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Inverse problems and large scale optimization
[Microscopy, ISBI Challenge 2013, F. Soulez]

Original image Degraded image
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Inverse problems and large scale optimization
[Microscopy, ISBI Challenge 2013, F. Soulez]

Original image Degraded image

x ∈ R
N z = D(Hx) ∈ R

M

◮ H ∈ R
M×N : matrix associated with the degradation operator.

◮ D : RM → R
M : noise degradation.

Inverse problem:
Find a good estimate of x from the observations z , using some
a priori knowledge on x and on the noise characteristics .
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Inverse problems and large scale optimization

Inverse problem:

Find an estimate x̂ close to x from the observations z = D(Hx) .

◮ Inverse filtering (if M = N and H is invertible)

x̂ = H−1z

= H−1(Hx + b) ← if b ∈ R
M is an additive noise

= x + H−1b

→ Closed form expression, but amplification of the noise if H is

ill-conditioned (ill-posed problem).



Introduction Proximal-based algorithms Applications Conclusion

Proximal methods: tools for solving inverse problems on a large scale 5/35

Inverse problems and large scale optimization

Inverse problem:

Find an estimate x̂ close to x from the observations z = D(Hx) .

◮
✭
✭
✭
✭

✭
✭
✭✭

Inverse filtering
◮ Variational approach
x̂ ∈ Argmin

x∈RN

f1(x)︸︷︷︸
Data fidelity term

+ f2(x)︸︷︷︸
Regularization term
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Inverse problems and large scale optimization

Inverse problem:

Find an estimate x̂ close to x from the observations z = D(Hx) .

◮
✭
✭
✭
✭

✭
✭
✭✭

Inverse filtering
◮ Variational approach
x̂ ∈ Argmin

x∈RN

f1(x)︸︷︷︸
Data fidelity term

+ f2(x)︸︷︷︸
Regularization term

Examples of data fidelity term

◮ Gaussian noise
(∀x ∈ R

N) f1(x) =
1

σ2
‖Hx − z‖2

◮ Poisson noise

(∀x ∈ R
N) f1(x) =

M∑

m=1

(
[Hx ](m) − z(m) log([Hx ](m))

)
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Examples of regularization terms (1)

◮ Admissibility constraints

Find x ∈ C =
M⋂

m=1

Cm

where (∀m ∈ {1, . . . ,M}) Cm ⊂ R
N .
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Examples of regularization terms (1)

◮ Admissibility constraints

Find x ∈ C =
M⋂

m=1

Cm

where (∀m ∈ {1, . . . ,M}) Cm ⊂ R
N .

◮ Variational formulation

(∀x ∈ R
N) f2(x) =

M∑

m=1

ιCm
(x)

where, for all m ∈ {1, . . . ,M}, ιCm
is the indicator function

of Cm:

(∀x ∈ R
N) ιCm

(x) =

{
0 if x ∈ Cm

+∞ otherwise.



Introduction Proximal-based algorithms Applications Conclusion

Proximal methods: tools for solving inverse problems on a large scale 7/35

Examples of regularization terms (2)

◮ ℓ1 norm (analysis approach)

(∀x ∈ R
N) f2(x) =

K∑

k=1

∣∣∣[Fx ](k)
∣∣∣ = ‖Fx‖1

F ∈ R
K×N : Frame decomposition operator (K ≥ N)

F

signal x frame coefficients
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Examples of regularization terms (2)

◮ ℓ1 norm (analysis approach)

(∀x ∈ R
N) f2(x) =

K∑

k=1

∣∣∣[Fx ](k)
∣∣∣ = ‖Fx‖1

◮ Total variation

(∀x = (x (i1,i2))1≤i1≤N1,1≤i2≤N2 ∈ R
N1×N2)

f2(x) = tv(x) =

N1∑

i1=1

N2∑

i2=1

‖∇x (i1,i2)‖2

∇x (i1,i2) : discrete gradient at pixel (i1, i2).
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Inverse problems and large scale optimization

Inverse problem:

Find an estimate x̂ close to x from the observations z = D(Hx) .

◮
✭
✭
✭
✭

✭
✭
✭✭

Inverse filtering
◮ Variational approach (more general context)

x̂ ∈ Argmin
x∈RN

m∑

i=1

fi (x)

where fi may denote a data fidelity term / a (hybrid) regularization
term / constraint.
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Inverse problems and large scale optimization

Inverse problem:

Find an estimate x̂ close to x from the observations z = D(Hx) .

◮
✭
✭
✭
✭

✭
✭
✭✭

Inverse filtering
◮ Variational approach (more general context)

x̂ ∈ Argmin
x∈RN

m∑

i=1

fi (x)

where fi may denote a data fidelity term / a (hybrid) regularization
term / constraint.

→ Often no closed form expression or solution expensive to
compute (especially in large scale context).

◮ Need for an efficient iterative minimization strategy !
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Outline

1. Proximal-based algorithms
◮ Proximity operator
◮ Forward-Backward algorithm
◮ Acceleration via metric change
◮ Acceleration via block alternation

2. Applications
◮ Parallel magnetic resonance imaging
◮ Phase retrieval
◮ Blind deconvolution of television video
◮ Multi-channel image restoration
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Proximal-based algorithms
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Gradient and subgradient algorithms

Optimization problem: Minimization of function f ∈ Γ0(RN) on R
N .

◮ If f has a β-Lipschitz gradient with β ∈]0,+∞[

(∀ℓ ∈ N) xℓ+1 = xℓ − γℓ∇f (xℓ) explicit step

with 0 < infℓ∈N γℓ and supℓ∈N γℓ < 2β−1.
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Gradient and subgradient algorithms

Optimization problem: Minimization of function f ∈ Γ0(RN) on R
N .

◮ If f has a β-Lipschitz gradient with β ∈]0,+∞[

(∀ℓ ∈ N) xℓ+1 = xℓ − γℓ∇f (xℓ) explicit step

with 0 < infℓ∈N γℓ and supℓ∈N γℓ < 2β−1.

◮ When f is nonsmooth, replace gradient with subgradient

∂f (x) =
{
t ∈ R

N |(∀y ∈ R
N) f (y) ≥ f (x) + 〈t|y − x〉

}

t ∈ ∂f (x): subgradient at x ∈ R
N

∂f : RN → 2R
N

: subdifferential
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Subdifferential

f (y)

f (x) + 〈y − x |t〉

y

x

t ∈ ∂f (x)
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Subdifferential

f (y)

f (x) + 〈y − x |t〉

yx

x

t ∈ ∂f (x)

b
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Example of subdifferential

Example:

◮ If f is differentiable at x ∈ R
N then ∂f (x) = {∇f (x)}.

◮ If f = | · | then

(∀x ∈ R) ∂f (x) =

{
{sign(x)} if x 6= 0

[−1, 1] if x = 0
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From the subgradient algorithm ...

Optimization problem: Minimization of function f ∈ Γ0(RN) on R
N .

Subgradient algorithm [Shor,1979]

(∀ℓ ∈ N) xℓ+1 = xℓ − γℓtℓ, tℓ ∈ ∂f (xℓ)

where (∀ℓ ∈ N) γℓ ∈]0,+∞[ such that
∑+∞

ℓ=0 γ
2
ℓ < +∞ and∑+∞

ℓ=0 γℓ = +∞.
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From the subgradient algorithm ...

Optimization problem: Minimization of function f ∈ Γ0(RN) on R
N .

Subgradient algorithm [Shor,1979]

(∀ℓ ∈ N) xℓ+1 = xℓ − γℓtℓ, tℓ ∈ ∂f (xℓ)

where (∀ℓ ∈ N) γℓ ∈]0,+∞[ such that
∑+∞

ℓ=0 γ
2
ℓ < +∞ and∑+∞

ℓ=0 γℓ = +∞.

Implicit form

(∀ℓ ∈ N) xℓ+1 = xℓ − γℓt
′
ℓ, t ′ℓ ∈ ∂f (xℓ+1)

⇔ xℓ − xℓ+1 ∈ γℓ∂f (xℓ+1)
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... to the origins of the proximity operator!

Property

Let ϕ ∈ Γ0(RN). For all x ∈ R
N , there exists a unique vector

x̂ ∈ R
N such that x − x̂ ∈ ∂ϕ(x̂).

◮ Let x̂ = proxϕ(x).

◮ proxϕ : RN → R
N : proximity operator

Proximal point algorithm

(∀ℓ ∈ N) xℓ − xℓ+1 ∈ γℓ∂f (xℓ+1)

⇔ xℓ+1 = proxγℓf (xℓ)

where infℓ∈N γℓ > 0 such that
∑+∞

ℓ=0 γℓ = +∞.
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Another definition of the proximity operator

Property

Let f ∈ Γ0(RN).
For all x ∈ R

N , proxf (x) is the unique minimizer of

y 7→ f (y) +
1

2
‖x − y‖2.

Example:

Let C a closed non empty subset of RN . Then, proxιC reduces to

the projection operator on the set C .
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Some other examples

◮ Explicit form for objective functions associated to the usual
log-concave probability densities [Chaux et al. - 2007]

➤ Laplace ➤ Gaussian
➤ Generalized gaussian ➤ Huber
➤ maximum entropy ➤ Smoothed Laplace
➤ gamma ➤ chi
➤ uniform ➤ triangular
➤ Weibull ➤ Pearson type I
➤ Generalized inverse gaussian ...

◮ And many other functions ! [Combettes, Pesquet - 2010]
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Forward-backward algorithm

Optimization problem:
Minimization of f + g on R

N , assuming that g has a β-Lipschitz
gradient.

Forward-backward algorithm

(∀ℓ ∈ N) xℓ+1 = xℓ − γℓ(t
′
ℓ +∇g(xℓ)), t ′ℓ ∈ ∂f (xℓ+1)

⇔ xℓ+1 = proxγℓf (xℓ − γℓ∇g(xℓ))
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Forward-backward algorithm

Optimization problem:
Minimization of f + g on R

N , assuming that g has a β-Lipschitz
gradient.

Forward-backward algorithm

(∀ℓ ∈ N) xℓ+1 = xℓ + λℓ

(
proxγℓf (xℓ − γℓ∇g(xℓ))− xℓ

)

Convergence of (xℓ)ℓ∈N if 0 < infℓ∈N γℓ, supℓ∈N γℓ < 2β−1,
0 < infℓ∈N λℓ and supℓ∈N λℓ ≤ 1.
◮ f and g convex [Chen,Rockafellar,1997][Combettes,Wajs,2005]

◮ f and g nonconvex (under Kurdyka- Lojasiewicz assumption)
[Attouch et al. - 2011]
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How to make the forward-backward algorithm
efficient for big data optimization ?
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First trick: Majoration-Minimization strategy
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MM point of view

Majorize-Minimize Assumption

• For every ℓ ∈ N, there exists a symmetric positive definite (SPD)
matrix Aℓ(xℓ) ∈ R

N×N such that for every x ∈ R
N

Q(x , xℓ) = g(xℓ) + (x − xℓ)⊤∇g(xℓ) +
1

2
(x − xℓ)

⊤Aℓ(xℓ)(x − xℓ),

is a majorant function of g at xℓ on dom f , i.e.,

g(xℓ) = Q(xℓ, xℓ) and (∀x ∈ dom f ) g(x) ≤ Q(x , xℓ).
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MM point of view

Majorize-Minimize Assumption

• For every ℓ ∈ N, there exists a symmetric positive definite (SPD)
matrix Aℓ(xℓ) ∈ R

N×N such that for every x ∈ R
N

Q(x , xℓ) = g(xℓ) + (x − xℓ)⊤∇g(xℓ) +
1

2
(x − xℓ)

⊤Aℓ(xℓ)(x − xℓ),

is a majorant function of g at xℓ on dom f , i.e.,

g(xℓ) = Q(xℓ, xℓ) and (∀x ∈ dom f ) g(x) ≤ Q(x , xℓ).

g is differentiable
with a β-Lipschitzian gradient

on a convex subset of RN
⇒

Aℓ(xℓ) ≡ β Id

satisfies the above assumption
[Bertsekas - 1999]
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MM algorithm [Jacobson and Fessler - 2007]

MM Algorithm

xℓ+1 ∈ Argmin
x∈RN

f (x) + Q(x , xℓ)

g + f

xℓ xℓ+1

Q(·, xℓ) + f
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MM algorithm [Jacobson and Fessler - 2007]

MM Algorithm

xℓ+1 ∈ Argmin
x∈RN

f (x) + Q(x , xℓ)

g + f

xℓ+1xℓ+2

Q(·, xℓ+1) + f
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MM algorithm [Jacobson and Fessler - 2007]

MM Algorithm

xℓ+1 ∈ Argmin
x∈RN

f (x) + Q(x , xℓ)

g + f

xℓ+2xℓ+3 · · ·

Q(·, xℓ+2) + f



Introduction Proximal-based algorithms Applications Conclusion

Proximal methods: tools for solving inverse problems on a large scale 22/35

MM algorithm [Jacobson and Fessler - 2007]

MM Algorithm

xℓ+1 ∈ Argmin
x∈RN

f (x) + Q(x , xℓ)

⇔ Forward-backward algorithm
with

◮ Aℓ(xℓ) ≡ β Id

◮ λℓ ≡ 1
◮ γℓ ≡ 1

g + f

xℓ+2xℓ+3 · · ·

Q(·, xℓ+2) + f

 Why not trying more sophisticated matrices (Aℓ)ℓ∈N ?

◮ Variable metric forward-backward algorithm !
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Acceleration via metric change

Definition

Let x ∈ R
N . Let A be a SPD matrix. The proximity operator

relative to the metric induced by A is defined by

proxγ−1A , f (x) = Argmin
y∈RN

f (y) +
1

2γ
‖y − x‖2A.

Variable metric forward-backward algorithm

(∀ℓ ∈ N) xℓ+1 = prox
γ−1
ℓ

Aℓ(xℓ) , f

(
xℓ − γℓ Aℓ(xℓ)

−1∇g(xℓ)
)
.

Convergence of (xℓ)ℓ∈N
◮ f and g convex [Combettes et al. - 2012]

◮ f and g nonconvex [Chouzenoux et al. - 2013]

◮ Significant acceleration in practice !
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Second trick: Block alternation
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Acceleration via block alternation

◮ Assumption: f is an additively block separable function.
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Acceleration via block alternation

◮ Assumption: f is an additively block separable function.

x ∈ R
N

x (1)∈ R
N1

x (2)∈ R
N2

x (J)∈ R
NJ

N =
J∑

̇=1

Ṅ
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Acceleration via block alternation

◮ Assumption: f is an additively block separable function.

xf = f =
J∑

̇=1

ḟ(x
(̇))

x (1)

x (2)

x (J)
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Acceleration via block alternation

Block coordinate forward-backward algorithm

(∀ℓ ∈ N), pick a block ̇ℓ ∈ {1, . . . , J}, and update:

{
x
(̇ℓ)
ℓ+1 = proxγℓ ḟℓ

(
x
(̇ℓ)
ℓ − γℓ∇̇ℓg(xℓ)

)

x
(ℓ)
ℓ+1 = x

(ℓ)
ℓ

◮ Convergence of (xℓ)ℓ∈N (assuming a cyclic update rule)
established in [Bolte et al. - 2013] for possibly nonconvex
functions f and g verifying Kurdyka- Lojasiewicz assumption.
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Acceleration via block alternation

Block coordinate forward-backward algorithm

(∀ℓ ∈ N), pick a block ̇ℓ ∈ {1, . . . , J}, and update:

{
x
(̇ℓ)
ℓ+1 = proxγℓ ḟℓ

(
x
(̇ℓ)
ℓ − γℓ∇̇ℓg(xℓ)

)

x
(ℓ)
ℓ+1 = x

(ℓ)
ℓ

◮ Convergence of (xℓ)ℓ∈N (assuming a cyclic update rule)
established in [Bolte et al. - 2013] for possibly nonconvex
functions f and g verifying Kurdyka- Lojasiewicz assumption.

◮ Block alternation presents several advantages:

X more flexibility,

X reduced computational cost at each iteration,

X reduced memory requirement.



Introduction Proximal-based algorithms Applications Conclusion

Proximal methods: tools for solving inverse problems on a large scale 27/35

Combining first and second trick ...
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Acceleration via block alternation and metric change

Block coordinate variable metric forward-backward algorithm

(∀ℓ ∈ N), pick a block ̇ℓ ∈ {1, . . . , J}, and update





x
(̇ℓ)
ℓ+1 = prox

γ−1
ℓ

Ȧℓ
(xℓ) , ḟℓ

(
x
(̇ℓ)
ℓ − γℓ Ȧℓ(xℓ)

−1∇̇ℓg(xℓ)
)

x
(ℓ)
ℓ+1 = x

(ℓ)
ℓ

◮ Convergence of (xℓ)ℓ∈N (assuming a quasi cyclic update rule)
established in [Chouzenoux et al. - 2013] for nonconvex functions
f and g verifying Kurdyka- Lojasiewicz assumption.

◮ Benefits from the advantages of both acceleration

techniques!
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Applications



Introduction Proximal-based algorithms Applications Conclusion

Proximal methods: tools for solving inverse problems on a large scale 30/35

Parallel Magnetic Resonance Imaging [Florescu et al. - 2014]

Challenges:

◮ Parallel acquisition and compressive sensing

◮ Complex-valued signals

Results:

Original Proposed method
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Parallel Magnetic Resonance Imaging [Florescu et al. - 2014]

Challenges:

◮ Parallel acquisition and compressive sensing

◮ Complex-valued signals

Results:

 

 

Original Proposed method
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Parallel Magnetic Resonance Imaging [Florescu et al. - 2014]

Challenges:

◮ Parallel acquisition and compressive sensing

◮ Complex-valued signals

Results:
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Phase retrieval [Repetti et al. - ICIP 2014]

Challenges:

◮ Only the modulus of the observed data is available

◮ Non-Fourier measurements

◮ Nonconvex data fidelity term

Results:

re
al

p
ar

t

 

 

SparseFienup Proposed method
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Phase retrieval [Repetti et al. - ICIP 2014]

Challenges:

◮ Only the modulus of the observed data is available

◮ Non-Fourier measurements

◮ Nonconvex data fidelity term

Results:
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Phase retrieval [Repetti et al. - ICIP 2014]

Challenges:

◮ Only the modulus of the observed data is available

◮ Non-Fourier measurements

◮ Nonconvex data fidelity term

Results:
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Blind deconvolution of video [Abboud et al. - EUSIPCO 2014]

Challenges:

◮ The degradation blur operator is unknown

◮ Nonconvex data fidelity term

Results:

Observed Restored
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Blind deconvolution of video [Abboud et al. - EUSIPCO 2014]

Challenges:

◮ The degradation blur operator is unknown

◮ Nonconvex data fidelity term

Results:
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Multi-channel image restoration [Chierchia et al. - 2014]

Challenges:

◮ Deal with images having a large number of components
◮ Circumvent the choice of regularization parameters by

introducing suitable nonlocal constraints
◮ Develop epigraphical techniques to address these constraints

efficiently
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Multi-channel image restoration [Chierchia et al. - 2014]

Challenges:

◮ Deal with images having a large number of components
◮ Circumvent the choice of regularization parameters by

introducing suitable nonlocal constraints
◮ Develop epigraphical techniques to address these constraints

efficiently
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Conclusion

X Proximal-based algorithms: An efficient tool for solving large
scale possibly difficult optimization problem;

X Two recipes for accelerating the algorithms:

◮ Majoration-Minimization strategy
◮ Block alternation

X No need to invert large size matrices through primal-dual
forward-backward based methods;

X Parallel implementations possible thanks to splitting
techniques.

Future challenges: Find more tricks!
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Thank you ! Questions ?
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E. Chouzenoux, J.-C. Pesquet and A. Repetti.
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Tech. Rep., 2013. Available on
http://www.optimization-online.org/DB HTML/2013/12/4178.html.

A. Florescu, E. Chouzenoux, J.-C. Pesquet, P. Ciuciu and S. Ciochina.
A Majorize-Minimize Memory Gradient Method for Complex-Valued Inverse

Problems.
Signal Processing, Vol. 103, pages 285-295, 2014.
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Accepted to EUSIPCO 2014.
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