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a b s t r a c t 

Subspace clustering assumes that the data is separable into separate subspaces; this assumption may 

not always hold. For such cases, we assume that, even if the raw data is not separable into subspaces, 

one can learn a deep representation such that the learnt representation is separable into subspaces. To 

achieve the intended goal, we propose to embed subspace clustering techniques (locally linear manifold 

clustering, sparse subspace clustering and low rank representation) into deep transform learning. The 

entire formulation is jointly learnt; giving rise to a new class of methods called deeply transformed sub- 

space clustering (DTSC). To test the performance of the proposed techniques, benchmarking is performed 

on image clustering problems. Comparison with state-of-the-art clustering techniques shows that our for- 

mulation improves upon them. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Clustering has been a classical problem in machine learning.

t studies how signals are naturally grouped together. Perhaps the

implest and most widely used clustering technique is the K-means

1] . It gathers samples such that the total (Euclidean) distance of

he data points within the clusters is minimized. The problem is

P hard, and hence is usually solved greedily. One of the limi-

ations of K-means is that it may fail to capture non-linear rela-

ionships. The simple way to overcome this issue is the kernel K-

eans [2] . The concept remains the same as in any kernel trick:

he standard Euclidean distances between the samples is replaced

y a kernelized version of it, within the K-means framework. Re-

ated to the kernel K-means is spectral clustering [ 2 , 3 ]; the later

eneralizes over the former by replacing kernelized data matrix to

ny similarity measure (not restricting to Mercer kernels) called

he ‘affinity matrix’. Subspace clustering techniques [ 4 , 5 ] are based

n a slightly different model that assumes that the samples from

he same cluster will lie in the same subspace. Finding the clusters

oils down to finding the different subspaces. There can be differ-

nt ways to find the subspaces – these will be discussed later. 

Subspace clustering operates on the raw data; the data might

e such that it is not separable into subspaces in the original do-
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ain. In such a case, one may be able to learn an alternative

epresentation space, such that the data is separable after being

rojected in this new domain. Several studies in the past have

elied on this strategy. For example, in [ 6 , 7 ] a tight-frame was

earnt from the data along with the subspace clustering formula-

ion; even though the original data was not separable into sub-

paces, the projection within the learnt tight-frame made it sepa-

able. In [ 8 , 9 ] representations were learnt via autoencoders and fed

nto clustering algorithms (K-means in [8] and subspace clustering

n [9] ). The assumptions in these studies remained the same, i.e.

ven if the original data is not separable into subspaces, their cor-

esponding representations will be. The difference between [ 6 , 7 ]

nd [ 8 , 9 ] is that the former are shallow techniques while the later

re based on deep learning. 

Our work is based on similar assumptions. We assume that

ven if the data is not separable into subspaces in the original

pace, we can learn deep representation from the data such that it

s tailored to be separable in the representation space. Our prelim-

nary work on this topic can be found in [10] ; we showed that by

earning a single layer of transform jointly with the locally linear

anifold clustering, better results can be obtained. It was a shal-

ow technique involving only one layer of transform learning. Our

roposed work is an extension of this basic approach. 

• The first novelty is to learn deeper representations via deep

transform learning (DTL) [11] . 

• The second novelty is to incorporate three variants of sub-

space clustering – i) Locally linear manifold clustering (LLMC),

ii) sparse subspace clustering (SSC), and iii) low rank represen-

tation (LRR) into the DTL model. 
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Operationally, we embed the clustering formulation into the

deep transform learning paradigm, and jointly solve it using vari-

able splitting optimization method. The assumption here is that,

even if the original data is not separable into subspaces, by non-

linearly transforming the data (via DTL), we will learn a represen-

tation which will be separable into subspaces. 

The rest of the paper will be organized into the following sec-

tions. Relevant background for our work is discussed in Section 2 .

The proposed approach is detailed in Section 3 . The experimental

results are shown in Section 4 . Conclusions of this work are dis-

cussed in Section 5 . 

2. Background 

2.1. Subspace clustering 

Subspace clustering assumes that the data is naturally segre-

gated into subspaces. To find these clusters, the first task is to

identify these subspaces. In the case of locally linear manifold clus-

tering (LLMC) [12] , sparse subspace clustering (SSC) [13] or low

rank representation (LRR) [14] , the general idea remains the same:

in order to identify the subspaces, each sample is expressed as a

linear combination of other samples, as follows: 

x i = X i c c i , ∀ i in { 1 , ..., n } (1)

Here x i ( ∈ R 

m ) denotes the ith sample and X i c ( ∈ R 

m ×n −1 ) all

other samples; c i ( ∈ R 

n −1 ) is the corresponding linear weight vec-

tor. The information about the subspaces is embedded in the coef-

ficients c i . The coefficients are solved by the following, 

min 

c i 
‖ 

x i − X i c c i ‖ 

2 
2 + R ( c i ) , ∀ i in { 1 , ..., n } (2)

Hereabove, R denotes the regularization term. Three main regu-

larization choices have been used in the literature. For LLMC, there

is no regularization, i.e. R = 0. For SSC, R is a sparsity promoting l 1 -

norm. For LRR, R is a low-rank penalty usually taking the form of

nuclear norm. The first term in (2) , i.e. the Euclidean norm comes

from (1) . 

Once the coefficients are estimated, the next step is to seg-

ment (i.e. cluster) the data. This requires the application of spec-

tral clustering. For that, an affinity matrix is computed from the

coefficient matrix C = [ 
� 

c 1 | ... | � 

c n ] obtained from all n samples. Note

that 
� 

c i ( ∈ R 

n ) is defined from c i ( ∈ R 

n −1 ) by putting zero in the ith

position. There is no unique definition for the affinity matrix; the

only requirement is that it needs to be symmetric. Several vari-

ants have been proposed for constructing it from C. The most com-

monly used is probably the following: 

A = | C | + 

∣∣C T ∣∣ (3)

Once the affinity matrix (A) is defined (by using a suitable for-

mula), the third step is to segment the clusters. A spectral cluster-

ing algorithm applied on A (eg, Normalized-Cuts on A) is used for

this purpose. 

2.2. Transformed subspace clustering 

The basic formulation for transformed subspace clustering was

proposed by the authors in [10] . Instead of learning the clusters

from the raw data, they are learnt from the transform coefficients.

The learning proceeded in a joint fashion. The complete formula-

tion is given as follows: 

min 

T,Z,C 
‖ 

T X − Z ‖ 

2 
F + λ

(‖ 

T ‖ 

2 
F − log det T 

)
+ μ‖ 

Z ‖ 1 ︸ ︷︷ ︸ 
Transform Learning 

+ γ
∑ 

i 

‖ 

z i − Z i c c i ‖ 

2 
2 + R (C) 

︸ ︷︷ ︸ 
Subspace Clustering 

(4)
We will explain each of the terms (Transform Learning and Sub-

pace Clustering) separately. Note that in [10] , the LLMC formula-

ion was used so there was no regularization term. The first por-

ion of the formulation (4) corresponds to that of transform learn-

ng [15] . It is the analysis equivalent of dictionary learning; trans-

orm learning analyses the data by learning a transform / basis to

roduce coefficients. Mathematically this is expressed as, 

 X = Z (5)

Here T is the transform, X is the data and Z the corresponding

oefficients. Learning then proceeds by solving the following opti-

ization problem (i.e. the first part of (4) ): 

in 

T,Z 
‖ 

T X − Z ‖ 

2 
F + λ

(‖ 

T ‖ 

2 
F − log det T 

)
+ μ‖ 

Z ‖ 1 (6)

The first term (Euclidean norm) in (6) comes from (5) . The sec-

nd term is the regularization on (T) and the third term the regu-

arization on (Z). Here, one can have a trivial solution T = 0 and

 = 0. In order to prevent this − log det T is introduced. How-

ver, this term will favor a degenerate solution where T → ∞ and

 → 0. To prevent the degenerate solution ‖ T ‖ 2 F is introduced. The

 1 -norm on Z enforces sparsity. 

In practice, alternating minimization is used, that is T and Z

re updated alternatingly until convergence [16] . The update for Z

as a closed form, namely a soft thresholding operator; the closed

orm update for T can be found for instance in [17] . 

The solution for our prior formulation (4) proceeds via alter-

ating between the three variables T, Z and C. Although the initial

ork [10] did not use any regularization, one can easily extend it

o incorporate SSC and LRR formulations. 

The idea behind the aforementioned approach was motivated

y [6–9] , i.e. even if the raw data X is not separable into subspaces,

he transform coefficients (Z) will lie in different subspaces. How-

ver, the learnt transform (T) is linear. Therefore, the projection it

ay learn is mostly as good as the raw data as far as separability

nto subspaces is concerned. 

.3. Deep clustering 

So far, up to our knowledge, there has been only one sin-

le work that incorporates subspace clustering into a deep learn-

ng framework. In [9] , they incorporate the sparse subspace

lustering formulation into the features from the deepest layer

f a stacked autoencoder. Mathematically the formulation is as

ollows, 

min 

W 

′ 
i , W i ,C 

∥∥X − W 

′ 
1 ϕ 

(
W 

′ 
2 ϕ 

(
W 

′ 
3 ϕ ( W 3 ϕ ( W 2 ϕ ( W 1 X ) ) ) 

))∥∥2 

F ︸ ︷︷ ︸ 
Stacked Autoencoder 

+ γ
∑ 

i 

‖ ( W 3 ϕ ( W 2 ϕ ( W 1 X ) ) ) i − ( W 3 ϕ ( W 2 ϕ ( W 1 X ) ) ) i c c i ‖ 2 2 + λ‖ c i ‖ 1 
︸ ︷︷ ︸ 

Subspace Clustering 

(7)

Here the W 3 , W 2 and W 1 represent the encoder weights for a

hree layer autoencoder and W 

′ 
3 
, W 

′ 
2 

and W 

′ 
1 

corresponds to the de-

oder weights. The term W 3 ϕ( W 2 ϕ( W 1 X )) represents the autoen-

oder features at the deepest layer, on which spectral clustering is

pplied. 

Here, we show the formulation for three layers. W 

′ 
i 

denotes the

 

th level of decoder and W i denotes the i th level of decoder. The

 1 -norm on c i aims at promoting sparsity. The idea is like that of

ransformed subspace clustering; the clustering formulation is in-

orporated into the representation learning model. 
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There have been other clustering formulations embedded into

he deep learning framework. In [18] , a naïve solution was con-

idered, where stacked autoencoders are used for representation

earning followed by separate K-means / spectral clustering. A

ore sophisticated version of it [19] , jointly learns the represen-

ation from a stacked autoencoder while incorporating K-means

lustering formulation. A slightly different version was proposed in

20] , where instead of using the standard Euclidean distance as the

easure for K-means clustering, the Kullback-Leibler divergence

as used. In [21] , the encoder-decoder structure was replaced by

 simple neural network trained to have orthogonal outputs, thus

ielding a deep version of spectral clustering. 

In all the aforesaid formulations, the underlying assumption re-

ains the same. The deep network learns non-linear projections

uch that the learnt representation is separable into subspaces

ven when the original data is not. There is another class of deep

earning techniques which are deeper extensions of the famous

on-negative matrix factorization (NMF) based clustering frame-

ork. We can mention for instance [22] on face recognition, which

rgues that representations from each layer form clusters based on

ifferent attributes, e.g. if one is clustering faces, one layer may

luster based on gender, another layer may cluster based on eth-

icity etc. 

. Deeply transformed subspace clustering 

The idea of deep transform learning has been recently intro-

uced in our work [11] . Just like any other deep learning model,

e learn deep representation by repeatedly applying transform

earning on the data. Mathematically this is expressed as follows,

 3 T 2 T 1 X = Z, subject to T 2 T 1 X ≥ 0 and T 1 X ≥ 0 (8)

Note that we denote use arbitrary activation functions as be-

ore, but introduce specific ReLU type non-linearity as constraints. 

We will show here formulations for three layers in (8) but it is

orth noting that the generalization to higher number of layers is

traightforward. The optimization problem is then posed as: 

in 

T i 
′ s,Z 

‖ 

T 3 T 2 T 1 X − Z ‖ 

2 
F + λ

3 ∑ 

i =1 

(‖ 

T i ‖ 

2 
F − log det T i 

)

.t. T 1 X ≥ 0 and T 2 T 1 X ≥ 0 

(9) 

All the terms in (9) have been defined before, making the here-

bove expression self explanatory. Note that we have dropped the

parsity promoting term on the coefficients. Usually in deep learn-

ng, the dimensionality of the coefficients reduces in each layer

o that the representation is naturally compact and sparsity is not

eeded. 

Using an unsupervised strategy, one can in principle take the

earnt representation as an input of any classifier for segmenta-

ion. However, it will be shown in this work that such a greedy

iecemeal formulation usually does not perform very well. A bet-

er approach is to learn the deep representation tailored for pro-

ections. For this work, we propose to embed the subspace cluster-

ng formulation into the deep transform learning to jointly learn

he representation and clustering. This is in a similar line than the

rior studies [19–21] , where the goal was to learn a deep projec-

ion space (using deep autoencoders) that are conducive to cluster-

ng. 

We reiterate the core idea behind this work. In subspace clus-

ering, it is assumed that the data is naturally separated into cer-

ain subspaces. This may not always hold. Here, we are assum-

ng that even if the original data is not separable into subspaces,

y learning a non-linear representation of it (via deep transform

earning) tailored for clustering, the representation will fall into

eparate subspaces. 
Mathematically our final formulation is expressed as, 

min 

T 1 , T 2 , T 3 , X 2 , X 3 ,Z,C 
‖ 

T 3 T 2 T 1 X − Z ‖ 

2 
F 

+ λ
3 ∑ 

i =1 

(‖ 

T i ‖ 

2 
F − log det T i 

)
+ γ

∑ 

i 

‖ 

z i − Z i c c i ‖ 

2 
2 + R (C) 

s.t. T 1 X ≥ 0 and T 2 T 1 X ≥ 0 (10) 

This (10) is our complete formulation. The idea is to apply sub-

pace clustering on the deepest layer of transform coefficients. To

olve (10) , we follow the popular variable splitting strategy. After

ntroducing proxy variables, the resulting augmented Lagrangian

unction is minimized via alternating direction method of multi-

liers (ADMM). In the case of (10) , we introduce two proxy vari-

bles T 2 T 1 X = X 3 and T 1 X = X 2 . The augmented Lagrangian function

eads, 

min 

T 1 , T 2 , T 3 , X 2 , X 3 ,Z,C 
‖ 

T 3 X 3 − Z ‖ 

2 
F + μ1 ‖ 

T 2 X 2 − X 3 ‖ 

2 
F + μ2 ‖ 

T 1 X − X 2 ‖ 

2 
F 

+ λ
3 ∑ 

i =1 

(‖ 

T i ‖ 

2 
F − log det T i 

)
+ γ

∑ 

i 

‖ 

z i − Z i c c i ‖ 

2 
2 + R (C) 

s.t. X 3 ≥ 0 and X 2 ≥ 0 (11) 

In (11) , the hyper-parameters μ1 and μ2 correspond to weights

ssociated to the representation in shallower layers. We argue that

here is no reason to prefer one layer over the other, therefore we

ssign μ1 = μ2 = 1. With this slight simplification, we have, 

min 

T 1 , T 2 , T 3 , X 2 , X 3 ,Z,C 
‖ 

T 3 X 3 − Z ‖ 

2 
F + ‖ 

T 2 X 2 − X 3 ‖ 

2 
F + ‖ 

T 1 X − X 2 ‖ 

2 
F 

+ λ
3 ∑ 

i =1 

(‖ 

T i ‖ 

2 
F − log det T i 

)
+ γ

∑ 

i 

‖ 

z i − Z i c c i ‖ 

2 
2 + R (C) 

s.t. X 3 ≥ 0 and X 2 ≥ 0 (12) 

The problem (12) can now be solved using ADMM [23] . Each of

he variables are updated separately by solving the following sub-

roblems. 

P1 : min 

T 1 
‖ T 1 X − X 2 ‖ 2 F + λ( ‖ T 1 ‖ 2 F − log det T 1 ) 

P2 : min 

T 2 
‖ T 2 X 2 − X 3 ‖ 2 F 

+ λ( ‖ T 2 ‖ 2 F 
− log det T 2 ) 

P3 : min 

T 3 
‖ T 3 X 3 − Z ‖ 2 

F 
+ λ( ‖ T 3 ‖ 2 F 

− log det T 3 ) 

P4 : min 

X 3 
‖ T 3 X 3 − Z ‖ 2 F + ‖ T 2 X 2 − X 3 ‖ 2 F s.t. X 3 ≥ 0 

P5 : min 

X 2 
‖ T 2 X 2 − X 3 ‖ 2 F 

+ ‖ T 1 X − X 2 ‖ 2 F 
s.t. X 2 ≥ 0 

P6 : min 

Z 
‖ T 3 X 3 − Z ‖ 2 F + γ

∑ 

i 

‖ z i − Z i c c i ‖ 2 2 

P7 : min 

C 

∑ 

i 

‖ z i − Z i c c i ‖ 2 2 
+ R (C) 

Sub-problems P1 to P3 are standard transform updates whose

losed form solution is given in [17] . P4 and P5 are constrained

east square problems that will be solved approximately using a

seudoinverse operation followed by capping all the negative val-

es to zero. P6 is a simple least squares problem. The solution to

7 will depend on the regularization used. With no regularization

i.e., LLMC), it has a closed form update via the pseudoinverse.

ith l 1 -norm regularization, P7 can be solved via iterative soft

hresholding-based solver such as [24] ; this case pertains to SSC.

hen the regularizer in P7 is a nuclear norm (i.e., LRR), one needs

o solve it via singular value shrinkage [25] . 

This concludes the derivation of the main algorithm. Once

10) is solved, our work proceeds in the same fashion as standard

ubspace clustering. Given C, we compute the affinity matrix using

3) , which is then segmented / clustered by Normalized cut. 
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Table 1 

Comparison with benchmarks on COIL 20. 

Metric SSC KSSC LRR KLRR DSC DKM DMF DTLLMC DTSC DTLRR 

Accuracy .79 .72 .72 .71 .85 .88 .86 .93 .98 .81 

NMI .89 .79 .84 .80 .91 .94 .92 .97 .98 .89 

ARI .76 .64 .65 .63 .84 .86 .85 .89 .90 .80 

Precision .70 .63 .65 .61 .82 .85 .84 .88 .90 .72 

F-measure .78 .65 .66 .63 .85 .87 .84 .91 .93 .81 

Table 2 

Comparison with benchmarks on Extended Yale B. 

Metric SSC KSSC LRR KLRR DSC DKM DMF DTLLMC DTSC DTLRR 

Accuracy .70 .70 .71 .70 .88 .91 .89 .96 .99 .84 

NMI .83 .83 .80 .80 .90 .92 .90 .97 .98 .89 

ARI .64 .65 .63 .63 .83 .90 .83 .95 .96 .77 

Precision .65 .67 .62 .61 .79 .91 .80 .95 .99 .71 

F-measure .66 .68 .65 .65 .83 .90 .84 .93 .95 .76 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Comparison of run-times in sec- 

onds. 

Technique Coil 20 Yale B 

SSC 11 9 

KSSC 22 20 

LRR 24 22 

KLRR 48 50 

DSC 62 61 

DKM 87 83 

DMF 57 54 

DTLLMC 44 38 

DTSSC 50 42 

DTLRR 58 48 
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4. Experimental results 

In this section we compare our method with three deep clus-

tering benchmarks, namely deep sparse subspace clustering (DSC)

[9] , deep K-means clustering (DKM) [19] and deep matrix factor-

ization (DMF) [22] . The said studies have been published recently

and have been favorably compared with traditional clustering tech-

niques like matrix factorization, spectral clustering, subspace clus-

tering, hierarchical clustering. For the sake of completeness of our

study, we compare with four classical methods as well, sparse sub-

space clustering (SSC), kernel SSC (KSSC), low rank representation

(LRR) and kernel LRR (KLRR). The RBF kernel is retained for kernel

methods. 

We follow the experimental protocol from [9] . Experiments

were carried out on the COIL20 1 (object recognition) and Extended

YaleB 

2 (face recognition) datasets. The COIL20 database contains

1440 samples distributed over 20 objects, where each image takes

the size of 32 × 32. The used YaleB consists of 2414 samples from

38 individuals, where each image is with size of 192 × 168. For

both datasets, DSIFT (dense scale invariant feature transform) fea-

tures were extracted. They were further reduced by PCA to a di-

mensionality of 300. Since the ground truth (class labels) for these

datasets is available, clustering accuracy can be measured. Here,

we use Accuracy, NMI (normalized mutual information), ARI (ad-

justed rank index), Precision and F-score. The results are shown in

Table 1 (COIL20) and Table 2 (YaleB). Since the last stage of all the

clustering algorithms involves K-means, we ran the experiments on

100 random runs and report the mean for each score. 

The parametric settings for the methods compared against have

been taken from the respective papers. For our proposed tech-

nique, we have kept λ= 0.1 and γ = 1 as these are standard values

used in previous works in transform learning. TLLMC does not re-

quire specification of any other parameter. TSC has τ= 0.1 as the

sparsity promoting term and TLLR has τ= 0.01 as the rank defi-

ciency term. As we will see later for their deep counterpart, those

algorithms seem robust to these parametric values ( λ, γ and τ );

changes by an order of magnitude to either side do not affect the

results statistically. 

The results in Tables 1 and 2 show that our proposed method

with sparse subspace clustering yields the best results on an ag-

gregate. The results from the LLMC based formulation are compa-

rable to the existing benchmarks. Our formulation with LRR yields

the worst results. But this is in tune with the observations in [9] –

LRR formulation does not yield good results on these datasets. This
1 www.cs.columbia.edu/CAVE/software/softlib/coil-20.php . 
2 https://computervisiononline.com/dataset/1105138686 . 

A  

s  

p  

b  
ay be because LRR is sensitive to outliers; most LRR based clus-

ering formulations have an explicit outlier rejection term; we have

ot incorporated it here; we used the vanilla formulation. Perhaps

his is the reason why the results are quite poor. We find that the

lassical techniques (SSC, KSSC, LRR and KLLR) perform worse than

he rest of the techniques. This observation is in tune with prior

tudies. 

Our method requires specification of very few parameters. The

alues of λ= 0.1 and γ = 1 are used as usual settings in transform

earning literature [15–17] ; we did not tune it. The only parameter

e tuned is the regularization term corresponding to the subspace

lustering. Since LLMC does not have any regularization, no analy-

is could be carried out. For the LRR and SSC variants, variation of

RI is plotted in Fig. 1 . 

We have also added in Fig. 2 the evolution of the cost func-

ion along iterations, assessing the empirical convergence of our

hree different algorithms for the COIL 20 dataset. The convergence

lots for the YALE B are of similar nature and hence are not shown

ere. We have also added the run-times for different techniques in

able 3 . All the experiments were run on an Intel i7 processor with

2 GB RAM running a 64 bit Windows 10. The proposed techniques

nd DMF were based on Matlab, while DSC, DKM were based on

ython. 

From these run-times we find that our method is actually the

astest among all the deep learning formulations. Among the three

ariants we have proposed, DTLLMC is the fastest; this is because

t does not have any regularization term that needs iterative steps.

mong DTSSC and DTLRR, DTLRR is the slowest since it requires

olving at each step a singular value decomposition, which is com-

utationally expensive. The linear shallow methods are the fastest;

ut their kernelized versions are comparatively slower. This is be-

http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
https://computervisiononline.com/dataset/1105138686
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Fig. 1. Variation of DTSC (a) and DTLRR (b) with regularization value τ . 

Fig. 2. Empirical Convergence Plot. 

Table 4 

Analysis of proposed method (DTSC) on COIL 20. 

Metric 1 layer 2 layer 3 layer 4 layer 

Greedy Joint Greedy Joint Greedy Joint Greedy Joint 

Accuracy .96 .97 .96 .98. .96 .98 .94 .99 

NMI .85 .92 .86 .94 .88 .98 .84 .95 

ARI .86 .92 .87 .94 .87 .90 .83 .96 

Precision .82 .87 .82 .88 .83 .90 .81 .88 

F-measure .81 .86 .82 .88 .82. .93 .80 .89 

Table 5 

Analysis of proposed method (DTSC) on Extended YaleB. 

Metric 1 layer 2 layer 3 layer 4 layer 

Greedy Joint Greedy Joint Greedy Joint Greedy Joint 

Accuracy .73 .98 .76 .99 .76 .99 .74 .99 

NMI .39 .94 .41 .94 .43 .98 .42 .96 

ARI .38 .95 .43 .95 .44 .96 .45 .95 

Precision .44 .98 .58 .99 .59 .99 .59 .99 

F-measure .42 .94 .51 .95 .53 .96 .52 .95 

c  

o

 

m  

a  

g  

r  

m  

f

 

o  

c  

c  

m  

B  

y  

l  

u

5

 

i  

t  

s  

i  

r  

a  

f  

p  
ause of the increased size of the kernel matrix compared to the

riginal dimensions. 

So far, we have shown the best results from our proposed

ethod. In the next set of experiments, we show the influence of

 variation in number of layers and the results obtained with the

reedy solution. In the later, we learn the deep transform sepa-

ately and feed the features into subspace clustering. Since the SSC

odel yields the best results, we are showing the results on this

ormulation. The results are shown in Tables 4 and 5 . 

We find that the results improve from one to three layers, but

nce we go beyond three layers the results deteriorate. This is be-

ause, with more layers the number of parameters to learn in-

reases; with limited volume of training data (as is the case), this

ay lead to over-fitting and subsequent deterioration of results.

etween the joint and greedy formulations, our joint formulation

ields clearly better results. This is expected because this formu-
 s
ation learns the weights with the goal of clustering. The greedy

nsupervised formulation does not present this advantage. 

. Conclusion 

In this work we propose deeply transformed subspace cluster-

ng. Several layers of transforms are used to analyze the data such

hat the learnt representations are separable into subspaces. This

tems from the assumption that even if the data is not separable

nto subspaces in the original space, their non-linearly learnt rep-

esentations will be. In future, this approach can be extended to

ny clustering algorithm. For example, we can take the coefficients

rom the deepest layer of transform coefficients and input them to

-spectral clustering [26] or we can have a semi-supervised ver-

ion as in [27] . There can be other extensions as well. 
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