uchthat U 1 U 2 U 3 V = X and X ≥ 0 , U 1 ≥ 0 , U 2 ≥ 0 , U 3 ≥ 0 , V ≥ 0 . 

We propose a projected gradient method [32] , with inner loop

ased on alternating projection [33] to solve (12) . The general form

f our algorithm is as follows: 

nitialize : X 

0 , U 

0 
1 , U 

0 
2 , U 

0 
3 , V 

0 

or k = 1 , 2 , ... 

(1) X̄ 

k = X 

k − γ
(
R 

T ·
(
R · X 

k − Y 
))

(2) 
(
X 

k +1 , U 

k +1 
1 

, U 

k +1 
2 

, U 

k +1 
3 

, V 

k +1 
)
solutionof 

min 

X, U 1 , U 2 , U 3 ,V 

∥∥X̄ 

k − X 

∥∥2 

F 
s . t . U 1 U 2 U 3 V = X 

nd X ≥ 0 , U 1 ≥ 0 , U 2 ≥ 0 , U 3 ≥ 0 , V ≥ 0 

The second sub-problem corresponds to projecting X 

k on the

onstrained domains U 1 U 2 U 3 V = X and X ≥ 0, U 1 ≥0, U 2 ≥0, U 3 ≥0,

 ≥ 0 . This projection problem is complex, as the equality con-

traint defines a non-convex set. Moreover, it has no closed form.

e thus propose to perform alternating projections on the con-

traints, to derive an approximate solution to this subproblem.

ach variable will be treated sequentially, in a Gauss-Seidel fash-

on, and then projected on its associated constraint set. For vari-

bles U i and V , we propose to approximate the projection of the

ntersection of positive and equality constraint, by the composition

f the respective projectors, in order to avoid inner iterations. 

Step 2 will read as follows, 

 

k +1 = P + 
(
X̄ 

k 
)

 

k +1 
1 

= P + 
(

P { U 1 U k 2 
U k 

3 
V k = X k +1 } 

(
U 

k 
1 

))
 

k +1 
2 

= P + 
(

P { U k +1 
1 

U 
2 
U k 

3 
V k = X k +1 } 

(
U 

k 
2 

))
 

k +1 
3 

= P + 
(

P { U k +1 
1 

U k +1 
2 

U 
3 
V k = X k +1 } 

(
U 

k 
3 

))
 

k +1 = P + 
(

P { U k +1 
1 

U k +1 
2 

U k +1 
3 

V = X k +1 } 
(
V 

k 
))

Hereabove, P + denotes the projector onto the positive orthant,

.e. capping the negative entries of an input matrix to 0. We can

hen apply the general property that the projection of a matrix U

n a linear constraint X = AUB is given by 

ˆ 
 = U − A 

† ( AUB − X ) B 

† (13)

ith † the pseudo-inverse operation, so that step 2 finally reads: 

 

k +1 = P + 
(
X̄ 

k 
)

 

k +1 
1 

= P + 
(

U 

k 
1 −

(
U 

k 
1 U 

k 
2 U 

k 
3 V 

k − X 

k +1 
)(

U 

k 
2 U 

k 
3 V 

k 
)† 

)
 

k +1 
2 

= P + 
(

U 

k 
2 −

(
U 

k +1 
1 

)† (
U 

k +1 
1 

U 

k 
2 U 

k 
3 V 

k − X 

k +1 
)(

U 

k 
3 V 

k 
)† 

)
 

k +1 
3 

= P + 
(

U 

k 
3 −

(
U 

k +1 
1 

U 

k +1 
2 

)† (
U 

k +1 
1 

U 

k +1 
2 

U 

k 
3 V 

k − X 

k +1 
)(

V 

k 
)† 

)
 

k +1 = P + 
(

V 

k −
(
U 

k +1 
1 

U 

k +1 
2 

U 

k +1 
3 

)† (
U 

k +1 
1 

U 

k +1 
2 

U 

k +1 
3 

V 

k − X 

k +1 
))

Steps 1 and 2 can be understood as a gradient projection

ethod. The complicated form of the constraint requires the use



A. Mongia, N. Jhamb and E. Chouzenoux et al. / Signal Processing 169 (2020) 107366 5 

o  

v  

c  

U  

t  

a  

o

 

U  

r  

a  

t  

fi  

i

C

 

t  

T  

j  

o  

c  

l  

t

4

4

 

i  

1  

h

(

(

(  

 

a  

v

4

 

1  

m  

a

4

 

d  

i  

(  

p  

h  

d  

w

 

–  

t  

n  

t  

t  

u

Fig. 6a. Empirical convergence plot. 

Fig. 7. MAE vs Number of factors for matrix factorization. 
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f an inner step for approximating the projection step. The con-

ergence of the whole scheme cannot be established easily, be-

ause of the presence of the coupling in the equality constraint

 1 U 2 U 3 V = X . However, in our experimental results, we will show

hat the algorithm converges empirically. Here we have shown the

lgorithm for three layers. This can be generalized to any number

f layers. The general algorithm is given in the appendix. 

A recent work [34] , proposes a hierarchical latent factor model.

nlike ours, which just goes deep, [34] bifurcates in each layer. The

esulting model increases complexity since there are more vari-

bles to solve now and extra constraints to impose the tree struc-

ure. This is likely to make the model more vulnerable to over-

tting. The work claims convergence, but they provide no insights

nto this claim. 

omputational complexity 

The computational cost of the proposed method is governed by

he pseudo-inverse operations that must be performed in Step 2.

he complexity of it is given by O(n w ) where w < 2.37 and is con-

ectured to be 2. Note however that one can play with the size

f the latent factor matrices, in order to control the memory and

omputational burden of these inversions. An alternative for very

arge datasets is to use conjugate gradient solver, but in our prac-

ical experiments, it appears not necessary. 

. Experimental evaluation 

.1. Datasets 

We carry our evaluation on movie recommendations. Exper-

ments are carried out on three standard datasets – Movielens

00 K, Movielens 1 M, Movielens and 10 M. All of them are from

ttps://grouplens.org/datasets/movielens/ . 

1) movie-100K: 100,000 ratings for 1682 movies by 943 users; 

2) movie-1M: 1 million ratings for 3900 movies by 6040 users; 

3) movie-10M: 10 million ratings for 10,681 movies by 71,567

users. 

For these datasets the splits between training and test sets

re already pre-defined. The protocol is to carry out 5 fold cross-

alidation on these sets. 

.2. Convergence 

We show the empirical convergence of our algorithm on the

00 K. One can see that our algorithm decreases the cost function

onotonically. The results from the other two datasets are similar

nd are not shown here ( Fig. 6a ). 

.3. Comparative results 

We have compared our technique with some state-of-the-art

eep methods – collaborative deep learning (CDL) [25] , marginal-

zed deep autoencoder (MDA) [24] and deep matrix factorization

DMF) [28] . We also compare with a recent shallow yet robust ap-

roach called robust matrix factorization (RMF) [35] ; although it

as never been used for collaborative filtering, it surpasses stan-

ard matrix factorization for other tasks. We have finally compared

ith the hierarchical latent factor model (HLFM) [34] . 

For our proposed method we need to specify three parameters

1. The number of layers, the number of basis in each layer and

he value of γ . Usually the number of layers is determined by the

umber of samples in the database. Since our datasets have less

han 10,0 0 0 samples (users / items) it is unlikely that our archi-

ecture can go beyond 3 layers and produce good results; this is

sually a rule of thumb. 
Following deep learning literature, we can fix the number of

actors in each layer by halving in subsequent layers. However, we

eed to find the number of factors in the first layer. This, we do

mpirically by using a single layer matrix factorization. The num-

er of latent factors are varied from 10 to 80 in steps of 10. The

esults are shown in Fig. 7 . We can see that the best results are

btained for 40 latent factors. This determines the number of la-

ent factors for the two and three layer model. The two levels ar-

hitecture is 40-20 and the three levels architecture is 40-20-10.

e have also shown results for a 4 layer architecture (40-20-10-

); this was mainly done to show that the results deteriorate after

he third layer. 

Finally, we need to specify γ , that is the stepsize in our pro-

ected gradient method; we have used γ = 0.1 throughout. This

alue was obtained by 4 fold cross-validation on the training set.

e also found that our algorithm is robust to the choice of param-

ter between 0.01 to 0.8. Outside the said range, the performance

egrades gracefully. 

For initialization, we make use of the following deterministic

VD based strategy, that appears to lead to stable and accurate re-

ults. The missing entries are first filled by the row and column av-

rages. SVD is performed on the thus filled matrix. The left singu-

ar vectors are used for initializing the U 1 . Then SVD is performed

n the remaining portion, i.e. the product of singular values and

he right singular vectors. The left singular vectors of the second

VD is used to initialize U 2 . This process is continued. For the fi-

al layer, the product of the singular values and the right singular

ectors is used to initialize V . 

One must note that the methods compared against (MDA, CDL,

MF, RMF and HLFM) have not been used on standard protocols

https://grouplens.org/datasets/movielens/
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Table 1 

Results on 100 K Movielens. 

Method MAE RMSE Precision Recall 

@10 @20 @10 @20 

RMF .732 .938 .515 .380 .641 .767 

DMF .735 .940 .513 .380 .641 .775 

CDL .742 .953 .510 .377 .642 .765 

MDA .758 .981 .513 .372 .641 .767 

HLFM .750 .962 .512 .376 .640 .769 

40-20 .726 .939 .522 .380 .649 .782 

40-20-10 .717 .901 .536 .399 .658 .792 

40-20-10-5 .732 .941 .520 .376 .642 .778 

Table 2 

Results on 1 M Movielens. 

Method MAE RMSE Precision Recall 

@10 @20 @10 @20 

RMF .689 .876 .669 .526 .625 .792 

DMF .691 .878 .671 .523 .625 .799 

CDL .689 .871 .671 .531 .630 .802 

MDA .686 .879 .669 .526 .625 .791 

HLFM .698 .880 .661 .517 .619 .785 

40-20 .681 .864 .673 .531 .636 .799 

40-20-10 .678 .854 .691 .543 .641 .809 

40-20-10-5 .682 .866 .670 .528 .635 .796 

Table 3 

Results on 10 M Movielens. 

Method MAE RMSE Precision Recall 

@10 @20 @10 @20 

RMF .630 .810 .682 .559 .629 .803 

DMF .618 .805 .671 .569 .631 .810 

CDL .616 .802 .672 .568 .633 .810 

MDA .621 .816 .680 .555 .620 .802 

HLFM Does not run at this scale 

40-20 .613 .802 .689 .569 .632 .813 

40-20-10 .600 .794 .696 .579 .640 .820 

40-20-10-5 .608 .798 .693 .572 .638 .815 
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defined on all these datasets. Therefore, we have followed the ap-

proach presented in the corresponding papers to tune the param-

eters for our datasets. 

As the evaluation metric, we show results on all the stan-

dard ones – mean absolute error (MAE), root mean squared error

(RMSE), precision and recall. The results are shown in the following

Tables 1-3 . The results from our method are shown in bold. We see

that, the results improve from 2 to 3 layers; but it degrades from

3 to 4 layers. This is because in deep learning it is believed that

going deeper improves abstraction capacity which in turn boosts

results. But one cannot go on going deeper, as it requires learning

more parameters. In such limited data scenario, the need to learn

more parameters leads to overfitting; this reduces the performance

if one goes too deep. 

One can see that we improve upon the rest in terms of ev-

ery possible metric; the improvements are considerably large. To

put the results in perspective, one must remember that the Netflix

prize of 1 million was given to the winners who reduced the RMSE

on the Netflix dataset from 0.95 to 0.85. We do not give results on

the Netflix dataset owing to concerns over a pending lawsuit on

the usage of the dataset. 

5. Conclusion 

This work introduces the deep latent factor model (deepLFM).

We have compared with other deep and shallow techniques and
hown that the proposed method outperforms all; at least on the

enchmark databases compared on. 

At a later stage we would like to incorporate neighborhood in-

ormation from the users and items in a graph based deep latent

actor framework. This will borrow ideas from graph signal pro-

essing [36 , 37] . The basic idea would be to regularize the proposed

odel with trace of graph Laplacians in a fashion like graph reg-

larized matrix factorization [37] . These graph Laplacians will be

efined from the similarities of the users and the items. 

In recent years, tensor decomposition / factorization strategies

ave been gaining importance in signal processing and machine

earning [38 , 39] . The way we do multi-level factorizations in this

ork, it would be interesting to introduce multi-level tensor fac-

orization in the future. 

Collaborative filtering / recommender systems have benefited

rom the use of additional user-item metadata that has been incor-

orated into the matrix completion framework via graph regular-

zation [40 , 41] . In the future, we would like to improve our method

n a similar fashion using graph regularization. 
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ppendix 

ncorporating arbitrary constraints 

Although we are unaware of any other constraint / that is ap-

lied for latent factor model other than simple positivity con-

traints, the reader may have an interest to modify our proposed

odel to other problems. We show that it would actually be easy

o incorporate any type of constraint into our proposed frame-

ork. The complete mathematical formulation is given in (11) . If

ne wants to add some regularization, one simply needs to add

hem to (11) . 

min 

 1 , U 2 , U 3 ,V 

1 

2 

Y − R · ( U 1 U 2 U 3 V ) 
2 
F such that 

 1 U 2 U 3 V ≥ 0 , U 1 ∈ C 1 , U 2 ∈ C 2 , U 3 ∈ C 3 , V ∈ S 

ith C 1 , C 2 , C 3 and S some closed convex sets incorporating both

ositivity and regularity constraints on the factors U 1 , U 2 , U 3 and

, respectively. The alternating projection algorithm would remain

lmost unchanged. The only difference is that the projection steps

ust now be performed on the sets C 1 , C 2 , C 3 and S , instead of on

he positive orthant. 
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For example, consider, for i = 1, 2, 3 , 

 i = { U i ≥ 0 and | | U i | | F ≤ θi } 
ith θ i positive regularization factors constraining the l2-norms on

 i , and 

 = { V ≥ 0 and | | V | | 1 ≤ μ} 
ith μ a positive bound on the sought l 1 -norm on V . It is worth

ointing out that in that case, the projectors remain with a closed

orm. First, for every i we have, as a consequence of Combettes

42] (Remark 3.15): 

 C i ( U i ) = 

{
θi | | P + ( U i ) | | F P + ( U i ) if | | P + ( U i ) | | F 〉 θi 

P + ( U i ) elsewhere 

Moreover, 

 S ( V ) = 

{
P + ( V ) if | | V | | 1 ≤ μ
P simplex ( V ) elsewhere 

ith P simplex ( V ) the projection on simplex ball with radius μ, cal-

ulated for instance using the fast algorithm from Condat [43] . 

xtension for n-layer latent factor model 

For an n-layer deep latent factor model, we need to solve the

ollowing generalized version of (11) , 

min 

U 1 , U 2 ,..., U N ,V 

1 
2 ‖ 

Y − R · ( U 1 U 2 ... U N V ) ‖ 

2 
F suchthat U 1 U 2 ... U N V ≥ 0 , 

U i ≥ 0 i = 1 ...N, V ≥ 0 

One can see that the outer loop is independent of the depth of

he model. When going from three to a higher number of layers,

he main change lies in adding steps in the alternating projection

nner loop, in order to take into account the update of the layers.

he updates for each variable would read: 
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