Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000000000000000000000000	00000	00
Proximal methods: tools for solving inverse problems on a large scale			1/35

Proximal methods: tools for solving inverse problems on a large scale

Emilie Chouzenoux LIGM, UPEM

Journée du Labex Bézout:

Data Science and Massive Data Analysis

12 June 2014

Introduction	Proximal-based algorithms	Applications	Conclusion
000000	0000000000000000000	00000	00
Proximal methods: tools for solving inverse problems on a large scale			2/35

Joint work with

J.-C. Pesquet A. Repetti F. Abboud LIGM, University Paris East

A. Florescu Dunarea de Jos University Galati, Romania

J.-H. Chenot L. Laborelli P. Ciuciu Institut National Audiovisuel (INA) CEA, NeuroSpin center

Introduction	Proximal-based algorithms	Applications	Conclusion 00
Proximal m	ethods: tools for solving inverse problems on a lar	ge scale	3/35
Invers	se problems and large s	scale optimization	
_	[Microscopy, ISBI C	hallenge 2013, F. Soulez]	
	Original image	Degraded image	

a priori knowledge on \overline{x} and on the noise characteristics .

Introduction	Proximal-based algorithms	Applications	Conclusion
000000	000000000000000000000000000000000000000	00000	00
Proximal methods: too	ols for solving inverse problems on a large scale		4/35

Inverse problems and large scale optimization

Inverse problem:

Find an estimate \hat{x} close to \overline{x} from the observations z

$$z=\mathcal{D}(H\overline{x})$$

• Inverse filtering (if M = N and H is invertible)

$$\widehat{x} = H^{-1}z$$

= $H^{-1}(H\overline{x} + b) \leftarrow \text{if } b \in \mathbb{R}^M \text{ is an additive noise}$
= $\overline{x} + H^{-1}b$

 \rightarrow Closed form expression, but amplification of the noise if *H* is ill-conditioned (*ill-posed problem*).

Poisson noise $(\forall x \in \mathbb{R}^N)$ $f_1(x) = \sum_{m=1}^M \left([Hx]^{(m)} - z^{(m)} \log([Hx]^{(m)}) \right)$

Introduction	Proximal-based algorithms	Applications	Conclusion
000000	000000000000000000	00000	00
Proximal methods: tools for so	lving inverse problems on a large scale		6/35

Examples of regularization terms (1)

Admissibility constraints

Find
$$x \in C = \bigcap_{m=1}^{M} C_m$$

where $(\forall m \in \{1, \ldots, M\})$ $C_m \subset \mathbb{R}^N$.

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000000000000000000000000	00000	00
Proximal methods: tools for s	olving inverse problems on a large scale		6/35

Examples of regularization terms (1)

Admissibility constraints

Find
$$x \in C = \bigcap_{m=1}^{M} C_m$$

where $(\forall m \in \{1, \dots, M\}) \ C_m \subset \mathbb{R}^N$.

Variational formulation

$$(\forall x \in \mathbb{R}^N)$$
 $f_2(x) = \sum_{m=1}^M \iota_{C_m}(x)$

where, for all $m \in \{1, ..., M\}$, ι_{C_m} is the indicator function of C_m :

$$(\forall x \in \mathbb{R}^N)$$
 $\iota_{C_m}(x) = \begin{cases} 0 & \text{if } x \in C_m \\ +\infty & \text{otherwise.} \end{cases}$

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000000000000000000000000	00000	00
Proximal methods: tools	for solving inverse problems on a large scale		7/35

Examples of regularization terms (2)

• ℓ_1 norm (analysis approach)

$$(\forall x \in \mathbb{R}^N)$$
 $f_2(x) = \sum_{k=1}^K \left| [Fx]^{(k)} \right| = \|Fx\|_1$

 $F \in \mathbb{R}^{K \times N}$: Frame decomposition operator ($K \ge N$)

signal x

frame coefficients

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000000000000000000000000	00000	00
Proximal methods: tools for	or solving inverse problems on a large scale		7/35

Examples of regularization terms (2)

• ℓ_1 norm (analysis approach)

$$(\forall x \in \mathbb{R}^N)$$
 $f_2(x) = \sum_{k=1}^K \left| [F_x]^{(k)} \right| = \|F_x\|_1$

Total variation

$$(\forall x = (x^{(i_1, i_2)})_{1 \le i_1 \le N_1, 1 \le i_2 \le N_2} \in \mathbb{R}^{N_1 \times N_2})$$

 $f_2(x) = \operatorname{tv}(x) = \sum_{i_1 = 1}^{N_1} \sum_{i_2 = 1}^{N_2} \|\nabla x^{(i_1, i_2)}\|_2$

 $\nabla x^{(i_1,i_2)}$: discrete gradient at pixel (i_1,i_2) .

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000000000000000000000000	00000	00
Proximal methods: too	ls for solving inverse problems on a large scale		8/35

Inverse problems and large scale optimization

Inverse problem:

Find an estimate \hat{x} close to \overline{x} from the observations z

$$z=\mathcal{D}(H\overline{x})$$

- Inverse filtering
- Variational approach (more general context)

$$\widehat{x} \in \operatorname*{Argmin}_{x \in \mathbb{R}^N} \sum_{i=1}^m f_i(x)$$

where f_i may denote a data fidelity term / a (hybrid) regularization term / constraint.

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000000000000000000000000	00000	00
Proximal methods: too	ls for solving inverse problems on a large scale		8/35

Inverse problems and large scale optimization

Inverse problem:

Find an estimate \hat{x} close to \overline{x} from the observations z

$$z = \mathcal{D}(H\overline{x})$$

- Inverse filtering
- Variational approach (more general context)

$$\widehat{x} \in \operatorname*{Argmin}_{x \in \mathbb{R}^N} \sum_{i=1}^m f_i(x)$$

where f_i may denote a data fidelity term / a (hybrid) regularization term / constraint.

 \rightarrow Often no closed form expression or solution expensive to compute (especially in large scale context).

▶ Need for an efficient iterative minimization strategy !

Introduction	Proximal-based algorithms	Applications	Conclusion
000000	000000000000000000000000000000000000000	00000	00
Proximal methods: tools	for solving inverse problems on a large scale		9/35

Outline

1. Proximal-based algorithms

- Proximity operator
- Forward-Backward algorithm
- Acceleration via metric change
- Acceleration via block alternation

2. Applications

- Parallel magnetic resonance imaging
- Phase retrieval
- Blind deconvolution of television video
- Multi-channel image restoration

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	•00000000000000000	00000	00
Proximal methods: tools for	solving inverse problems on a large scale		10/35

Proximal-based algorithms

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000000000000000000000000	00000	00
Proximal methods: to	ools for solving inverse problems on a large scale		11/35

Gradient and subgradient algorithms

Optimization problem: Minimization of function $f \in \Gamma_0(\mathbb{R}^N)$ on \mathbb{R}^N .

▶ If f has a β -Lipschitz gradient with $\beta \in]0, +\infty[$

$$(orall \ell \in \mathbb{N})$$
 $x_{\ell+1} = x_\ell - \gamma_\ell
abla f(x_\ell)$ explicit step

with $0 < \inf_{\ell \in \mathbb{N}} \gamma_{\ell}$ and $\sup_{\ell \in \mathbb{N}} \gamma_{\ell} < 2\beta^{-1}$.

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000000000000000000000000	00000	00
Proximal methods: to	ools for solving inverse problems on a large scale		11/35

Gradient and subgradient algorithms

Optimization problem: Minimization of function $f \in \Gamma_0(\mathbb{R}^N)$ on \mathbb{R}^N .

▶ If f has a β -Lipschitz gradient with $\beta \in]0, +\infty[$

$$(orall \ell \in \mathbb{N}) \qquad x_{\ell+1} = x_\ell - \gamma_\ell
abla f(x_\ell) \quad ext{explicit step}$$

with $0 < \inf_{\ell \in \mathbb{N}} \gamma_{\ell}$ and $\sup_{\ell \in \mathbb{N}} \gamma_{\ell} < 2\beta^{-1}$.

▶ When *f* is nonsmooth, replace gradient with subgradient

$$\partial f(x) = \left\{ t \in \mathbb{R}^N | (\forall y \in \mathbb{R}^N) \ f(y) \ge f(x) + \langle t | y - x \rangle \right\}$$

 $t \in \partial f(x)$: subgradient at $x \in \mathbb{R}^N$ $\partial f : \mathbb{R}^N \to 2^{\mathbb{R}^N}$: subdifferential

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000000000000000000000000	00000	00
Proximal methods: tools	for solving inverse problems on a large scale		12/35

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000000000000000000000000	00000	00
Proximal methods: tools	for solving inverse problems on a large scale		12/35

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000000000000000000000000	00000	00
Proximal methods: tools	for solving inverse problems on a large scale		12/35

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000000000000000000000000	00000	00
Proximal methods: tools	for solving inverse problems on a large scale		12/35

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000000000000000000000000	00000	00
Proximal methods: tools for solving inverse problems on a large scale			12/35

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000000000000000000000000	00000	00
Proximal methods: tools	s for solving inverse problems on a large scale		12/35

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000000000000000000000000	00000	00
Proximal methods: tools for solving inverse problems on a large scale			12/35

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000000000000000000000000	00000	00
Proximal methods: tools for solving inverse problems on a large scale			12/35

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000000000000000000000000	00000	00
Proximal methods: too	Is for solving inverse problems on a large scale		13/35

Example of subdifferential

Example:

If f is differentiable at x ∈ ℝ^N then ∂f(x) = {∇f(x)}.
If f = | · | then

$$(\forall x \in \mathbb{R})$$
 $\partial f(x) = \begin{cases} \{\operatorname{sign}(x)\} & \text{if } x \neq 0\\ [-1,1] & \text{if } x = 0 \end{cases}$

Introduction	Proximal-based algorithms	Applications	Conclusion
000000	000000000000000000000000000000000000000	00000	00
Proximal methods: tools for s	solving inverse problems on a large scale		14/35

From the subgradient algorithm ...

Optimization problem: Minimization of function $f \in \Gamma_0(\mathbb{R}^N)$ on \mathbb{R}^N .

Subgradient algorithm [Shor, 1979]

$$(\forall \ell \in \mathbb{N})$$
 $x_{\ell+1} = x_{\ell} - \gamma_{\ell} t_{\ell}, t_{\ell} \in \partial f(x_{\ell})$

where $(\forall \ell \in \mathbb{N}) \ \gamma_{\ell} \in]0, +\infty[$ such that $\sum_{\ell=0}^{+\infty} \gamma_{\ell}^2 < +\infty$ and $\sum_{\ell=0}^{+\infty} \gamma_{\ell} = +\infty.$

Introduction	Proximal-based algorithms	Applications	Conclusion
000000	000000000000000000000000000000000000000	00000	00
Proximal methods: tools for s	solving inverse problems on a large scale		14/35

From the subgradient algorithm ...

Optimization problem: Minimization of function $f \in \Gamma_0(\mathbb{R}^N)$ on \mathbb{R}^N .

Subgradient algorithm [Shor, 1979]

$$(orall \ell \in \mathbb{N}) \qquad x_{\ell+1} = x_\ell - \gamma_\ell t_\ell, \quad t_\ell \in \partial f(x_\ell)$$

where $(\forall \ell \in \mathbb{N}) \ \gamma_{\ell} \in]0, +\infty[$ such that $\sum_{\ell=0}^{+\infty} \gamma_{\ell}^2 < +\infty$ and $\sum_{\ell=0}^{+\infty} \gamma_{\ell} = +\infty.$

Implicit form

$$egin{aligned} (orall \ell \in \mathbb{N}) & x_{\ell+1} = x_\ell - \gamma_\ell t'_\ell, \quad t'_\ell \in \partial f(x_{\ell+1}) \ & \Leftrightarrow & x_\ell - x_{\ell+1} \in \gamma_\ell \partial f(x_{\ell+1}) \end{aligned}$$

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000000000000000000000000	00000	00
Proximal methods: t	tools for solving inverse problems on a large scale		15/35

... to the origins of the proximity operator!

Property

Let $\varphi \in \Gamma_0(\mathbb{R}^N)$. For all $x \in \mathbb{R}^N$, there exists a unique vector $\widehat{x} \in \mathbb{R}^N$ such that $x - \widehat{x} \in \partial \varphi(\widehat{x})$.

Proximal point algorithm

$$egin{aligned} (orall \ell \in \mathbb{N}) & x_\ell - x_{\ell+1} \in \gamma_\ell \partial f(x_{\ell+1}) \ \Leftrightarrow & x_{\ell+1} = ext{prox}_{\gamma_\ell f}(x_\ell) \end{aligned}$$

where $\inf_{\ell \in \mathbb{N}} \gamma_{\ell} > 0$ such that $\sum_{\ell=0}^{+\infty} \gamma_{\ell} = +\infty$.

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000000000000000000000000	00000	00
Proximal methods: to	ols for solving inverse problems on a large scale		16/35

Another definition of the proximity operator

Property

Let $f \in \Gamma_0(\mathbb{R}^N)$. For all $x \in \mathbb{R}^N$, $\operatorname{prox}_f(x)$ is the unique minimizer of

$$y\mapsto f(y)+\frac{1}{2}\|x-y\|^2.$$

Example:

Let *C* a closed non empty subset of \mathbb{R}^N . Then, prox_{ι_C} reduces to the projection operator on the set *C*.

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000000000000000000000000	00000	00
Proximal methods: tools for solving inverse problems on a large scale			17/35

Some other examples

- Explicit form for objective functions associated to the usual log-concave probability densities [Chaux et al. - 2007]
 - ► Laplace
 - ► Generalized gaussian
 - ► maximum entropy
 - ≻ gamma
 - ➤ uniform
 - ➤ Weibull
 - ► Generalized inverse gaussian

- ► Gaussian
- ► Huber
- ► Smoothed Laplace
- ≻ chi

. . .

- ➤ triangular
- ► Pearson type I

► And many other functions ! [Combettes, Pesquet - 2010]

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000000000000000000000000	00000	00
Proximal methods: tools fo	r solving inverse problems on a large scale		18/35

Forward-backward algorithm

Optimization problem: Minimization of f + g on \mathbb{R}^N , assuming that g has a β -Lipschitz gradient.

Forward-backward algorithm

$$\begin{array}{ll} (\forall \ell \in \mathbb{N}) & x_{\ell+1} = x_{\ell} - \gamma_{\ell}(t'_{\ell} + \nabla g(x_{\ell})), & t'_{\ell} \in \partial f(x_{\ell+1}) \\ \Leftrightarrow & x_{\ell+1} = \mathsf{prox}_{\gamma_{\ell} f}(x_{\ell} - \gamma_{\ell} \nabla g(x_{\ell})) \end{array}$$

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000000000000000000000000	00000	00
Proximal methods: tools fo	r solving inverse problems on a large scale		18/35

Forward-backward algorithm

Optimization problem: Minimization of f + g on \mathbb{R}^N , assuming that g has a β -Lipschitz gradient.

Forward-backward algorithm

$$(orall \ell \in \mathbb{N}) extsf{x}_{\ell+1} = x_\ell + \lambda_\ell ig(extsf{prox}_{\gamma_\ell f} (x_\ell - \gamma_\ell
abla g(x_\ell)) - x_\ell ig)$$

Convergence of $(x_{\ell})_{\ell \in \mathbb{N}}$ if $0 < \inf_{\ell \in \mathbb{N}} \gamma_{\ell}$, $\sup_{\ell \in \mathbb{N}} \gamma_{\ell} < 2\beta^{-1}$, $0 < \inf_{\ell \in \mathbb{N}} \lambda_{\ell}$ and $\sup_{\ell \in \mathbb{N}} \lambda_{\ell} \leq 1$.

- ► f and g convex [Chen,Rockafellar,1997][Combettes,Wajs,2005]
- f and g nonconvex (under Kurdyka-Łojasiewicz assumption) [Attouch et al. - 2011]

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000000000000000000000000	00000	00
Proximal methods: to	ols for solving inverse problems on a large scale		19/35

How to make the forward-backward algorithm efficient for big data optimization ?

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000000000000000000000000	00000	00
Proximal methods: tools	for solving inverse problems on a large scale		20/35

First trick: Majoration-Minimization strategy

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000	00000	00
Proximal methods: too	ols for solving inverse problems on a large scale		21/35

MM point of view

Majorize-Minimize Assumption

For every ℓ ∈ N, there exists a symmetric positive definite (SPD) matrix A_ℓ(x_ℓ) ∈ ℝ^{N×N} such that for every x ∈ ℝ^N

$$Q(x,x_{\ell}) = g(x_{\ell}) + (x-x_{\ell})^{\top} \nabla g(x_{\ell}) + \frac{1}{2} (x-x_{\ell})^{\top} A_{\ell}(x_{\ell}) (x-x_{\ell}),$$

is a majorant function of g at x_{ℓ} on dom f, i.e.,

 $g(x_\ell) = Q(x_\ell, x_\ell)$ and $(\forall x \in \operatorname{\mathsf{dom}} f) \quad g(x) \leq Q(x, x_\ell).$

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000	00000	00
Proximal methods: too	ols for solving inverse problems on a large scale		21/35

MM point of view

Majorize-Minimize Assumption

For every ℓ ∈ N, there exists a symmetric positive definite (SPD) matrix A_ℓ(x_ℓ) ∈ ℝ^{N×N} such that for every x ∈ ℝ^N

$$Q(x, x_{\ell}) = g(x_{\ell}) + (x - x_{\ell})^{\top} \nabla g(x_{\ell}) + \frac{1}{2} (x - x_{\ell})^{\top} A_{\ell}(x_{\ell}) (x - x_{\ell}),$$

is a majorant function of g at x_{ℓ} on dom f, i.e.,

 $g(x_\ell) = Q(x_\ell, x_\ell)$ and $(\forall x \in \operatorname{dom} f) \quad g(x) \le Q(x, x_\ell).$

g is differentiable $A_{\ell}(x_{\ell}) \equiv \beta \operatorname{Id}$ with a β -Lipschitzian gradient \Rightarrow satisfies the above assumptionon a convex subset of \mathbb{R}^N [Bertsekas - 1999]

Introduction	Proximal-based algorithms	Applications	Conclusion
000000	000000000000000000	00000	00
Proximal methods: tools for sol	ving inverse problems on a large scale		22/35

MM Algorithm

$$x_{\ell+1} \in \operatorname*{Argmin}_{x \in \mathbb{R}^N} f(x) + Q(x, x_{\ell})$$

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000000000000000000000000	00000	00
Proximal methods: tools for	solving inverse problems on a large scale		22/35

MM Algorithm $x_{\ell+1} \in \operatorname*{Argmin}_{x \in \mathbb{R}^N} f(x) + Q(x, x_{\ell})$

Introduction	Proximal-based algorithms	Applications	Conclusion
000000	000000000000000000	00000	00
Proximal methods: tools for sol	ving inverse problems on a large scale		22/35

$\mathsf{MM} \text{ Algorithm}$ $x_{\ell+1} \in \operatorname*{Argmin}_{x \in \mathbb{R}^N} f(x) + Q(x, x_\ell)$

 \rightsquigarrow Why not trying more sophisticated matrices $(A_\ell)_{\ell \in \mathbb{N}}$?

► Variable metric forward-backward algorithm !

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000000000000000000000000	00000	00
Proximal methods: tools	for solving inverse problems on a large scale		23/35

Acceleration via metric change

Definition

Let $x \in \mathbb{R}^N$. Let A be a SPD matrix. The proximity operator relative to the metric induced by A is defined by

$$\operatorname{prox}_{\gamma^{-1}A, f}(x) = \operatorname{Argmin}_{y \in \mathbb{R}^N} f(y) + \frac{1}{2\gamma} \|y - x\|_A^2.$$

Variable metric forward-backward algorithm

$$(\forall \ell \in \mathbb{N}) \qquad x_{\ell+1} = \operatorname{prox}_{\gamma_{\ell}^{-1} | A_{\ell}(x_{\ell})|, f} \left(x_{\ell} - \gamma_{\ell} | A_{\ell}(x_{\ell})|^{-1} \nabla g(x_{\ell}) \right).$$

Convergence of $(x_{\ell})_{\ell \in \mathbb{N}}$

- ▶ f and g convex [Combettes et al. 2012]
- ▶ f and g nonconvex [Chouzenoux et al. 2013]

► Significant acceleration in practice !

Introduction	Proximal-based algorithms	Applications	Conclusion
000000	000000000000000000000000000000000000000	00000	00
Proximal methods: tools for se	olving inverse problems on a large scale		24/35

Second trick: Block alternation

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000000000000000000000000	00000	00
Proximal methods: to	ools for solving inverse problems on a large scale		25/35

► Assumption: *f* is an additively block separable function.

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000000000000000000000000	00000	00
Proximal methods: to	ools for solving inverse problems on a large scale		25/35

► Assumption: *f* is an additively block separable function.

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000000000000000000000000	00000	00
Proximal methods: to	ools for solving inverse problems on a large scale		25/35

► Assumption: *f* is an additively block separable function.

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000000000000000000000000	00000	00
Proximal methods: tools	s for solving inverse problems on a large scale		26/35

Block coordinate forward-backward algorithm $(\forall \ell \in \mathbb{N})$, pick a block $j_{\ell} \in \{1, \dots, J\}$, and update:

$$\begin{cases} x_{\ell+1}^{(j_{\ell})} = \operatorname{prox}_{\gamma_{\ell} f_{j_{\ell}}} \left(x_{\ell}^{(j_{\ell})} - \gamma_{\ell} \nabla_{j_{\ell}} g(x_{\ell}) \right) \\ x_{\ell+1}^{(\bar{j}_{\ell})} = x_{\ell}^{(\bar{j}_{\ell})} \end{cases}$$

Convergence of (x_ℓ)_{ℓ∈ℕ} (assuming a cyclic update rule) established in [Bolte *et al.* - 2013] for possibly nonconvex functions f and g verifying Kurdyka-Łojasiewicz assumption.

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000000000000000000000000	00000	00
Proximal methods: tools	s for solving inverse problems on a large scale		26/35

Block coordinate forward-backward algorithm $(\forall \ell \in \mathbb{N})$, pick a block $j_{\ell} \in \{1, \dots, J\}$, and update:

$$\begin{cases} x_{\ell+1}^{(j_{\ell})} = \operatorname{prox}_{\gamma_{\ell} f_{j_{\ell}}} \left(x_{\ell}^{(j_{\ell})} - \gamma_{\ell} \nabla_{j_{\ell}} g(x_{\ell}) \right) \\ x_{\ell+1}^{(\overline{j}_{\ell})} = x_{\ell}^{(\overline{j}_{\ell})} \end{cases}$$

- Convergence of (x_ℓ)_{ℓ∈ℕ} (assuming a cyclic update rule) established in [Bolte *et al.* - 2013] for possibly nonconvex functions f and g verifying Kurdyka-Łojasiewicz assumption.
- Block alternation presents several advantages:
 - ✓ more flexibility,
 - $\checkmark\,$ reduced computational cost at each iteration,
 - ✓ reduced memory requirement.

Introduction	Proximal-based algorithms	Applications	Conclusion
000000	000000000000000000000000000000000000000	00000	00
Proximal methods: tools for so	olving inverse problems on a large scale		27/35

Combining first and second trick ...

Introduction	Proximal-based algorithms	Applications	Conclusion
000000	000000000000000000000●	00000	00
Proximal methods: tools for so	lving inverse problems on a large scale		28/35

Acceleration via block alternation and metric change

Block coordinate variable metric forward-backward algorithm $(\forall \ell \in \mathbb{N})$, pick a block $j_{\ell} \in \{1, \dots, J\}$, and update

$$\begin{cases} x_{\ell+1}^{(j_{\ell})} = \operatorname{prox}_{\gamma_{\ell}^{-1}} \underbrace{A_{j_{\ell}}(x_{\ell})}_{f_{j_{\ell}}}, f_{j_{\ell}}} \left(x_{\ell}^{(j_{\ell})} - \gamma_{\ell} \underbrace{A_{j_{\ell}}(x_{\ell})}_{-1} \nabla_{j_{\ell}} g(x_{\ell}) \right) \\ x_{\ell+1}^{(\overline{j}_{\ell})} = x_{\ell}^{(\overline{j}_{\ell})} \end{cases}$$

Convergence of (x_ℓ)_{ℓ∈ℕ} (assuming a quasi cyclic update rule) established in [Chouzenoux *et al.* - 2013] for nonconvex functions f and g verifying Kurdyka-Łojasiewicz assumption.

► Benefits from the advantages of both acceleration techniques!

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000000000000000000000000	●0000	00
Proximal methods: tools for solv	ing inverse problems on a large scale		29/35

Applications

Introduction	Proximal-based algorithms	Applications	Conclusion
000000	000000000000000000000000000000000000000	00000	00
Proximal methods: tools for solving inverse problems on a large scale			30/35

Parallel Magnetic Resonance Imaging [Florescu et al. - 2014]

Challenges:

- Parallel acquisition and compressive sensing
- Complex-valued signals

Results:

Original

Proposed method

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000000000000000000000000	00000	00
Proximal methods: tools for solving inverse problems on a large scale		30/35	

Parallel Magnetic Resonance Imaging [Florescu et al. - 2014]

Challenges:

- Parallel acquisition and compressive sensing
- Complex-valued signals

Results:

Original

Proposed method

Introduction	Proximal-based algorithms	Applications	Conclusion
000000	000000000000000000000000000000000000000	00000	00
Proximal methods: tools for solving inverse problems on a large scale			30/35

Parallel Magnetic Resonance Imaging [Florescu et al. - 2014]

Challenges:

- Parallel acquisition and compressive sensing
- Complex-valued signals

Convergence speed of several proximal-based algorithms

Introduction	Proximal-based algorithms	Applications	Conclusion
000000	000000000000000000000000000000000000000	0000	00
Proximal methods: tools for solvi	ng inverse problems on a large scale		31/35

Phase retrieval [Repetti et al. - ICIP 2014]

Challenges:

- Only the modulus of the observed data is available
- Non-Fourier measurements
- Nonconvex data fidelity term

Results:

real part

SparseFienup

Proposed method

Introduction	Proximal-based algorithms	Applications	Conclusion
000000	000000000000000000000000000000000000000	0000	00
Proximal methods: tools for solvi	ng inverse problems on a large scale		31/35

Phase retrieval [Repetti et al. - ICIP 2014]

Challenges:

- Only the modulus of the observed data is available
- Non-Fourier measurements
- Nonconvex data fidelity term

Results:

imaginary part

SparseFienup

Introduction	Proximal-based algorithms	Applications	Conclusion
000000	000000000000000000000000000000000000000	0000	00
Proximal methods: tools for solvi	ng inverse problems on a large scale		31/35

Phase retrieval [Repetti et al. - ICIP 2014]

Challenges:

- Only the modulus of the observed data is available
- Non-Fourier measurements
- Nonconvex data fidelity term

Results:

Influence of the variable metric strategy

Introduction	Proximal-based algorithms	Applications	Conclusion
000000	000000000000000000	00000	00
Proximal methods: tools for sol	ving inverse problems on a large scale		32/35

Blind deconvolution of video [Abboud et al. - EUSIPCO 2014]

Challenges:

- The degradation blur operator is unknown
- Nonconvex data fidelity term

Results:

Observed

Restored

Introduction	Proximal-based algorithms	Applications	Conclusion
000000	000000000000000000000000000000000000000	00000	00
Proximal methods: tools for solv	ing inverse problems on a large scale		32/35

Blind deconvolution of video [Abboud et al. - EUSIPCO 2014]

Challenges:

- The degradation blur operator is unknown
- Nonconvex data fidelity term

Results:

Observed

Restored

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000000000000000000000000	00000	00
Proximal methods: tools	or solving inverse problems on a large scale		32/35

Blind deconvolution of video [Abboud et al. - EUSIPCO 2014]

Challenges:

- The degradation blur operator is unknown
- Nonconvex data fidelity term
- **Results:**

Introduction	Proximal-based algorithms	Applications	Conclusion
000000	000000000000000000	00000	00
Proximal methods: tools for solv	ng inverse problems on a large scale		33/35

Multi-channel image restoration [Chierchia et al. - 2014]

Challenges:

- Deal with images having a large number of components
- Circumvent the choice of regularization parameters by introducing suitable nonlocal constraints
- Develop epigraphical techniques to address these constraints efficiently

Introduction	Proximal-based algorithms	Applications	Conclusion
000000	000000000000000000000000000000000000000	00000	00
Proximal methods: tools for solv	ing inverse problems on a large scale		33/35

Multi-channel image restoration [Chierchia et al. - 2014]

Challenges:

- Deal with images having a large number of components
- Circumvent the choice of regularization parameters by introducing suitable nonlocal constraints
- Develop epigraphical techniques to address these constraints efficiently

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000000000000000000000000	00000	•0
Proximal methods: tools for solving inverse problems on a large scale			34/35

✓ Proximal-based algorithms: An efficient tool for solving large scale possibly difficult optimization problem;

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000000000000000000000000	00000	•0
Proximal methods: tools for solving inverse problems on a large scale			34/35

- ✓ Proximal-based algorithms: An efficient tool for solving large scale possibly difficult optimization problem;
- $\checkmark\,$ Two recipes for accelerating the algorithms:
 - Majoration-Minimization strategy
 - Block alternation

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000000000000000000000000	00000	•0
Proximal methods: tools	34/35		

- Proximal-based algorithms: An efficient tool for solving large scale possibly difficult optimization problem;
- $\checkmark\,$ Two recipes for accelerating the algorithms:
 - Majoration-Minimization strategy
 - Block alternation
- ✓ No need to invert large size matrices through primal-dual forward-backward based methods;

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000000000000000000000000	00000	•0
Proximal methods: tools	34/35		

- ✓ Proximal-based algorithms: An efficient tool for solving large scale possibly difficult optimization problem;
- $\checkmark\,$ Two recipes for accelerating the algorithms:
 - Majoration-Minimization strategy
 - Block alternation
- ✓ No need to invert large size matrices through primal-dual forward-backward based methods;
- ✓ Parallel implementations possible thanks to splitting techniques.

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000000000000000000000000	00000	•0
Proximal methods: tools	34/35		

- Proximal-based algorithms: An efficient tool for solving large scale possibly difficult optimization problem;
- $\checkmark\,$ Two recipes for accelerating the algorithms:
 - Majoration-Minimization strategy
 - Block alternation
- ✓ No need to invert large size matrices through primal-dual forward-backward based methods;
- ✓ Parallel implementations possible thanks to splitting techniques.

Future challenges: Find more tricks!

Introduction	Proximal-based algorithms	Applications	Conclusion
0000000	000000000000000000000000000000000000000	00000	00
Proximal methods: tools for solving inverse problems on a large scale			35/35

Thank you ! Questions ?

