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Abstract—Hyperspectral data unmixing aims at identifying methods based either on non-negative source separation [5,
the components (endmembers) of an observed surface and at] or constrained non-negative matrix factorization [7, 8]
determining their fractional abundances inside each pixelarea. However, the purpose of this paper is to focus on the second
Assuming that the spectral signatures of the surface compamts step of tr;e supervised approach with the aim to present a fast
have been previously determined by an endmember extraction P . p PP P
algorithm, or to be part of an available spectral library, the main ~ computation method adapted to the case of large data sets.
problem is reduced to the estimation of the fractional abundnces. Usual algorithms for solving the spectral unmixing problem
For large hyperspectral image data sets, the estimation ofhe  consist in minimizing a data fitting measure (generally a
abundance maps requires the resolution of a large-scale dptiza- least squares criterion) under the physical constraintsoof

tion problem subject to linear constraints such as non-nedavity - . .
and sum less or equal to one. This paper proposes a primal- negativity and sum-to-one. For instance, the former cairgtr

dual interior-point optimization algorithm allowing a con strained  1€ads to thenon-negative least squaredgorithm (NNLS) [9,
least squares estimation approach. In comparison with exi;g  10], and the latter is handled by tls®m-to-one constrained

methods, the proposed algorithm is more flexible since it can |east square{SCLS) method [11]. Both constraints are ac-
handle any linear equality and/or inequality constraint and has counted for by thefully constrained least square@CLS)

the advantage of a reduced computational cost. It also preaés an lgorithm 1121 In 113 B ian inf lqorithma
algorithmic structure suitable for a parallel implementation on algorithm [12]. In [13], a Bayesian inference algorithmanc

modern intensive computing devices such as Graphics Procsg  Porating jointly these constraints is proposed. It is based
Units (GPU). The implementation issues are discussed and éh Monte Carlo Markov chain methods and offers the advantage
applicability of the proposed approach is illustrated with the help  of estimating the number of components. However, all these
of examples on synthetic and real hyperspectral data. mentioned methods suffer from a significant increase of the
Index Terms—spectral unmixing, constrained least squares, computation time in the case of large data sets (in terms
interior-point optimization, primal-dual algorithm, GPU comput-  of jmage size, number of components or number of spectral
Ing. bands). In order to reduce the computation time, many recent
contributions have investigated the use of parallel compgut
|. INTRODUCTION tools [14] such as graphics processing units (GPUs) [15]
gﬁp FPGA based-design [16]. A geometrical formulation of

of the incident light reflection at the ground surface of afy'€ @bundance estimation step has been recently proposed

observed scene in several contiguous spectral bands. toegpi [17]: the computation cost being reduced by retrieving
of the high spatial resolution that can be attained by receffMe guantities computed during the endmember extraction
imaging devices, the surface area covered by any pixel $FP OF Py using simplex projection methods [18]. However,
the image may contain different components. Therefore, tHiE 9eometrical formulation is restricted to the case of ful
measured reflectance spectrum in each pixel can be explaiﬂgG't'V'ty and_ IS not_ _sm_utable for general linear constrsin
as a mixture of the individual component reflectance specfidCl! @s partial additivity (sum less than or equal to one)
weighted by the proportion (abundance) of each component3h Pound constraints on the abundances. In [19], a modern
this pixel area. convex_optlmlzatlon approach based on the alternating mdeth
Unmixing hyperspectral data aims at the identification & rnqlﬂppers [20] was _adopt.ed for solving j[h_e constrained
the observed surface components (endmembers) and the @iimization problem arising in spectral unmixing. .
termination of their fractional abundances inside eaclelpix n Fh's paper, we propose a new flexible spectral_ unmixing
area [L, 2]. Fast hyperspectral data unmixing approaches gtgopthm _based on co_nstramed least squares estlmfand_n an
supervised, by assuming that the endmember spectra are B\ﬁﬁnor—pomt optimization  [21,22]. The main originafit
of an available spectral library or can be provided by an eng- OUr approach is to exploit the potential of primal-dual

member extraction algorithm [3,4]. Then, the remaining)sté%meri?r'_pOilnt technithues, which Qa\_/e SPOV\(’;_ their efficien
of the unmixing is the estimation of the fractional abundemnc T0F SO!Ving large-scale constrained signal and image [Eng

Actually, there is an increasing interest to joint estimati ProPlems [23,24]. The proposed optimization method allows
to minimize any convex objective function under equality(e
E. Chouzenoux is with LIGM (CNRS UMR 8049), Univ. Paris Estilee ~ SUM-to-one) and inequality (e.g., hon-negativity or sesst
La-Vallee. M. Legendre, S. Moussaoui and J. Idier are wRECYN (CNRS  than-one) constraints. From the numerical optimizatiomipo
UMR 6597), Ecole Centrale Nantes, France. fvi the choi h . I-dual interi int optiratio
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This work was supported by thégion Pays de la LoiréFrance). scheme leads to an algorithm that can be implemented effi-

Hyperspectral imaging corresponds to the measurem
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ciently using modern parallel computing tools such as GPUA. Criterion formulation

The rest of this paper is organized as follows: Section Il The criterion F(-) to minimize results from the statis-
formulates the constrained optimization problem arising ijcg) modeling of the observation process and the sought
spectral unmixing. Section Il presents the adopted iateri 5pundances properties. Adopting the well-known leastiseg

point optimization scheme for the estimation of the abugpproach leads to definé(:) as the quadratic function:
dance maps. Its implementation issues accounting for memor

L N
storage and computing time are discussed in section IV. _1 B 2
Finally, Section V illustrates the performances of the josgl Fa) = 2 Z Z ((SA)en = Yin)

approach in terms of computation time and unmixing accura% istical imation f K (6 dshe
through applications to both synthetic and real data. a statl_stlc_a estlmatlon ramework, ( )_correspon Ste ¢
neg-log-likelihood associated to a spatially and spdgtral

Il. PROBLEM STATEMENT uncorrelated Gaussian noige

Let us considetV pixels of a hyperspectral image acquired NOte that the proposed approach can be adapted to a wider
in L spectral bands and assume a linear mixing model. TI5@Ss of convex criteria which can be expressed as:
linear model is widely accepted in many practical situaion N N
since it offers a first-order approximation of the radiativeF (A) = Z(San_y'rz)t27L(Sa'rt_y'rL)+Z elan), (7)
transfer model [25]. According to this model, the observed n=1 n=1
spectrumy,, € RY in the n-th pixel is explained as a linearwherex,, € RL*L is a positive spectral covariance matrix and
combination of P endmember spectra and corrupted by ap is a convex regularization function. However, in the sequel

(6)

(=1n=1

N |~

additive noisee,, the presentation will be focused on the case of the leastsgua
Un = Sa, + e, 1) cr_iterion (6) since it is widely used in hyperspectral inragi
) with reflectance spectroscopy.
whereS = [s1,...,sp] € REXF contains theP endmember
spectra anda,, = [an1,...,a,p]" € RY is the vector of B Constraint formulation

endmember abundances in theh pixel.

Using matrix notations, the mixing model is rewritten as, We focus on the following general formulation of the

constrained optimization problem for the estimation of the

Y=SA+E, (2) abundances maps:
whereY € RI*V is the observation data matri € R”*V min F(A) st T A+T, >0, (8)
the fractional abundance matrix aftlc RL*"V the measure- AERPXN
ment noise. _ . ~ whereT; € R*F and Ty, € R*N, This formulation allows
The abundance matrix should satisfy the non-negativity take into account
constraint « constraint (3) wher) = P, T}, = Ip andT, = 0p,

(Vne{l,...,N})(Vpe{l,...,P}) Apn 2 0. (3) « constraint (5) wher) =1, T} = —1% and T, = 1,

This constraint will be denoted ad > 0. Moreover, under  ° constraints (3) ?nd (5) Jomth{’ by fettln@ =P+1L
the assumption that all the endmembers comprising the pixel Ty =[Ip| —1p]" andT; = [0°| 1y] - _
spectrum inY” are present in the columns &t the abundances Where Ly denotes the identity matrix aR™. The equality
coefficients should satisfy the full additivity constraint constraint _(4) can be |mpI|C|tIy.h:.:1ndI_ed by |ntr0(_jucmg a
reparametrization so that the optimization problem is cedu

to an inequality constrained minimization [26].
(Vned{l,...,N}) ZAzm:L () quality [26]
p=1 Property 1. For each matrixA(® ¢ RP*N satisfying the
which can be summarized b, A — 1%, wherel!, denotes €quality constraint(4), the transformed vector = A 4
a vector ofRY with all entries equal to one. ZU also satisfieq4) as soon as the columns of matuk
When the set of endmembers is incomplete, or when the <~ are formed from vectors into the null spaceids.
pixel area are subject ot illumination variability or atiion,  For the sum-to-one constraint, a null space matrix can be
only partial additivity should be required, i.e.: defined by,
- 1 if i=j
(Vne{l,....N}) EAP7L<1, (5) Zi—4 -1 it i1, ©)
p:

0  otherwise
which can be noted shortly by, A < 1%,.

The estimation ofA given S andY is firstly formulated
as the minimization of a convex criteriof(.), under linear
inequality constraints such as non-negativity and paastifli-
tivity. Then, the case of the sum-to-one constraint is askire. min F(A® + ZU) st THU +TY >0, (10)
Finally, an interior-point algorithm based on a primal-dua UER(P-1)xN
approach is proposed for the resolution of the constrainedhich takes the general form (8) with* = T1 Z and T’ =
optimization problem. T, A0 4 Ty,

According to this reparametrization, the constrained-opti
mization problem when constraints (3) and (4) are imposed
becomes equivalent to
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[1l. PRIMAL -DUAL OPTIMIZATION FOR ABUNDANCE MAPS whereV®(-) and V2®(-) are, respectively, the gradient and
ESTIMATION the Hessian of criterio®(-), andr,(a, A) is the primal-dual

The main feature of interior-point optimization is to keepeSidual defined by,

the solution inside the strictly feasible domain [21,22f A B Vd(a) - T'A B E”m( A

each iteration, the constraint fulfillment is ensured byiagd ru(a,A) = ( ATa+t)—p ) - ( rdialig ) ) :

a logarithmic barrier function making the criterion unbded g (15)
at the boundary of the feasible solution domain. Let us prese
our Interior Point Least Square$lPLS) algorithm to solve
problem (8). By introducing the operatot = vec(M ) which
corresponds to the transformation of a mathik to a vector
m in the lexicographic order, problem (8) is equivalent to th
standard form inequality constrained optimization profle

As pointed out in [29,30], the primal-dual matrix in the
left side of equation (14) suffers from ill-conditioning sason
as(Tar +t), < 1or)\; < 1. Moreover, this matrix is not
guarenteed to be symmetric or definite positive [28], sottiat
linear system (14) is difficult to solve. Therefore, rathiearn
solving directly (14), [26, 31] propose to proceed by valgab

min ®(a) st Ta+t>0, (11) substitution. From the second equation of (14) one deduces,
acRPN
A : —1 a
. = Diag(T —A,(T — A,Tdj)].
with @ = veq A), T = Iy ® Ty andt = veqTy), where® i fag(Tay +)" [ #(Tax +1) k d’fgm)

is the Kronecker product. . N . . .
; . : . . Then, the primal directiond{ obtained by solving the
The IPLS algorithm is based on a primal-dual interior-point, ; . .4 Iinge:r systelm oM 1S ' y soiving

approach which consists in jointly estimatiagc R”Y, and
their associated Lagrange multipliessc€ R?V through the [V2<I>(ak) + T'Diag(Tay + t)‘lAkT} ¢ =

resolution of a sequence of optimization problems obtained 1 1

from perturbed versions of the Karush-Kuhn-Tucker (KKT) = V&(ay) + T'Diag(Tax + 1)~ py..  (17)
optimality conditions for problem (11): Finally, the dual directiont; is calculated according to (16).
Note that our computation of the primal direction differsrfr

_ Tt =
V(I)XZ, it))\ _ 0, [26]. Indeed, instead of a low rank approximatiorhof® (ay,),
’.IC”Lath ; gk’ (12) we keep the true Hessian matrix in (17), with the will to
I\ ; 0’ accelerate the convergence of our algorithm (see remark 1 at

the end of this section).

where A = Diag(\) and p, = urlon results from a  2) Linesearch:The step size value should be chosen so

sequence of perturbation parametérs}, ., converging to as to ensure the convergence of the IPLS algorithm and the

0 ask is growing. fulfillment of the inequalities of the pertubed KKT system
At each iterationk of the algorithm,a,; and A, are (12). The convergence study of the primal-dual algorithm

firstly calculated from the perturbed KKT conditions. Theresented in [26] requests that ensures a sufficient decrease

perturbation parametet, ., ; is then updated in order to ensuredf the primal-dual merit function’,, (a, A),

the algorithm convergence. More precisely, an approximate

solution of (12) is retained from a Newton algorithm step _

on the equality conditions, in association with a lineskarc Yy (@, A) = &(a) _“;IH([J;;VJF th)

strategy allowing to ensure the inequality conditions [22, FAYTa +1t) *uzln()\i[Tath]i)- (18)

1=1

QN

Chap.11]. The update strategy is then given by

(i1, A1) = (@ + apdld, A + agdy), (13) One can note that (18) contains two logarithmic barrier func
tions enforcing the fulfilment of the KKT inequalities. The

whereay, is the step size an@y, d;.) are the primal and dual gfficient decrease is assessed using the Armijo condition,
Newton directions.

Based on the iterative scheme (13), several primal-dua¥’u. () — ¥, (0) < 0V, (0) with o € (0,1/2),
interior point methods have been proposed in the literature (19)
each of them calling for its own strategy for the computatiofherew,,, (a) £ ¥, (ax + adf, Ay, + ady). A step sizeay,
of the primal-dual directions, the derivation of a suitaslep Satisfying (19) is obtained by a backtracking algorithm][22
size, and the update of the perturbation parameter (See [ptarting from an initial step size), and if the latter does
28] for a review). The proposed IPLS algorithm for spectr&l0t satisfy (19), smaller values are tested,r, a)7?, ...,
unmixing relies on the iterative scheme of [26] into whicti € (0, 1), until (19) holds.
additional tools, that are described in the following, heeen In order to ensure that,,(-) remains finite valued, the
included to accelerate the practical convergence, as weth a backtracking strategy is initialized as follows,

reduce the computational cost per iteration. ol =1 it af = 4o,
1) Primal-dual directions:The Newton directionsd¢, d;) { o = min(1,0.99 ;) elsewhere (20)
are obtained by solving the linear system, _ -
whereaz is the largest positive value such that,
V20 (ay) —T" di| _ _, (am, Ap), (14) A a
AT Diag(Tay, + t) dﬁ = ~Tup\Qk, Ak ), Ax +ady; > 0, T(ar+adi)+t>0. (22)
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3) Perturbation parameter updateAccording to [26], the (i) The convergence result of [26] is established under the

convergence is ensured as soon as the sequémgk, assumption that the criterion and the constraints are
tends to0 when & tends to infinity. We propose to update convex, and at least one of them is strongly convex.
the parameter:;, by using theu-criticity rule defined in [32] In our study, the convexity @b is sufficient, under the
by: additional assumption that the constraints are linearly
[ = 95_k7 (22) independant (i.e.T'T inversible) and that the sef
QN is nonempty and bounded. Note that these assumptions
wheredy, = (Tax + )'Ay is the duality gap and € (0, 1). hold in particular for the constraint¢3)-(4) or (3)-(5).
(i) The g-superlinear convergence rate of the inner loop
4) Stoppmg criteria: The main steps of the proposed op- of our algorithm is mainly due to the use of the exact
timization method are summarized in Algorithm 1. Follow- Hessian matrix in the primal systeif17). A weaker
ing [23,31], the accuracy of the primal and dual directions  resultin terms of convergence speed is obtained in [26],
(inner loop) is controlled by: since a quasi-Newton approximation of the Hessian
”T}p;]im”OO < ™ and g /QN < el (23) matrix is considered.
where r[;" is the primal residual aty, b = 7P uy,

IV. MEMORY REQUIREMENT AND COMPUTATION TIME

edual — pdualy, with nP™™ > 0 and 9@ € (1,6~1). The outer
REDUCTION FOR LARGE SCALE SPECTRAL UNMIXING

iterations of Algorithm 1 are run until the fulfillment of the

stopping condition proposed in [22, Chap.11]: According to the expression of the least squares criterion

1k < fiin OF (HTgrimH n HTguaIH) < €. (24) (6), the constrained optimization problem (8) is separafille
respect to the image pixels. A first implementation strategy
denoted hereafter byixel-basedstrategy, is to solve problem

(2) by applying Algorithm 1 for unmixing each pixeb
Require: Initial values, > 0 anda, such thatl'a, + individually. A secor_1d approach is to adopt am_age-based
t>0 strategy, that is, solving the whole problem (8) with thergi-
Ensure: Resolution of (11) dual algorithm. A discugsion_ on thg numerical efficiency of
While (Condition (24) is not SatiSfiedjO both Strategl.es will be given in Se-Ctlon V-A. .
While (condition (23) is not satisfiedjo When theimage-basedstrategy is adopted, the numerical
Calculated} by solving (17) complexity of Algorithm 1 is highly dominated by the primal
Deduced; from (16) direction calculation through the resolution of the liness-
Find «; > 0 satisfying (19) tem (17). This section presents an analysis of the structure
Update(ayt1, Ak+1) according to (13) this system with the aim to reduce the computational cost and
done the memory requirement of Algorithm 1.
Define i1 according to (22). y requi gon
done

) ) - - A. Primal system structure
Algorithm 1: Interior Point Least Squares algorithm.

The linear system (17) can be expressed as
5) Convergence resultThe convergence of Algorithm 1 is
guaranteed by the following resuilt. Hdj; = —gx, (25)

Theorem lll.1. Let®(-) a twice differentiable convex functionyhere

onR”N. Assume that the s&t= {a € R"Y | Ta + ¢ > 0}

is nonempty and bounded, and that eithe(.) is strictly H,, = V?®(a;) + T'Diag(Tay +t) ' AT, (26)
convex ofT*T is inversible. Then, for every fixed> 0, there e 1

exists k,, such that the sequencax, Ar)},,, generated gk = VO(ay) — T'Diag(Tay + )" p. (27)
by (13) convergesg-superlinearly to the unique minimizer
of ¥,. Moreover, the outer loop of Algorithm 1 generate
a bounded sequencax, Ar)} whose accumulation points
are primal-dual solutions of problertll). Finally, if ®(-) is
strictly convex, the outer iteratesi;, } converge to the unique
solution of (11).

An analysis of the structure of matriéd,, is necessary in order
to find an appropriate implementation strategy.

Firstly, we recall thatT' = Iy ® T,. Thus, T is block-
diagonal composed by identical blocks equal tdy. The
notationT" = Bdiag, (T}) is used in the sequel. For every
ne{l,-,N}, leta, € RY (resp.A, € R?) be then-

Proof: See Appendix A. B th column of A, = mat(a;)”*" (resp. ofA; = mat(\;) €

We now comment the differences between Theorem IIIR®*Y) where mat) is the reciprocal operator of veg.

and the convergence results in [26]. Moreover, letty ,, € R9 be then-th column ofTy. It follows
Remark 1. that,

Diag(Tay +t) " 'A), = Bdiag (D, k), (28)
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whereD,, ;. is a diagonal matrix of siz& x P whose diagonal V. EXPERIMENTAL RESULTS

. —1
elements ardiag (Tian k +ton) ~ Ank. Therefore, This section discusses the performances and illustrates th

- . applicability of Algorithm 1. The latter is referred to asLi®,
T'Diag(Tar +t)” AT = the type of constraints being indicated in prefix, namely NN
Bdiag (T} )"'Bdiag y (D, ;) Bdiag v (1), for non-negativity constraint (3), STO for sum-to-one aodn
= Bdiagy (T D, T}). (29) negativity constraints (3)-(4) and SLO for sum-lower-thare
’ and non-negativity constraints (3)-(5).
Secondly, the HessiaW2®(a;,) of the least squares crite- Ve first consider synthetic data in order to discuss the

rion reads choice of implementation strategy, to perform a compagativ
analysis with existing unmixing methods, and to illustrtite
V20 (ay) = (In ® S)'(Ix ® S), relevance of the partial additivity constraints. Then,gleallel

— Bdiagy (S'S), (30) implementation of IPLS using GPUs is adressed. Finally, its

applicability is emphasized through the processing of real

where (30) is a consequence of Kronecker product propglxperspectral data.

ties [33]: The computation of the proposed primal-dual algorithm re-
quires specifying the parameter@™, n9 9) and (umin, €0),
(A® B)! = A* ® B, 31 controlling the precision of the inner and outer loops, eesp
{ (A® B)(C® D)= AC ® BD. (31) tively. Following [23, 31], we set:

i dual
Finally, (29) and (30) yield, 7P =100, 7™*=1.9, 6=0.5. (35)

Moreover, the values,,i, = 1072 andey = 107 are retained

_ : t t
Hj, = Bdiagy (S'S + Ty D, T1). (32)  for the stopping condition (24).

ConsequentlyH), is a block-diagonal matrix formed by
blocks of sizeP x P. Note that, in the case of problem (10)A. Synthetic data

a similar analysis leads to : - .
Y In order to simulate realistic synthetic hyperspectrabdat

s 6 at b reflectance spectra from the USGS (U.S. Geological Survey)
H). = Bdiagy(Z(S"S + Ty Dn i T1) Z) (33) spectral library [34] are retainédThese reflectance spectra
that is, H;, block-diagonal withN' blocks of size(P — 1) x  ¢ontain L = 224 spectral bands from 383 nm to 2508 nm.
(P—1). A subs_et ofP spectra is then randomly picked up to greate
synthetic mixtures with abundances simulated from a Diiich
distribution. Only realizations with maximum abundanckiea
lower than a specified leveli,,., are retained. Finally, a
random Gaussian noise is added to each resulting mixture
When applying theimage-basedstrategy to large scale spectrum, in order to get a signal to noise ratio (SNR) of
problems, the memory space required to store makfix 30 dB. The unmixing algorithms are implemented on Matlab
can exceed the available memory, even when using a spa8&2b and the calculations are performed using a HP Compagq
coding. A less memory demanding calculation of the primé&llite desktop having an Intel Core i7 3.4 GHz processor and
direction can be achieved by solving separately, for ea8hGB of RAM.

B. Memory issues

iteration, theN lower-size linear systems The first step of the experiment consists in choosing the best
implementation strategy adapted to this hardware and aodtw
(Vne{l,...,N}) H, d; = —gnk, (34) configuration. Then, some comparisons are performed betwee

our method and NNLS, FCLS and ADMM algorithms, in
where d;, ;. (resp. g, k) is the n-th column of the matrix terms of computation time and estimation accuracy. Finally
mat(dj) (resp malgy)). This implementation will now be we jllustrate through two examples, the relevance of théglar
referred to as thémage-based pixel-wisnplementation, as additivity constraint over the full additivity and the non-
opposed to themage-based full-wisémplementation where negativity constraints.
Hj is entirely built. 1) Pixel-based or image-based unmixinig: order to com-

The pixel-wise strategy being based on the resolution jgére the performances of pixel-based and image-based full-

each iteration of N independent linear systems, it is stédg-  wise implementations, we consider the unmixing of syntheti
ward to implement in parallel. An intermediate implemeiotat images of sizeN = 642, with different number of end-
dividing system (32) (or (33)) intd < K < N blocks can members, and,,.x = 1. The unmixing is performed under
also be considered, with the advantage to adapt the normghstraints (3)-(4), using either the exact endmembersaset
equations sizé( to the available memory. This latter approaclxtracted from the image using the N-FINDR method [35].

will be referred to asmage-based block-wismplementation. For each test realized, Table | reports the computation time
The performance of each implementation strategy will be

discussed in Section V-A. lavailable at http://pubs.usgs.gov/of/2003/ofr-03-8a&dtable.html



SUBMITTED TO THE IEEE JOURNAL OF SELECTED TOPICS IN APPLIEDARTH OBSERVATIONS AND REMOTE SENSING, JUNE 4, 2013 6

per pixel, the average number of iterations (outer iterstiof Computing time [s] Memory usage [MB]
Algorithm 1), and the average residual norm: ; ——p=3 | | 10l [——p3 |
—B—P=6
N 5 —6— P=10
1 1 100 :
r= NZzHZ/n*SanHy (36) 4
n=1 3
It can be noted that the image-based implementation is s?
nificantly faster than the pixel-based. This is explainedhs 1

better management of the vectorized calculations compaKio0

to sequential ones in Matlab. Moreover, less iterations &

required to reach the stopping criterion in the case of the

image-based implementation. The average residual normF#F 1. Unmixing computation time (in seconds) and memorgges(MB)
. e . . for different block sizes of the block-wise implementation

the two strategies certifies that the quality of the recasiton

is equivalent in both cases. Finally, let us emphasize that t

performances of IPLS are not degraded when replacing thes) comparison with state-of-the-art unmixing algorithms:

100 100 100 10 10 10 10> 100 10
Block size [px] Block size [px]

exact endmembers by their estimation with N-FINDR. IPLS is now compared with FCLS when both non-negativity
constraint (3) and full additivity constraint (4) are impds
Endmembers| P P;ipe (;Iﬁ)G prraﬁ?&Z F:"X(Lxlo I*N‘I‘()3 and with NNLS when only non-negativity is considered.
s | e | R | i We also compare our algorithm with the alternating method
s 6 | 2108 | 20 | 252 | 204 | 338 | 338 of r_nulUphers (A.DMM) frqm [19_], using the Matlab code
10| 2307 | 118 | 246 | 209 | 3.65 | 3.65 available at http://www.Ix.it.pt/"bioucas . Syn-
15| 2649 | 266 | 240 ] 211 ] 3.75 | 3.76 thetic hyperspectral images of si2Zé = 64> are generated,
g gigg ‘112 gg; gg-g g%g gég using different number” of endmembers andi,, .. = 1.
EEA 10| 2302 | 117 | 245 | 209 | 368 | 370 For each image, tr_]e ;et of spectra employed to perfor.m the
15 | 2643 | 277 | 23.9 | 21.2 | 3.86 | 3.86 spectral unmixing is either the one used to create the image
TABLE | or is estimated using the N-FINDR endmember extraction
AVERAGE TIME PER PIXEL NUMBER OF ITERATIONS AND RESIDUAL algorithm.

NORM OVER 100 MONTE-CARLO SIMULATIONS, FOR DIFFERENT NUMBER The three methods have led to the same unmixing quality
OF ENDMEMBERS USING ACTUAL(LIB) OR ESTIMATED ENDMEMBERS i terms of residual value. The results in terms of average
(EEA): COMPARISON BETWEEN PIXEEBASED (PXL) AND IMAGE -BASED . . . . .
(IMG) IMPLEMENTATIONS OF IPLS. computation time per pixel ovei00 Monte-Carlo simulations

are reported in Table Il. For all the tests realized, both
STO-IPLS and STO-ADMM appear to be faster than FCLS.
The ratio between STO-IPLS or STO-ADMM and FCLS
influence of the block-size paramet&ron the performance of computation times seems to be independent from the number
the image-based block-wise implementation. In that respe f endmember used. NN-IPLS and NN-ADMM are also faster

we consider a hyperspectral image of sixe— 1282 built than NNLS under the conditions tested. This superioritg$en

using a subset o endmembers from the USGS library, ancgﬁ decrigse t;ist the nLljngbSer ofdezgr&('evlmbertshir:jcredases. dFinaIIy,
Amax = 1. The computation time required by Algorithm 1 € ranking between an methods depends on

to unmix this image under full additivity constraints () the experimental conditions. According to our tests, SPQS

is presented in Figure 1 for several numbers of endmemb&f<™MS slightly faster than STO-ADMM, while NN-IPLS and
and different values of. Note that a block sizek — 1 N-ADMM perform similarly in terms of computation time.

corresponds to the pixel-wise implementation and thedizi: q 4)|. Rele_;/r?ncel gftth?h parglal dadd't'v't%. co?stramu;/hen
strategy is obtained by setting = N. The other configura- ealing with réal data, the abundance estimation pertocean

tions correspond to intermediate block-wise alternatividse depend on the used endmember spectra and on the_constrai_nts

memory space required for the unmixing function in Matlag]at.are. imposed on t_he abundaqce val_ues. The.alm. of this

is also reported. section is to show that it may be suitable, in some situatittns
relax the sum-to-one constraint (4) and, eventually, tdap

a Ifee:!g/r}]thi.gei.tr:]n;2ﬁ?zqgat'%]eﬂg?|d Cgrfsigggrégnb% y the partial additivity constraint (5). A hyperspediraage
W puting t W y usage. N9 % size N = 1282 built using a subset o = 6 endmembers

our results, the computation time decreases as the bloek SIZ 1 the USGS library is considered. The accuracy of the

rises, reaching a minimum for a block size abdw®, what- A : .
abundance maps estimation is assessed using the normalized

ever the value of’. On the other hand, as expected, the ment -1 sauare error

ory usage grows with the block size. Consequently, the block q

2) Image-based unmixing alternativedle now analyse the

size should be set to intermediate value in order to achieve 100 P e )
a best computing time. The block-wise implementation with NMSE(%) = P (Imp — e[|/l |?) (37)
a block sizeK = 256 allowing to get the best compromise p=1

between computing time and memory requirement is retainathich measures the relative mean difference between the
for the remaining experiments presented in the paper. actual abundances maps, = [A,1,...,4,n5]" and the
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Time (us) Constraints
Endmembers| P 15T 5TO-ADMM [ STOIPLS Endmembers)  Amax Fn ["STO [ SLO [ NN
3 46 22 18 1.00 | 0.04 | 0.10 | 0.19
LIB 6 84 65 45 LIB (1, 0.95,0.9)| 0.95| 3.83 0.64 | 0.69
10 210 124 90 0.90 | 12.36 | 2.03 | 2.06
15 | 479 198 177 1.00 | 047 | 058 | 0.72
3 45 18 18 1 0.95 | 4.57 3.39 | 144
EEA 6 84 71 42 0.90 | 16.45| 12.71 | 5.08
10 144 132 89 1.00 | 0.63 0.74 | 0.90
15 314 197 179 EEA 0.95 0.95 | 5.65 447 | 1.94
Time (us) 0.90 | 17.18 | 13.28 | 5.02
Endmembers| P NNIs T NN-ADMM | NN-PLS 05 é-gg 2-23 é}é 1'421‘21
3 66 18 20 ’ ’ , . ’
" 6 117 53 46 0.90 | 17.25| 13.25| 5.72
10 | 177 109 94 TABLE IlI
15 | 246 183 190 AccURACY (NMSE) OF ABUNDANCE ESTIMATION FROM EITHER ACTUAL
3 67 15 20 (LIB) OR EXTRACTED ENDMEMBERS(EEA), USING IPLSUNDER FULL
EEA 6 118 54 45 ADDITIVITY (STO),PARTIAL ADDITIVITY (SLO)AND NON-NEGATIVITY
10 175 121 93 (NN) CONSTRAINTS
15 237 189 187

TABLE II
AVERAGE TIME PER PIXEL FOR DIFFERENT NUMBER OF ENDMEMBERS
USING ACTUAL (LIB) OR ESTIMATED ENDMEMBERS(EEA):?OMP/;R'SON the VCA algorithm. The unmixing is performed under the full
BETWEEBFCLS, ADMM AND IPLSFULLY CONSTRAINED (STO)AND e . e ..
NNLS, ADMM AND IPLSWITH NON-NEGATIVITY CONSTRAINT ONLY add|t|V|ty (3_)'(4)' partlal add|t|V|ty (3)'(5) or non—negwty )
(POS). (3) constraints. From Table IV, one can note that imposing
the partial additivity constraint is very useful when themher

of unmixed endmembers is lower than the number of actual

endmembers.
estimated onesn,,.
a) Effect of illumination variability: We first analyse the plp LB EEA
e . . STO [ SLO [ NN | STO [ SLO [ NN
relevance of the full additivity constraint when the image S S ——
pixels are subject to illumination variability. In that pest, 6 | 5 | 1822 1539 | 1034 | 18.28 | 15.47 | 19.66
each pixel spectrum generated from the linear mixing model 4 | 48.31| 36.00 | 39.15| 48.17 | 35.99 | 39.19
is multiplied by a scale facto, modeling the illumination 10[ 014 [ 021 | 031 | 1.68 | 1.84 | 2.15
variability due to surface topography or atmospheric aien 10| 9 11013} 7.41 | 869 | 11.64) 9.05 | 10.17
. . . A 8 | 22.47 | 16.40 | 22.41 | 23.66 | 17.98 | 23.50
tion [36]. As in [37], this scale factor is simulated from atBe R RR RS AR YRR ITRENE
distribution with a SpeCified mean Valug; in the interval [09 15 | 14 6:17 5:65 16.19 15-.79 12..31 19.20
, 1]. The hyperspectral image is then unmixed using the IPLS 13 | 12.32 | 10.97 | 26.75 | 21.56 | 16.77 | 27.96
algorithm on the exact endmembers, with either constrdint ( TABLE IV
or (5) in addition to the non-negativity constraint (3). AcCURACY (NMSE IN (%)) OF ABUNDANCE ESTIMATION USINGIPLS

Table Ill summarizes our results for different maximum UNDERFULL ADDITIVITY (STO),PARTIAL ADDITIVITY (SLO)AND

abundance values and attenuation levels. The number d§ pixé‘oN'NEOGFAAT'S’T'LXL('E'L'\I'é)cgNRSETfTA&fEEDFEEEIAg;Q'E\'R'Q(CE%'%EETE SET

was set toN = 502 and 100 Monte-Carlo simulations

have been considered. It can be noted that the full additivit

constraint leads to the best estimation results in the @lesein

illumination variability (4, = 1) and endmember spectra taken . )

either from the library or extracted from the image using af- Parallel implementation

endmember extraction algorithm (VCA in this experiment). A parallel implementation of Algorithm 1, for both image-

However, the performances decrease when the valug, of based and pixel-based strategies, has been realized using

equals 0.95 or 0.9. It can be, for instance, noted that thisapar CUDA (for Compute Unified Device Architectyre program-

additivity is relevant when the endmembers are taken fran tming model created by Nvidia based on a language designed

library and that the non-negativity constraint alone leladhe as an extension of the C language.

best results when endmembers are extracted from the imageln the pixel-based implementation, the entire algorithm is
b) Effect of an incomplete set of endmembafge now run independently for each pixel. One thread per pixel is

consider the case when the set of endmembers used to unosgd, each thread containing the whole IPLS algorithm. The

the image spectra is incomplete. Such situation arises, forage-based implementation does not present such a degree

instance, when the number of components is underestimatedparallelization since some steps, namely the lineseaneh

An image of sizeN = 50? containing P endmembers is perturbation parameter update, and the convergence check,

simulated using the same strategy as in the previous expeqguire the computation of one variable for the entire image

iment, using Amax = 1 and p,, = 1. The unmixing is These global steps, calledductions are optimized using the

performed using a subset ¢f < P endmembers arbitrarily combination of the GPU and the CPU as it is described in

taken from the actual set of endmembers or estimated usi3§, Chap. 6].
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Fig. 2. Comparison in terms of computation time per pixetween GPU Fig. 3. Comparison in terms of computation time per pixetwaen pixel-
and CPU implementation for pixel-based and image-basedemgntations based and image-based GPU implementations of IPLS algurithverage
of IPLS algorithm. Average results ovaf0 Monte-Carlo simulations, for results overl00 Monte-Carlo simulations, for different number of endmem-
different number of endmembers using actual (LIB) or estiti@ndmembers bers using actual (LIB) or estimated endmembers (EEA).

(EEA).

these conditions are executed by all the threads of this,warp

For the same experiments than those conducted in Sect@dihough some of the results are ignored. Therefore, during
V-Al, we present in Figure 2 the speed up in terms of averatfee execution of the pixel-based IPLS, the computing time
computation time per pixel obtained when using parallelepends on the pixels having the slowest convergence rate in
programming. The IPLS algorithm was run on a Dell Precisiogach group of 32 consecutive pixels. The gain when using the
T7400 having an Intel Xeon X5472 3 GHz processor and Ixel-based approach can thus be small if the convergetes ra
GB of RAM. It embeds the Nvidia Tesla C1060 GPU (Graphhighly differ from one pixel to another. Another reason iatth
ics Processing Unit) allowing to do parallel computation oas emphasized in Section V-Al, the IPLS algorithm requires
its 240 processor cores running at 1.3 GHz. Note that thgore iterations to reach convergence in its pixel-basesioer
iterations number and the residual norms resulting frorsehe
tests were the same than those presented in Table |, which )
shows the validity of our GPU program. The ratio betweets: R€al data processing
GPU and CPU computation time follows different behaviour We consider in this section the unmixing of the well
for pixel-based and image-based implementations. When theown AVIRIS Cuprite dataset available onlfaérhis image
first approach is retained, the gain of GPU computing tendsiginally contains250 x 191 pixels and 224 spectral bands
to decrease, as the number of endmembers grows. On Ibeéween0.4 and2.5um. Only 188 bands are preserved after
opposite, the image-based GPU implementation tends to reenoving the corrupted ones.
more efficient whenP increases. Up to our knowledge, this 1) Number of endmembers estimatiohe number of
difference could be due to the use of the strategy by [38, Chahndmembers is estimated with the SGDE method proposed in
6] in our GPU programs of the image-based implementatioa0] based on Gerschgorin disks’ radii is used, leading & th
Indeed, it implies that the computing time necessary feeasonable number of 14 endmembers. This estimated number
performing data transfers remains constant, whateverah&v s used during the rest of the experiment. Other methods such
of P. For small size unmixing problems, this transfer tim@s Virtual Dimentionality estimation [41] or ELM [42] could
becomes preponderant over other operations, thus limitieg have been used, possibly leading to a different number.

GPU speed-up. 2) Endmembers extractionthe endmembers are extracted
Figure 3 illustrates the ratio between the average compufeem the scene using the N-FINDR algorithm. For each
tion time per pixel for pixel-based and image-based GPU ilendmember, Table V gives the two closest components of the
plementations. Although the pixel-based approach wowdise USGS library according to the Spectral Information Diver-
better suited for parallelization, it presents similar gutation gence (SID) [43]. Other endmember extraction algorithnts an
time than the image-based approach, when GPU programmépgctral distance measurements could have been usedlpossi
is employed. This can be explained by the fact that, accgrdileading to different substances. A survey on EEA algorithms

to the CUDA model [39], the threads are actually processexconducted in [44].

by groups of 32 calledvarps Each warp works as an SIMD  3) Abundance estimationComputing times for different
(Single Instruction Multiple Data) unit. At one given inata constraints are reported in Table VI, for an image-baseckslo

all the threads of one warp are necessarily executing the sawise implementation of the IPLS algorithm, run on Matlab
instruction. In the case of a conditional structure suchfas R2011b codes, using the same architecture than in Section
then, elseif two conditions are satisfied by different threads

within a warp, then two series of instructions correspogd  2http:/aviris.jpl.nasa.gov/html/aviris.freedata. htm
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[ Index | Mineral | SID (x1073) |
1 Pyrope WS474 6.52
Sphene HS189.3B 8.36
5 Buddingtonite GDS85 D-206| 6.51
Kaolin/Smect KLF511 12%K 7.39
3 Nontronite SWa-1.a 13.31
Kaolin/Smect H89-FR-5 30K 13.73
4 Nontronite NG-1.a 6.33
Montmorillonite+llli CM37 8.63 NN SLO STO
5 Nontronite SWa-1.a 15.39 Fi . ) . L . .
Kaolin/Smect KLF508 85%K 17.51 ig. 4. Cuprite _re5|dual norm per pixel after unmixing witPLIS subject to
s | Reclorite ISR202 (RA-1) 8.46 different constraints.
Montmorillonite+llli CM42 8.49
7 Montmorillonite+Illi CM42 9.52 e
Kaolin/Smect H89-FR-5 30K 10.36 095
8 Kaolin/Smect KLF511 12%K 3.28 16 0o
Rectorite ISR202 (RAr-1) 4.08
9 Montmorillonite CM20 5.38 h °%
Alunite GDS82 Na82 6.91 12 o2
10 Thenardite GDS146 3.60 B A
Kaolin/Smect H89-FR-2 50K 3.35 5 ’
11 | Cookeite CAr-1.c j30um 2.54 o °
Thenardite GDS146 2.65 SE) 065
12 Montmorillonite+lli CM42 8.22
Rectorite ISR202 (RAr-1) 9.37 25 100
13 Kaolin/Smect KLF511 12%K 1.82 é é
Montmorillonite+Illi CM37 3.21 52 5 80
14 Barite HS79.3B 5.36 215 2 g0
Richterite HS336.3B 5.51 k5 ) 8 0
TABLE V §0A5 g 20
SPECTRALINFORMATION DIVERGENCE(SID) BETWEEN EXTRACTED E E
ENDMEMBERS AND LABORATORY REFLECTANCES Y 05 1 15 p) % 05 1 15 p)
Abundance sum Abundance sum
NN SLO

. Fig. 5. Abundance sum per pixel after unmixing Cuprite sceubject to
V-B. We can note on both Table VI and Figure 4 that thggferent constraints: maps and probability density fior.

residual error is not strongly affected by the constrairticé.
Figure 5 illustrates the effect of the constraint choice on

the distribution of the abundance sum per pixel. With p@i$jti  the proposed approach is to handle various linear contsrain
only, a sum higher than one is observed in a significant partQich as full additivity, partial additivity and non-negyaty.
the image, which has no physical meaning. Adding the partiphe second advantage of this approach is its suitabilitafor
additivity constraint provides a sum close to one in most efficient parallel implementation using GPUs. These fesstur
the pixels. Those who have an abundance sum far from df@/e been illustrated by processing a real hyperspecttal da
may reveal a lack of luminosity, an underestimated numbgsing two GPU variants of the proposed method (pixel-based
of endmembers, or a non-linear phenomenon that cannotdigmage-based). Implementing the pixel-based versiomef t
handled with the proposed mixing model. method can be extended to the case of sparse unmixing of a
Using the GPU implementation described in Section V-Bingle pixel spectrum sing either a sparse recovery approac
the computational time for unmixing the real data undeyn a large library or to the case of a large number of spectral
constraints (3) and (4) becomes 0.50s for the image-basgghds. On the other hand, the image-based implementation
version, and 0.59s for the pixel-based version. The speed dffens the way to fast processing methods including spatial
of 33 Compared to the CPU version exhibits the SUltablllty (Hena”zation on the abundance maps.
our method for parallel programming. In that respect, the proposed method can be naturally
T Consram [ NN [ SIO TS0 extended to the case of abun(_janc_e estimation using pec_lhalize
e ® |32 05| 54 or Wt_a|ghted least squares estl_mat|on, when the regulamizat
r(x10-4) | 7.37 | 834 | 852 funct_lon preserves the block dlagonal_stru_cture of the Ides_s
matrix. This is for instance the case with Tikhonov reguaari
COMPUTING TIME AND RESII-Drﬁ‘Ell__ﬁo\QM AFTER UNMIXING CUPRITE tion or Sparse regularization approaCheS' Future WOI’HSbﬁ”
SCENE WITHIPLS SUBJECT TO DIEFERENT CONSTRAINTS directed to addressing the case of penalization functibas t
incorporate a spatial regularization of the abundance maps
such as total variation [45] and roughness penalties [46t. O
preliminary results, presented in [47], have shown that the
VI. CONCLUSION spatial regularization enhances the estimation qualityhat
We have proposed in this paper a spectral unmixing algprice of a significant increase of the numerical complexity.
rithm allowing to estimate the abundance maps using a primaldditional mathematical development are required in order
dual interior-point optimization method. The main featofe to adapt the primal-dual approach to solve the minimization
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problem in this context with a reduced memory requirement
and computation cost.
(1]

(2]
(3]

APPENDIX
A. Proof of Theorem Ill.1

1) Convergence of the inner loof:et us firstly prove the
convergence of the inner loop of Algorithm 1 for a fixed
perturbation parameter > 0. According to the definition (18),

we have, for allk € N, VI, (ax, Ar) = 4

Vd(ay) — 2Tt Diag(Tay, + )~y + Tty 38) [5]
Tap+t— A 'p
andV2\IJM(ak,)\k) = [6]
V2®(ay) + 2T Diag(Tay, +t) °Tu  T*
T A (39)

. [7]
For all k¥ € N, the linesearch ensures th@la;, +t > 0

and Ax > 0. Since either®(-) is strictly convex orT*T is
inversible, V2, (ay, Ay) is positive definite so that,, has a
unique minimizer(a,,, A,.). Then, the same analysis as in [26,
Sec.3] allows us to deduce that the sequefieg., Ax)} oy
resulting from the update equation (13) convergegin 5\#). (9]
2) Convergence rate of the inner looptengthy but (i)
straightforward calculations show that (16), (17), (38) &89)
lead to (11]

(8l

VQ‘I/M(ak, Ak)dk + V\IIH(ak, Ak) =

pT*Diag(Tay, +t)~! (Diag(A; 'p — (Tay, + iﬁ)))i1 Td§
A" (Diag(A;'p — (Tar + 1)) dyy

[12]

[13]

with d, = [(d2)' (d})']". Let us study the behaviour of
V2®,, (ak, Ap)di + V¥, (ar, Ag)| for large values ofk.
According to [26, Lem.3.1]{\..}, .y and{Tay +t},  are [14]
bounded, and bounded away from zero. Moreover, the gradient
of ¥, tends to0 as k goes to infinity, so that (38) yields 15
limy 00 Ag ‘o — (Tay, +t) = 0. Therefore,

HVQ\IJMk, (akv >‘k>dk + V\Il#k (akv Ak)

| = ollldll). (40)
—00
Hence, applying [48, Th.3.5], there exists such that the
stepsizen;, = 1 is admissible for alk > £, and the sequence
{(a, Ak)},@k“ resulting from (13) convergegssuperlinearly
to (dﬂv 5‘#«)

3) Convergence of the outer loofor all & such that (23)
holds,

[16]

[17]

[P < VBN < VPN, a1)
P02 < 6k + e < (QND™+ 1) puge. (42)
Furthermore, [19]
1 < 0%y, (43)

with gn@' € (0,1) and o > 0 s0 that{ui },cy cONverges to

0 ask tends to infinity. Thus, according to (41), (42) and [2627)
Th.5.1], the outer loop of Algorithm 1 generates a bounded
sequence(ax, Ax)} whose accumulation points are primal-
dual solutions of problem (11). Finally, i(-) is strictly [?1]
convex, the solutio@ of (11) is unique, and the outer iterate&izz]
{ai} converge toa.

10
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