Algorithme primal-dual de points intérieurs pour l'estimation pénalisée des cartes d'abondances en imagerie hyperspectrale

E. Chouzenoux⁽¹⁾, S. Moussaoui⁽²⁾ et J. $Idier^{(2)}$

Université Paris-Est, Lab. d'Informatique Gaspard Monge
 IRCCyN, Ecole Centrale Nantes

GRETSI 2011, Bordeaux

Outline

1 Introduction

2 Approche proposée

- Intégration de la contrainte d'égalité
- Algorithme de points intérieurs primal-dual

3 Résultats expérimentaux

- Temps de calcul dans le cas non pénalisé
- Intégration d'une pénalisation spatiale

4 Conclusion

(3)

Plan

1 Introduction

2 Approche proposée

- Intégration de la contrainte d'égalité
- Algorithme de points intérieurs primal-dual

3 Résultats expérimentaux

- Temps de calcul dans le cas non pénalisé
- Intégration d'une pénalisation spatiale

4 Conclusion

• • = • • = •

Principe de l'imagerie hyperspectrale

N : Nombre de pixels ; K : Taille des spectres ; P : Nombre de constituants

Problème de reconstruction

Modèle de mélange linéaire

$$oldsymbol{Y} = oldsymbol{S} oldsymbol{C} + oldsymbol{E}$$

- $\boldsymbol{Y} \in \mathbb{R}^{K imes N}$: Observations
- $\boldsymbol{S} \in \mathbb{R}^{K \times P}$: Signatures spectrales
- $\boldsymbol{C} \in \mathbb{R}^{P imes N}$: Coefficients d'abondance
- $\boldsymbol{E} \in \mathbb{R}^{K imes N}$: Bruit supposé blanc gaussien i.i.d
- Estimation de C à partir de Y et S.
- 1 Contraintes de **positivité**

$$c_{p,n} \ge 0, \quad \forall p \in \{1, \dots, P\}, \quad \forall n \in \{1, \dots, N\}$$

② Contraintes d'additivité

$$\sum_{p=1}^{P} c_{p,n} = 1, \quad \forall n \in \{1, \dots, N\}$$

1 Introduction

2 Approche proposée

- Intégration de la contrainte d'égalité
- Algorithme de points intérieurs primal-dual

3 Résultats expérimentaux

- Temps de calcul dans le cas non pénalisé
- Intégration d'une pénalisation spatiale

4 Conclusion

(3)

Approche proposée

▶ Reconstruction par minimisation contrainte d'un critère F(C)

Méthodes existantes :

$$\min_{\boldsymbol{C} \in \mathbb{R}^{P \times N}} \left(F(\boldsymbol{C}) = \frac{1}{2} \|\boldsymbol{S}\boldsymbol{C} - \boldsymbol{Y}\|_F^2 \right) \quad \text{s.c.} \quad \texttt{1} \text{ et/ou } \texttt{2}$$

1 NNLS (non-negative least squares) [Lawson 1974]

- 2 SCLS (sum-to-one constrained least squares) [Settle 1993]
- ① et ② FCLS (fully constrained least squares) [Heinz 2002]

▶ Minimisation rapide de F(C) strictement convexe quelconque sous les contraintes ① et ②

- Intégration de la contrainte 2 par changement de variable
- Résolution du problème d'optimisation contraint par une approche itérative de type **points intérieurs**

イロト 不得下 イヨト イヨト 二日

Intégration de la contrainte d'égalité

Propriété

• Soit $C^{(1)}$ tel que, pour tout $n \in \{1, ..., N\}$, $\sum_{p=1}^{P} c_{p,n}^{(1)} = 1$.

• Soit
$$oldsymbol{Z} \in \mathbb{R}^{P imes P - 1}$$
 telle que $oldsymbol{Z}^T oldsymbol{1} = oldsymbol{0}.$

Alors, pour tout $U \in \mathbb{R}^{P-1 \times N}$, $C = C^{(1)} + ZU$ vérifie la contrainte d'additivité 2.

Réécriture du problème sous la forme

$$\min_{\boldsymbol{U} \in \mathbb{R}^{P-1 \times N}} F(\boldsymbol{C}^{(1)} + \boldsymbol{Z}\boldsymbol{U}) \quad \text{s.c.} \quad \boldsymbol{C}^{(1)} + \boldsymbol{Z}\boldsymbol{U} \geqslant 0,$$

ou, de façon équivalente,

$$\min_{oldsymbol{u}\in\mathbb{R}^{NP-N}}L(oldsymbol{u}),\quad ext{s.c.}\quad oldsymbol{T}oldsymbol{u}+oldsymbol{t}\geqslantoldsymbol{0}$$

en posant $oldsymbol{u}=\mathsf{vect}(oldsymbol{U})$, $oldsymbol{t}=\mathsf{vect}(oldsymbol{C}^{(1)})$ et $oldsymbol{T}=oldsymbol{I}_N\otimes oldsymbol{Z}$, , , , ,

Algorithme de points intérieurs primal-dual : principe

 \blacktriangleright La solution u et les multiplicateurs de Lagrange associés λ sont caractérisés par les conditions de Karush-Kuhn-Tucker

$$\left\{ \begin{array}{l} \nabla L(\boldsymbol{u}) - \boldsymbol{T}^{\mathrm{t}}\boldsymbol{\lambda} = \boldsymbol{0} \\ \boldsymbol{\Lambda}(\boldsymbol{T}\boldsymbol{u} + \boldsymbol{t}) = \boldsymbol{0} \\ \boldsymbol{T}\boldsymbol{u} + \boldsymbol{t} \geqslant \boldsymbol{0} \\ \boldsymbol{\lambda} \geqslant \boldsymbol{0} \end{array} \right. \quad (\mathcal{P}_{0})$$

en notant $\mathbf{\Lambda} = \mathrm{Diag}(\boldsymbol{\lambda})$

イロト 不得 トイヨト イヨト

Algorithme de points intérieurs primal-dual : principe

▶ Approche primale-duale : estimation de (u, λ) en résolvant des versions perturbées des conditions KKT

$$\left\{ egin{array}{ll}
abla L(u)-T^{\mathrm{t}}oldsymbol{\lambda}=0 \ \Lambda(Tu+t)=\mu_k \mathbf{1} & (\mathcal{P}_k) \ Tu+t \geqslant 0 \ oldsymbol{\lambda} \geqslant 0 \end{array}
ight.$$

paramétrées par une suite une suite de paramètres positifs $(\mu_k) \xrightarrow[k \to \infty]{} 0.$

Algorithme de points intérieurs primal-dual : principe

▶ Approche primale-duale : estimation de (u, λ) en résolvant des versions perturbées des conditions KKT

$$\left\{ egin{array}{ll}
abla L(u)-T^{\mathrm{t}}oldsymbol{\lambda}=0 \ \Lambda(Tu+t)=\mu_k \mathbf{1} & (\mathcal{P}_k) \ Tu+t \geqslant 0 \ oldsymbol{\lambda} \geqslant 0 \end{array}
ight.$$

paramétrées par une suite une suite de paramètres positifs $(\mu_k) \xrightarrow[k \to \infty]{} 0.$

- \blacktriangleright Une itération k de l'algorithme se décompose en deux étapes :
 - Calcul de (u_{k+1}, λ_{k+1}) en fonction de (u_k, λ_k) en résolvant (\mathcal{P}_k) de façon approchée.
 - 2 Calcul de μ_{k+1} selon une règle de mise à jour permettant de garantir la convergence de l'algorithme.

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● の Q @

1 Méthode de Newton $(\boldsymbol{u}_{k+1}, \boldsymbol{\lambda}_{k+1}) = (\boldsymbol{u}_k + \alpha_k \boldsymbol{d}_k^u, \lambda_k + \alpha_k \boldsymbol{d}_k^\lambda)$

(日) (圖) (E) (E) (E)

- **1** Méthode de Newton $(\boldsymbol{u}_{k+1}, \boldsymbol{\lambda}_{k+1}) = (\boldsymbol{u}_k + \alpha_k \boldsymbol{d}_k^u, \lambda_k + \alpha_k \boldsymbol{d}_k^{\boldsymbol{\lambda}})$
 - Les directions de Newton primales et duales $({\pmb d}^u_k, {\pmb d}^\lambda_k)$ sont calculées en résolvant

$$egin{pmatrix}
abla^2 L(oldsymbol{u}_k) & -oldsymbol{T}^{\mathrm{t}} \ oldsymbol{\Lambda}_koldsymbol{T} & \mathrm{Diag}(oldsymbol{T}oldsymbol{u}_k+oldsymbol{t}) \end{pmatrix} egin{pmatrix} oldsymbol{d}_k^u \ oldsymbol{d}_k^\lambda \end{pmatrix} = - \left(egin{array}{c}
abla L(oldsymbol{u}_k) - oldsymbol{T}^{\mathrm{t}}oldsymbol{\lambda}_k \ oldsymbol{\Lambda}(oldsymbol{T}oldsymbol{u}_k+oldsymbol{t}) - oldsymbol{\mu}_k \end{array}
ight),$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

- **1** Méthode de Newton $(u_{k+1}, \lambda_{k+1}) = (u_k + \alpha_k d_k^u, \lambda_k + \alpha_k d_k^\lambda)$
- Les directions de Newton primales et duales $(\pmb{d}_k^u, \pmb{d}_k^\lambda)$ sont calculées en résolvant

$$egin{pmatrix} & \left(egin{array}{cc}
abla^2 L(oldsymbol{u}_k) & -oldsymbol{T}^{\mathrm{t}} \ oldsymbol{\Lambda}_k oldsymbol{T} & \mathrm{Diag}(oldsymbol{T}oldsymbol{u}_k+oldsymbol{t}) \end{pmatrix} egin{pmatrix} oldsymbol{d}_k^u \ oldsymbol{d}_k^u \end{pmatrix} = - \left(egin{array}{cc}
abla L(oldsymbol{u}_k) - oldsymbol{T}^{\mathrm{t}} oldsymbol{\lambda}_k \ oldsymbol{\Lambda}_k oldsymbol{T} & \mathrm{I} (oldsymbol{T}oldsymbol{u}_k+oldsymbol{t}) - oldsymbol{\mu}_k \ oldsymbol{\Lambda}_k oldsymbol{T} & \mathrm{I} (oldsymbol{T}oldsymbol{u}_k+oldsymbol{t}) - oldsymbol{T}^{\mathrm{t}} oldsymbol{\lambda}_k \end{pmatrix} = - \left(egin{array}{cc}
abla L(oldsymbol{u}_k) - oldsymbol{T}^{\mathrm{t}} oldsymbol{\lambda}_k \ oldsymbol{\Lambda}_k oldsymbol{T} & \mathrm{I} (oldsymbol{T}oldsymbol{u}_k+oldsymbol{t}) - oldsymbol{\mu}_k \end{array}
ight),$$

• Le pas α_k est déterminé par une stratégie d'Armijo appliquée à la fonction de mérite primale-duale $\phi_{\mu_k}(u_k + \alpha d_k^u, \lambda_k + \alpha d_k^\lambda)$

$$\phi_{\mu}(\boldsymbol{u},\boldsymbol{\lambda}) = L(\boldsymbol{u}) - \mu \sum_{i=1}^{NP} \ln([\boldsymbol{T}\boldsymbol{u} + \boldsymbol{t}]_{i}) + \boldsymbol{\lambda}^{\mathrm{t}}(\boldsymbol{T}\boldsymbol{u} + \boldsymbol{t}) - \mu \sum_{i=1}^{NP} \ln(\lambda_{i}[\boldsymbol{T}\boldsymbol{u} + \boldsymbol{t}]_{i})$$

- $\bullet M \text{éthode de Newton } (\boldsymbol{u}_{k+1}, \boldsymbol{\lambda}_{k+1}) = (\boldsymbol{u}_k + \alpha_k \boldsymbol{d}_k^u, \lambda_k + \alpha_k \boldsymbol{d}_k^\lambda)$
- Les directions de Newton primales et duales $(\pmb{d}_k^u, \pmb{d}_k^\lambda)$ sont calculées en résolvant

$$egin{pmatrix} & \langle
abla^2 L(oldsymbol{u}_k) & -oldsymbol{T}^{\mathrm{t}} \ & \mathbf{\Lambda}_k oldsymbol{T} & \mathrm{Diag}(oldsymbol{T}oldsymbol{u}_k+oldsymbol{t}) \end{pmatrix} egin{pmatrix} oldsymbol{d}_k^u \ oldsymbol{d}_k^\lambda \end{pmatrix} = - egin{pmatrix} &
abla L(oldsymbol{u}_k) - oldsymbol{T}^{\mathrm{t}} oldsymbol{\lambda}_k \ & \mathbf{\Lambda}(oldsymbol{T}oldsymbol{u}_k+oldsymbol{t}) - oldsymbol{\mu}_k \end{pmatrix},$$

• Le pas α_k est déterminé par une stratégie d'Armijo appliquée à la fonction de mérite primale-duale $\phi_{\mu_k}(u_k + \alpha d_k^u, \lambda_k + \alpha d_k^\lambda)$

$$\phi_{\mu}(\boldsymbol{u},\boldsymbol{\lambda}) = L(\boldsymbol{u}) - \mu \sum_{i=1}^{NP} \ln([\boldsymbol{T}\boldsymbol{u} + \boldsymbol{t}]_i) + \boldsymbol{\lambda}^{\mathrm{t}}(\boldsymbol{T}\boldsymbol{u} + \boldsymbol{t}) - \mu \sum_{i=1}^{NP} \ln(\lambda_i [\boldsymbol{T}\boldsymbol{u} + \boldsymbol{t}]_i)$$

2 Mise à jour μ_{k+1} par la règle de μ-criticité, en fonction de la valeur du saut de dualité et du résidu [Armand 2000].

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへの

1 Introduction

2 Approche proposée

- Intégration de la contrainte d'égalité
- Algorithme de points intérieurs primal-dual

3 Résultats expérimentaux

- Temps de calcul dans le cas non pénalisé
- Intégration d'une pénalisation spatiale

4 Conclusion

A B K A B K

Temps de calcul dans le cas non pénalisé

- Génération de cubes hyperspectraux synthétiques de N pixels dans $K=\sqrt{N}$ bandes de fréquences (RSB = 15 dB)
- Reconstruction par minimisation contrainte des moindres carrés

Comparaison entre les **temps de calcul** des algorithmes FCLS et primal-dual (PD) en fonction de la taille du problème

Intégration d'une pénalisation spatiale

▶ Minimisation du critère des moindres carrés pénalisé

$$F(\boldsymbol{C}) = \frac{1}{2} \|\boldsymbol{Y} - \boldsymbol{S}\boldsymbol{C}\|_{F}^{2} + \eta \sum_{p=1}^{P} \left(\psi(\boldsymbol{\Delta}^{V}\boldsymbol{c}_{p}) + \psi(\boldsymbol{\Delta}^{H}\boldsymbol{c}_{p})\right)$$

sous les contraintes 1 et 2

- $\mathbf{\Delta}^V$ et $\mathbf{\Delta}^H$: Opérateurs de gradient spatial vertical et horizontal
- ψ : Fonction de pondération quadratique favorisant l'apparition de zones lisses dans les cartes.
- \blacktriangleright Génération des données expérimentales : Y = SC + E avec
 - C : Cube hyperspectral d'images de taille $N = 256 \times 256$ pixels.
 - **S** : P = 5 spectres de taille K = 224 (AVIRIS), supposés connus ou estimés par NFINDR [*Winter 1999*].
 - E : bruit blanc gaussien i.i.d

イロト 不得下 イヨト イヨト 二日

Signatures spectrales

Signatures spectrales sélectionnées dans la bibliothèque AVIRIS. (a) Andradite. (b) Erionite. (c) Chlorite. (d) Biotite. (e) Carnallite.

Cartes simulées

Cartes simulées de taille $N = 256 \times 256$ pixels générées aléatoirement et normalisées pour satisfaire la contrainte 2

イロト イポト イヨト イヨト

RSB (dB)	NFINDR-PD	NFINDR-PD-P
20	$1,3\cdot 10^{-1}~/~2,7~{ m s}$	$1,2\cdot 10^{-1} \ / \ 160 \ { m s}$
15	$1,4\cdot 10^{-1}~/~2,5~{ m s}$	$1,2\cdot 10^{-1}~/~167~{ m s}$
10	$1,9\cdot 10^{-1}~/~3~{ m s}$	$1,5\cdot 10^{-1} \ / \ 181 \ { m s}$
5	$2,4\cdot 10^{-1}~/~3,4~{ m s}$	$1,9\cdot 10^{-1} \ / \ 180 \ { m s}$
RSB (dB)	LIB-PD	LIB-PD-P
20	$2,5\cdot 10^{-2}~/~2,8~{ m s}$	$2,5\cdot 10^{-2}~/~160~{ m s}$
15	$7,1\cdot 10^{-2}~/~2,8~{ m s}$	$2,5\cdot 10^{-2}~/~170~{ m s}$
10	$1,7\cdot 10^{-1}~/~3~{ m s}$	$2,4\cdot 10^{-2}~/~191~{ m s}$
5	$3,6\cdot 10^{-1}$ / $3,5$ s	$2,5\cdot 10^{-2}$ / 231 s

Résultats d'estimation et temps de calcul (EQMn/Temps) → dans le cas de spectres estimés par NFINDR → dans le cas de spectres issus de la bibliothèque

RSB (dB)	NFINDR-PD	NFINDR-PD-P
20	$1, 3 \cdot 10^{-1} / 2, 7$ s	$1, 2 \cdot 10^{-1} / 160 \text{ s}$
15	$1, 4 \cdot 10^{-1} / 2, 5$ s	$1,2\cdot 10^{-1}~/~167~{ m s}$
10	$1,9\cdot 10^{-1}$ / 3 s	$1,5\cdot 10^{-1} \ / \ 181 \ { m s}$
5	$2,4 \cdot \mathbf{10^{-1}} \ / \ 3,4$ s	$1,9\cdot 10^{-1} \ / \ 180 \ { m s}$
RSB (dB)	LIB-PD	LIB-PD-P
20	$2,5\cdot\mathbf{10^{-2}}\ /\ 2,8$ s	$2,5\cdot 10^{-2}~/~160~{ m s}$
15	$7, 1 \cdot 10^{-2} / 2, 8$ s	$2,5\cdot 10^{-2}~/~170~{ m s}$
10	$1, 7 \cdot 10^{-1} \ / \ 3$ s	$2,4\cdot 10^{-2}$ / 191 s
5	$3, 6 \cdot 10^{-1}$ / 3,5 s	$2,5\cdot 10^{-2}$ / 231 s

Résultats d'estimation et temps de calcul (EQMn/Temps) → dans le cas de spectres estimés par NFINDR → dans le cas de spectres issus de la bibliothèque

RSB (dB)	NFINDR-PD	NFINDR-PD-P
20	$1,3\cdot 10^{-1}~/~2,7~{ m s}$	$1, 2 \cdot 10^{-1} / 160 \text{ s}$
15	$1,4\cdot 10^{-1}~/~2,5~{ m s}$	$1, 2 \cdot 10^{-1} / 167 \text{ s}$
10	$1,9\cdot 10^{-1}~/~3~{ m s}$	$1, 5 \cdot 10^{-1} / 181 \text{ s}$
5	$2,4\cdot 10^{-1}$ / $3,4$ s	$1,9\cdot 10^{-1}$ / 180 s
RSB (dB)	LIB-PD	LIB-PD-P
20	$2,5\cdot 10^{-2}$ / 2,8 s	$2,5 \cdot \mathbf{10^{-2}} \ / \ 160 \ s$
15	$7,1\cdot 10^{-2}~/~2,8~{ m s}$	$2,5 \cdot \mathbf{10^{-2}} \ / \ 170 \ s$
10	$1,7\cdot 10^{-1}~/~3~{ m s}$	$\mathbf{2, 4} \cdot \mathbf{10^{-2}} \ / \ 191 \ s$
5	$3,6\cdot 10^{-1}$ / $3,5$ s	$2, 5 \cdot 10^{-2}$ / 231 s

Résultats d'estimation et temps de calcul (EQMn/Temps) → dans le cas de spectres estimés par NFINDR → dans le cas de spectres issus de la bibliothèque

RSB (dB)	NFINDR-PD	NFINDR-PD-P
20	$1, 3 \cdot 10^{-1}$ / $\mathbf{2, 7}$ s	$1, 2 \cdot 10^{-1} / $ 160 s
15	$1, 4 \cdot 10^{-1}$ / $\mathbf{2, 5}$ s	$1, 2 \cdot 10^{-1} / $ 167 s
10	$1,9\cdot 10^{-1}~/~{\rm 3~s}$	$1,5\cdot 10^{-1}$ / 181 s
5	$2, 4 \cdot 10^{-1}$ / 3 , 4 s	$1,9\cdot 10^{-1} \ / \ \mathbf{180 \ s}$
RSB (dB)	LIB-PD	LIB-PD-P
20	$2,5\cdot 10^{-2}$ / $\mathbf{2,8\ s}$	$2,5\cdot 10^{-2}$ / 160 s
15	$7, 1 \cdot 10^{-2}$ / $\mathbf{2, 8}$ s	$2,5\cdot 10^{-2}$ / 170 s
10	$1,7\cdot 10^{-1} \ / \ \mathbf{3 \ s}$	$2, 4 \cdot 10^{-2} / $ 191 s
5	$3, 6 \cdot 10^{-1}$ / $3, 5 s$	$2,5\cdot 10^{-2}$ / 231 s

Résultats d'estimation et temps de calcul (EQMn/Temps) → dans le cas de spectres estimés par NFINDR → dans le cas de spectres issus de la bibliothèque

Cartes simulées

Cartes simulées de taille $N = 256 \times 256$ pixels générées aléatoirement et normalisées pour satisfaire la contrainte 2

(日) (同) (三) (三) (三)

Cartes estimées par moindres carrés

Erreur de reconstruction moyenne : $1, 7 \cdot 10^{-1}$ pour un niveau de bruit initial RSB = 10 dB

E. Chouzenoux, S. Moussaoui et J. Idier

GRETSI 2011, Bordeaux

< ロ > < 同 > < 回 > < 回 > < 回 > <

Cartes estimées par moindres carrés pénalisés ($\eta = 100$)

Erreur de reconstruction moyenne : $2, 4 \cdot 10^{-2}$ pour un niveau de bruit initial RSB = 10 dB

GRETSI 2011, Bordeaux

< ロ > < 同 > < 回 > < 回 > < 回 > <

1 Introduction

2 Approche proposée

- Intégration de la contrainte d'égalité
- Algorithme de points intérieurs primal-dual

3 Résultats expérimentaux

- Temps de calcul dans le cas non pénalisé
- Intégration d'une pénalisation spatiale

4 Conclusion

A B A A B A

Conclusion

► Algorithme primal-dual de points intérieurs pour l'estimation contrainte des cartes d'abondances

- →→ Gain de temps important par rapport à FCLS, dans le cas non pénalisé
- → Intégration simple d'une régularisation spatiale
- \rightsquigarrow Possibilité de gérer :
 - Une contrainte de somme inférieure ou égale à un
 - Un modèle de bruit non gaussien
 - Une pénalisation non quadratique

► Perspective envisagée : Accélération de la minimisation dans le cas d'une régularisation spatiale

- → Inversion approchée du système linéaire primal-dual
- ∼→ Remplacement de Newton par une méthode de premier ordre

イロト 不得 トイヨト イヨト

Merci de votre attention !

Э

ヘロト 人間ト 人造ト 人造ト

Bibliographie

C.-I. Chang Solving Hyperspectral Data Exploitation Wiley Interscience, 2007

C. L. Lawson and R. J. Hanson Solving Least-Squares Problems Prentice-Hall, 1974

P. Armand, J. C. Gilbert and S. Jan-Jégou A feasible BFGS interior point algorithm for solving strongly convex minimization problems *SIAM Journal on Optimization*, 11 :199–222, 2000

N. Dobigeon, S. Moussaoui, M. Coulon, J. Tourneret and A. O. Hero Algorithmes bayésiens pour le démélange supervisé, semi-supervisé et non-supervisé d'images hyperspectrales Tratement du circuit 27(1):70, 108, 2010

Traitement du signal, 27(1) :79–108, 2010

D. C. Heinz and C.-I. Chang

Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery

IEEE Transactions on Geoscience and Remote Sensing, 39(3):529-545, 2001

Bibliographie

N. Keshava and J. F. Mustard

Spectral unmixing IEEE Signal Processing Magazine, 19(1) :44–57, 2002

N. Keshava

A survey of spectral unmixing Lincoln Laboratory Journal, 14(1) :55–78, 2003

M. Parente and A. Plaza

Survey of geometric and statistical unmixing algorithms for hyperspectral images In Proc. of the 2nd Workshop on Hyperspectral Image and Signal Processing : Evolution in Remote Sensing (WHISPERS), 2010

J. J. Settle and N. A. Drake Linear mixing and the estimation of ground cover proportions International Journal of Remote Sensing, 14(6) :1159–1177, 1993

M. E. Winter

 $\mathsf{N}\text{-}\mathsf{FINDR}$: an algorithm for fast autonomous spectral endmember determination in hyperspectral data

In Proc. of SPIE- Image Spectrometry V, 3753 :266-277, 1999

イロト 人間ト イヨト イヨト