1/30

An Overview of Stochastic Methods for Solving Optimization Problems

Émilie Chouzenoux

Laboratoire d'Informatique Gaspard Monge - CNRS Univ. Paris-Est Marne-la-Vallée, France

26 Nov. 15

Introduction •000	Fundamental tools in convex analysis	Stochastic problem	Batch problem	Conclusion 00
GDR ISIS				2/30

Introduction

where $j \in \mathbb{N}^*$, $h_j \in \mathbb{R}^N$, $y_j \in \mathbb{R}$, $\varphi_j : \mathbb{R} \times \mathbb{R} \to] - \infty, +\infty]$ is a loss function, and $g \circ D$ is a regularization function, with $g : \mathbb{R}^P \to] - \infty, +\infty]$ and $D \in \mathbb{R}^{P \times N}$.

	000	0000000000	CONClusion
GDR ISIS		 	2/30

Introduction

STOCHASTIC PROBLEM $\begin{array}{c} \underset{\boldsymbol{x} \in \mathbb{R}^{N}}{\text{minimize}} \quad \mathbb{E}(\varphi_{j}(\boldsymbol{h}_{j}^{\top}\boldsymbol{x},y_{j})) + g(\boldsymbol{D}\boldsymbol{x}) \end{array}$

where $j \in \mathbb{N}^*$, $h_j \in \mathbb{R}^N$, $y_j \in \mathbb{R}$, $\varphi_j : \mathbb{R} \times \mathbb{R} \to] - \infty, +\infty]$ is a loss function, and $g \circ D$ is a regularization function, with $g : \mathbb{R}^P \to] - \infty, +\infty]$ and $D \in \mathbb{R}^{P \times N}$.

where, for all $i \in \{1, ..., M\}$, $\varphi_i \colon \mathbb{R} \times \mathbb{R} \to]-\infty, +\infty]$, $h_i \in \mathbb{R}^N$ and $y_i \in \mathbb{R}$.

Introduction	Fundamental tools in convex analysis	Stochastic problem	Batch problem	Conclusion
GDR ISIS				3/30

Link between stochastic and batch problems

STOCHASTIC PROBLEM

 $j \in \mathbb{N}^*$ is deterministic, $(\forall i \in \{2, \dots, M\}) \varphi_i = \varphi_1,$ and $(\mathbf{h}_j)_{j \ge 1}, (y_j)_{j \ge 1}$ are i.i.d random variables.

BATCH PROBLEM

Introduction	Fundamental tools in convex analysis	Stochastic problem	Batch problem	Conclusion
0000	000000	0000000	000000000	00
GDR ISIS				3/30

Link between stochastic and batch problems

STOCHASTIC PROBLEM

y and H are deterministic,

and j is uniformly distributed

over $\{1, \ldots, M\}$.

BATCH PROBLEM

Introduction	Fundamental tools in convex analysis	Stochastic problem	Batch problem	Conclusion
0000	000000	0000000	0000000000	00
GDR ISIS				4/30

Introduction

NUMEROUS EXAMPLES:

- supervised classification
- inverse problems
- system identification, channel equalization
- linear prediction/interpolation
- echo cancellation, interference removal

► ...

In the context of large scale problems, how to find an optimization algorithm able to deliver a reliable numerical solution in a reasonable time, with low memory requirement?

Introduction	Fundamental tools in convex analysis	Stochastic problem	Batch problem	Conclusion 00
GDR ISIS				5/30

* FUNDAMENTAL TOOLS IN CONVEX ANALYSIS

- * OPTIMIZATION ALGORITHMS FOR SOLVING STOCHASTIC PROBLEM
 - Stochastic forward-backward algorithm
 - A brief focus on sparse adaptive filtering
- * STOCHASTIC ALGORITHMS FOR SOLVING BATCH PROBLEM
 - Incremental gradient algorithms
 - Block coordinate approaches

0000	●00000	0000000	0000000000	00
GDR ISIS				6/30

Fundamental tools in convex analysis

Introduction	Fundamental tools in convex analysis	Stochastic problem	Batch problem	Conclusion 00
GDR ISIS				7/30

Notation and definitions

Let $f \colon \mathbb{R}^N \to]-\infty, +\infty].$

• The domain of function f is

$$\mathsf{dom}\, f = \left\{ oldsymbol{x} \in \mathbb{R}^N \mid f(oldsymbol{x}) < +\infty
ight\}$$

If dom $f \neq \emptyset$, function f is said to be proper.

► Function *f* is convex if

$$\begin{aligned} (\forall (\boldsymbol{x}, \boldsymbol{y}) \in (\mathbb{R}^N)^2) (\forall \lambda \in [0, 1]) \\ f(\lambda \boldsymbol{x} + (1 - \lambda) \boldsymbol{y}) \leqslant \lambda f(\boldsymbol{x}) + (1 - \lambda) f(\boldsymbol{y}). \end{aligned}$$

► Function *f* is lower semi-continuous (lsc) on \mathbb{R}^N if, for all $x \in \mathbb{R}^N$, for all sequence $(x_k)_{k \in \mathbb{N}}$ of \mathbb{R}^N ,

 $\boldsymbol{x}_k \longrightarrow \boldsymbol{x} \quad \Rightarrow \quad \liminf f(\boldsymbol{x}_k) \geq f(\boldsymbol{x}).$

Introduction	Fundamental tools in convex analysis	Stochastic problem	Batch problem	Conclusion
0000	00000	0000000	0000000000	00
GDR ISIS				8/30

Notation and definitions

Let
$$f : \mathbb{R}^N \to] - \infty, +\infty]$$
. Function f is said ν -strongly convex if
 $(\forall (x, y) \in (\mathbb{R}^N)^2)(\forall \lambda \in [0, 1])$
 $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y) - \frac{1}{2}\nu\lambda(1 - \lambda)||x - y||^2,$
with $\nu \in]0, +\infty[$.

	0000000000	00
GDR ISIS		8/30

Notation and definitions

Let
$$f : \mathbb{R}^N \to] - \infty, +\infty]$$
. Function f is said ν -strongly convex if
 $(\forall (x, y) \in (\mathbb{R}^N)^2)(\forall \lambda \in [0, 1])$
 $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y) - \frac{1}{2}\nu\lambda(1 - \lambda)||x - y||^2,$
with $\nu \in]0, +\infty[$.

Let $f: \mathbb{R}^N \to]-\infty, +\infty[$. Function f is said β -Lipschitz differentiable if it is differentiable over \mathbb{R}^N and its gradient fulfills

$$(\forall (\boldsymbol{x}, \boldsymbol{y}) \in (\mathbb{R}^N)^2) \quad \|\nabla f(\boldsymbol{x}) - \nabla f(\boldsymbol{y})\| \leqslant \beta \|\boldsymbol{x} - \boldsymbol{y}\|,$$

with $\beta \in]0, +\infty[$.

Introduction	Fundamental tools in convex analysis	Stochastic problem	Batch problem	Conclusion 00
GDR ISIS				9/30

Subdifferential

The subdifferential of a convex function $f \colon \mathbb{R}^N \to]-\infty, +\infty]$ at x is the set

$$\partial f(\boldsymbol{x}) = \left\{ \boldsymbol{t} \in \mathbb{R}^N \mid (\forall \boldsymbol{y} \in \mathbb{R}^N) \ f(\boldsymbol{y}) \geqslant f(\boldsymbol{x}) + \langle \boldsymbol{t} \mid \boldsymbol{y} - \boldsymbol{x}
angle
ight\}$$

An element t of $\partial f(x)$ is called a subgradient of f at x.

• If f is differentiable at $x \in \mathbb{R}^N$ then $\partial f(x) = \{\nabla f(x)\}$.

Proximity operator

Let $f : \mathbb{R}^N \mapsto]-\infty, +\infty]$ a proper, convex, I.s.c function.

CHARACTERIZATION OF PROXIMITY OPERATOR

$$(\forall \boldsymbol{x} \in \mathbb{R}^N) \quad \widehat{\boldsymbol{y}} = \mathrm{prox}_f(\boldsymbol{x}) \Leftrightarrow \boldsymbol{x} - \widehat{\boldsymbol{y}} \in \partial f(\widehat{\boldsymbol{y}}).$$

The proximity operator $prox_f(x)$ of f at $x \in \mathbb{R}^N$ is the unique vector $\widehat{y} \in \mathbb{R}^N$ such that

$$f(\widehat{\boldsymbol{y}}) + rac{1}{2} \|\widehat{\boldsymbol{y}} - \boldsymbol{x}\|^2 = \inf_{\boldsymbol{y} \in \mathbb{R}^N} f(\boldsymbol{y}) + rac{1}{2} \|\boldsymbol{y} - \boldsymbol{x}\|.$$

Properties of proximal operator

	$f(oldsymbol{x})$	$\operatorname{prox}_f(\boldsymbol{x})$
$egin{array}{c} translation \ oldsymbol{z} \in \mathbb{R}^N \end{array}$	$f(oldsymbol{x} - oldsymbol{z})$	$oldsymbol{z} + \operatorname{prox}_f(oldsymbol{x} - oldsymbol{z})$
quadratic perturbation $\boldsymbol{z} \in \mathbb{R}^N, \alpha > 0, \gamma \in \mathbb{R}$	$f(\boldsymbol{x}) + \alpha \ \boldsymbol{x}\ ^2 / 2 + \langle \boldsymbol{x} \mid \boldsymbol{z} \rangle + \gamma$	$\operatorname{prox}_{\frac{f}{\alpha+1}}\left(\frac{\boldsymbol{x}-\boldsymbol{z}}{\alpha+1}\right)$
scaling $ ho \in \mathbb{R}^*$	$f\left(hooldsymbol{x} ight)$	$\frac{1}{\rho} \operatorname{prox}_{\rho^2 f}(\rho \boldsymbol{x})$
quadratic function $\boldsymbol{L} \in \mathbb{R}^{M \times N}, \gamma > 0, \boldsymbol{z} \in \mathbb{R}^{M}$	$\gamma \ oldsymbol{L} oldsymbol{x} - oldsymbol{z} \ ^2 / 2$	$(\mathrm{Id} + \gamma \boldsymbol{L} \boldsymbol{L}^*)^{-1} (x - \gamma \boldsymbol{L}^* \boldsymbol{z})$
semi-unitary transform $\boldsymbol{L} \in \mathbb{R}^{M \times N}, \boldsymbol{L}\boldsymbol{L}^* = \mu \text{Id}, \mu > 0$	f(Lx)	$\boldsymbol{x} - \mu^{-1} \boldsymbol{L}^* \big(\boldsymbol{x} - \operatorname{prox}_{\mu f} (\boldsymbol{L} \boldsymbol{x}) \big)$
reflexion	$f(-oldsymbol{x})$	$-\operatorname{prox}_f(-\boldsymbol{x})$
separability	$\sum_{i=1}^N arphi_i(x^{(i)}) \ oldsymbol{x} = (x^{(i)})_{1\leqslant i\leqslant N}$	$\left(\mathrm{prox}_{\varphi_i}(x^{(i)})\right)_{1\leqslant i\leqslant N}$
indicator function	$\iota_{C}({m{x}})$	$P_{C}(\boldsymbol{x})$
support function	$\iota_{C}^*(\boldsymbol{x}) = \sigma_{C}(\boldsymbol{x})$	$oldsymbol{x} - P_{C}(oldsymbol{x})$

Introduction	Fundamental tools in convex analysis	Stochastic problem	Batch problem	Conclusion
GDR ISIS				12/30

Optimization algorithms for solving stochastic problem

Introduction	Fundamental tools in convex analysis	Stochastic problem	Batch problem	Conclusion 00
GDR ISIS				13/30

Stochastic forward-backward algorithm

STOCHASTIC PROBLEM

$$\underset{\boldsymbol{x} \in \mathbb{R}^N}{\text{minimize}} \ \mathbb{E}(\varphi_j(\boldsymbol{h}_j^{\top}\boldsymbol{x}, y_j)) + g(\boldsymbol{D}\boldsymbol{x})$$

 \Rightarrow At each iteration $j \ge 1$, assume that an estimate u_j of the gradient of $\Phi(\cdot) = \mathbb{E}(\varphi_j(\boldsymbol{h}_j^\top, y_j))$ at \boldsymbol{x}_j is available.

Introduction	Fundamental tools in convex analysis	Stochastic problem	Batch problem	Conclusion 00
GDR ISIS				13/30

Stochastic forward-backward algorithm

STOCHASTIC PROBLEM

$$\min_{\boldsymbol{x} \in \mathbb{R}^N} \mathbb{E}(\varphi_j(\boldsymbol{h}_j^\top \boldsymbol{x}, y_j)) + g(\boldsymbol{D}\boldsymbol{x})$$

 \Rightarrow At each iteration $j \ge 1$, assume that an estimate u_j of the gradient of $\Phi(\cdot) = \mathbb{E}(\varphi_j(h_j^\top, y_j))$ at x_j is available.

The SFB algorithm reads:

$$(\gamma_j)_{j \ge 1} \in]0, +\infty[, (\lambda_j)_{j \ge 1} \in]0, 1]$$

for $j = 1, 2, ...$
 $\begin{bmatrix} \boldsymbol{z}_j = \operatorname{prox}_{\gamma_j g \circ \boldsymbol{D}} \left(\boldsymbol{x}_j - \gamma_j \boldsymbol{u}_j \right) \\ \boldsymbol{x}_{j+1} = (1 - \lambda_j) \boldsymbol{x}_j + \lambda_j \boldsymbol{z}_j \end{bmatrix}$

When g ≡ 0, the stochastic gradient descent (SGD) algorithm is recovered.

Introduction 0000	Fundamental tools in convex analysis	Stochastic problem	Batch problem	Conclusion 00
GDR ISIS				14/30

Convergence theorem [Rosasco et al., 2014]

Let $F \neq \emptyset$ denote the set of minimizers of $\Phi + g \circ D$. Assume that:

 (i) Φ has a β-Lipschitzian gradient with β ∈]0, +∞[, g is a proper, lower-semicontinuous convex function, and Φ + g ∘ D is strongly convex.

(ii) For every
$$j \ge 1$$
,

$$\mathbb{E}(\{\|\boldsymbol{u}_j\|^2\}) < +\infty, \ \mathbb{E}\{\boldsymbol{u}_j \mid \boldsymbol{\mathcal{X}}_{j-1}\} = \nabla \Phi(\boldsymbol{x}_j), \\ \mathbb{E}\{\|\boldsymbol{u}_j - \nabla \Phi(\boldsymbol{x}_j)\|^2 \mid \boldsymbol{\mathcal{X}}_{j-1}\} \leqslant \sigma^2 (1 + \alpha_j \|\nabla \Phi(\boldsymbol{x}_j)\|^2)$$

where $\mathfrak{X}_j = (y_i, h_i)_{1 \leq i \leq j}$, and α_j and σ are positive values such that $\gamma_j \leq (2 - \epsilon)/(\beta(1 + 2\sigma^2 \alpha_j))$ with $\epsilon > 0$.

(iii) We have

$$\sum_{j \geqslant 1} \lambda_j \gamma_j = +\infty \quad \text{and} \quad \sum_{j \geqslant 1} \chi_j^2 < +\infty$$

where, for every $j \ge 1$, $\chi_j^2 = \lambda_j \gamma_j^2 (1 + 2\alpha_j \|\nabla \Phi(\overline{x})\|^2)$ and $\overline{x} \in F$. Then, $(x_j)_{j\ge 1}$ converges almost surely to an element of F.

Introduction	Fundamental tools in convex analysis	Stochastic problem	Batch problem	Conclusion 00
GDR ISIS				15/30

Bibliographical remarks

RELATED APPROACHES

- Methods relying on subgradient steps [Shalev-Shwartz et al., 2007],
- Regularized dual averaging methods [Xiao, 2010],
- Composite mirror descent methods [Duchi et al., 2010].

What if prox of $g \circ \boldsymbol{D}$ is not simple?

- Stochastic proximal averaging strategy [Zhong et al., 2014],
- ► Conditional gradient (~ Franck-Wolfe) techniques [Lafond, 2015],
- Stochastic ADMM [Ouyang et al., 2013],
- Block alternating strategy [Xu et al., 2014],
- Stochastic proximal primal-dual methods (also for varying g) [Combettes et al., 2015].

HOW TO ACCELERATE CONVERGENCE?

- Subspace acceleration techniques [Hu et al., 2009][Atchadé et al., 2014],
- Preconditioning techniques [Duchi et al., 2011],
- Mixing both strategies (smooth case) [Chouzenoux et al., 2014].

Introduction	Fundamental tools in convex analysis	Stochastic problem	Batch problem	Conclusion 00
GDR ISIS				16/30

A brief focus on sparse adaptive filtering

 $\Rightarrow \text{Previous stochastic problem, with } (\forall j \ge 1) \, \varphi_j(\mathbf{h}_j^\top \boldsymbol{x}, \mathsf{y}_j) = (\mathbf{h}_j^\top \boldsymbol{x} - \mathsf{y}_j)^2.$

Introduction	Fundamental tools in convex analysis	Stochastic problem	Batch problem	Conclusion 00
GDR ISIS				16/30

A brief focus on sparse adaptive filtering

⇒ Previous stochastic problem, with $(\forall j \ge 1) \varphi_j(\mathbf{h}_j^\top \boldsymbol{x}, \mathbf{y}_j) = (\mathbf{h}_j^\top \boldsymbol{x} - \mathbf{y}_j)^2$.

EXISTING WORKS IN CASE OF SPARSE PRIOR:

- Proportionate least mean square methods (~ Preconditioned SGD) [Paleologu et al., 2010],
- * Zero-attracting algorithms (~ subgradient descent) [Chen et al, 2010],
- Proximal-like algorithms: SFB [Yamagashi et al., 2011] or primal-dual approach [Ono et al., 2013],
- * Penalized versions of recursive least squares [Angelosante et al., 2011],
- * Over-relaxed projection algorithms [Kopsinis et al., 2011],
- ∗ Time-varying filters → affine projection strategy (~ mini-batch in machine learning) [Markus *et al.*, 2014].

Introduction	Fundamental tools in convex analysis	Stochastic problem	Batch problem	Conclusion 00
GDR ISIS				17/30

Simulation results

- x: Time-variant linear system with 200 sparse coefficients,
- h: Input sequence of 5000 random independent variables uniformly distributed on $\{-1, +1\}$,
- w: White Gaussian noise with zero mean and variance 0.05.

Introduction	Fundamental tools in convex analysis	Stochastic problem	Batch problem	Conclusion 00
GDR ISIS				17/30

Simulation results

- x: Time-variant linear system with 200 sparse coefficients,
- h: Input sequence of 5000 random independent variables uniformly distributed on $\{-1, +1\}$,
- w: White Gaussian noise with zero mean and variance 0.05.

Introduction	Fundamental tools in convex analysis	Stochastic problem 000000●	Batch problem	Conclusion
GDR ISIS				18/30

Estimation error along time, for various sparse adaptive filtering strategies

- The parameters of each tested method (forgetting factor, stepsize, regularization weight, affine projection blocksize) are optimized manually,
- The Stochastic Majorize-Minimize Memory gradient (S3MG) algorithm from [Chouzenoux et al., 2014] leads to a minimal estimation error, while benefiting from good tracking properties.

Introduction	Fundamental tools in convex analysis	Stochastic problem	Batch problem •000000000	Conclusion
GDR ISIS				19/30

Stochastic algorithms for solving batch problem

Introduction	Fundamental tools in convex analysis	Stochastic problem	Batch problem	Conclusion 00
GDR ISIS				20/30

Incremental gradient algorithms

BATCH PROBLEM

$$\underset{\boldsymbol{x} \in \mathbb{R}^{N}}{\text{minimize}} \ \frac{1}{M} \sum_{i=1}^{M} \varphi_{i}(\boldsymbol{h}_{i}^{\top} \boldsymbol{x}, y_{i}) + g(\boldsymbol{D} \boldsymbol{x})$$

⇒ At each iteration $n \ge 0$, some $j_n \in \{1, ..., M\}$ is randomly chosen, and only the gradient of $\varphi_{j_n}(\mathbf{h}_{j_n}^\top, y_{j_n})$ at \boldsymbol{x}_n is computed.

Introduction 0000	Fundamental tools in convex analysis	Stochastic problem	Batch problem	Conclusion 00
GDR ISIS				20/30

Incremental gradient algorithms

BATCH PROBLEM

$$\min_{\boldsymbol{x} \in \mathbb{R}^N } \frac{1}{M} \sum_{i=1}^M \varphi_i(\boldsymbol{h}_i^\top \boldsymbol{x}, y_i) + g(\boldsymbol{D} \boldsymbol{x})$$

 \Rightarrow At each iteration $n \ge 0$, some $j_n \in \{1, \dots, M\}$ is randomly chosen, and only the gradient of $\varphi_{j_n}(\mathbf{h}_{j_n}^\top, y_{j_n})$ at \mathbf{x}_n is computed.

For instance, the SAGA algorithm [Defazio et al., 2014] reads:

$$\begin{split} \gamma \in &]0, +\infty[, \text{ and } (\forall i \in \{1, \dots, M\}) \boldsymbol{z}_{i,0} = \boldsymbol{x}_0 \in \mathbb{R}^N. \\ \text{for } n = 0, 1, \dots \\ & \\ & \\ \mathbf{select randomly } j_n \in \{1, \dots, M\}, \\ & \\ & \\ \boldsymbol{u}_n = \boldsymbol{h}_{j_n} \nabla \varphi_{j_n} (\boldsymbol{h}_{j_n}^\top \boldsymbol{x}_n, y_{j_n}) - \boldsymbol{h}_{j_n} \nabla \varphi_{j_n} (\boldsymbol{h}_{j_n}^\top \boldsymbol{z}_{j_n, n}, y_{j_n}) \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ \boldsymbol{x}_{n+1} = \operatorname{prox}_{\gamma g \circ \boldsymbol{D}} \left(\boldsymbol{x}_n - \gamma \boldsymbol{u}_n \right) \\ & \\ & \\ & \\ & \\ & \\ & \boldsymbol{z}_{j_n, n+1} = \boldsymbol{x}_{n+1}, \text{ and } (\forall i \in \{1, \dots, M\}) \, \boldsymbol{z}_{i, n+1} = \boldsymbol{z}_{i, n} \end{split}$$

Introduction	Fundamental tools in convex analysis	Stochastic problem	Batch problem	Conclusion
GDR ISIS				21/30

Convergence theorem [Defazio et al., 2014]

Let $\Phi(\cdot) = \frac{1}{M} \sum_{i=1}^{M} \varphi_i(\boldsymbol{h}_i^\top \cdot, y_i)$. Denote by $\mathsf{F} \neq \emptyset$ the set of minimizers of $\Phi + g \circ \boldsymbol{D}$. If:

- (i) Φ is convex, β -Lipschitz differentiable on \mathbb{R}^N , and g is proper, lower-semicontinuous convex on \mathbb{R}^N ,
- (ii) For every $n \in \mathbb{N}$, j_n is drawn from an i.i.d. uniform distribution on $\{1, \ldots, M\}$,

Then, for
$$\gamma=1/3\beta,$$
 for $n\in\mathbb{N}^*,$

$$\begin{split} & \operatorname{E}\left((\Phi + g \circ \boldsymbol{D})(\boldsymbol{\overline{x}}_n)\right) - (\Phi + g \circ \boldsymbol{D})(\boldsymbol{\widehat{x}}) \leqslant \frac{4M}{n} \left(\frac{2\beta}{M} \|\boldsymbol{x}_0 - \boldsymbol{\widehat{x}}\|^2 \right. \\ & \left. + \Phi(\boldsymbol{x}_0) - \nabla \Phi(\boldsymbol{\widehat{x}})^\top (\boldsymbol{x}_0 - \boldsymbol{\widehat{x}}) - \Phi(\boldsymbol{\widehat{x}}) \right) \end{split}$$

where $\widehat{x} \in \mathsf{F}$ and $\overline{x}_n = \frac{1}{n} \sum_{j=1}^n x_j$.

If, additionally, Φ is ν -strongly convex then, for $\gamma = 1/(2(\nu M + \beta))$,

$$\begin{split} \mathrm{E}\left(\|\boldsymbol{x}_n-\widehat{\boldsymbol{x}}\|^2\right) \leqslant \left(1-\frac{\nu}{\gamma}\right)^n \left(\|\boldsymbol{x}_0-\widehat{\boldsymbol{x}}\|^2+2\gamma M(\Phi(\boldsymbol{x}_0)-\nabla\Phi(\widehat{\boldsymbol{x}})^\top(\boldsymbol{x}_0-\widehat{\boldsymbol{x}})-\Phi(\widehat{\boldsymbol{x}}))\right). \end{split}$$

Introduction 0000	Fundamental tools in convex analysis	Stochastic problem	Batch problem	Conclusion
GDR ISIS				22/30

Bibliographical remarks

\Rightarrow Links between stochastic incremental methods existing in the literature:

Algorithm	GENERAL IDEA	PROS/CONS	Refs
Standard incremen- tal gradient	$\boldsymbol{u}_n = \boldsymbol{h}_{j_n} \nabla \varphi_{j_n} (\boldsymbol{h}_{j_n}^\top \boldsymbol{x}_n, y_{j_n})$	simplicity / decreas- ing stepsize required	[Bertsekas, 2010]
Variance reduction approaches (SVRG / mSGD)	At every $K \geqslant 0$ iterations, perform a full gradient step (~ mini-batch strategy)	reduced memory / more gradient evalu- ations	[Konečný, 2014], [Johnson <i>et al</i> , 2014]
Gradient averaging (SAG / SAGA)	Factor $1/M$ in front of gradient difference term	lower variance / in- creasing bias (in gra- dient estimates)	[Schmidt <i>et al</i> , 2014], [Defazio <i>et</i> <i>al</i> , 2014]
Proximal averaging (FINITO)	$egin{aligned} & m{x}_{n+1} = \mathrm{prox}_{\gamma g \circ D} \Big(\overline{m{z}}_n - \gamma m{u}_n \Big) \ \mathrm{with} \ & \overline{m{z}}_n \ \mathrm{average} \ \mathrm{of} \ (m{z}_{i,n})_{1 \leqslant i \leqslant M} \end{aligned}$	extra storage cost / less gradient evalua- tions	[Defazio et al., 2014]
Majorization- Minimization (MISO)	$\begin{array}{c} \pmb{x}_{n+1} \text{ minimizer of a majorant function of} \\ \varphi_{j_n}(\pmb{h}_{j_n}^\top \cdot, y_{j_n}) + g \circ \pmb{D} \text{ at } \overline{\pmb{z}}_n \end{array}$	extra storage cost / less gradient evalua- tions	[Mairal, 2015]

Introduction	Fundamental tools in convex analysis	Stochastic problem	Batch problem	Conclusion 00
GDR ISIS				23/30

Block coordinate approaches

► Idea: variable splitting.

Assumption: $g(\mathbf{D}\mathbf{x}) = \sum_{k=1}^{K} g_{1,k}(\mathbf{x}_k) + g_{2,k}(\mathbf{D}_k\mathbf{x}_k)$ where, for every $k \in \{1, \ldots, K\}, \mathbf{D}_k \in \mathbb{R}^{P_k \times N_k}$.

Introduction	Fundamental tools in convex analysis	Stochastic problem	Batch problem 00000€0000	Conclusion
GDR ISIS				24/30

Stochastic primal-dual proximal algorithm [Pesquet et al., 2015]

$$\tau \in]0, +\infty[, \gamma \in]0, +\infty[,$$

for $n = 1, 2, ..., K$
for $k = 1, 2, ..., K$
with probability $\varepsilon_k \in]0, 1]$ do
 $\boldsymbol{v}_{k,n+1} = (\mathrm{Id} - \mathrm{prox}_{\tau^{-1}g_{2,k}})(\boldsymbol{v}_{k,n} + \boldsymbol{D}_k \boldsymbol{x}_{k,n})$
 $\boldsymbol{x}_{k,n+1} = \mathrm{prox}_{\gamma g_{1,k}} \left(\boldsymbol{x}_{k,n} - \gamma \left(\tau \boldsymbol{D}_k^\top (2\boldsymbol{v}_{k+1,n} - \boldsymbol{v}_{k,n}) + \frac{1}{M} \sum_{i=1}^M \boldsymbol{h}_{i,k} \nabla \varphi_i (\sum_{k'=1}^K \boldsymbol{h}_{i,k'}^\top \boldsymbol{x}_{k',n}, y_i) \right) \right)$
otherwise
 $\boldsymbol{v}_{k,n+1} = \boldsymbol{v}_{k,n}, \ \boldsymbol{x}_{k,n+1} = \boldsymbol{x}_{k,n}.$

- ▶ When $g_{2,k} \equiv 0$, the random block coordinate forward-backward algorithm is recovered [Combettes *et al.*, 2015],
- When g_{1,k} ≡ 0 and g_{2,k} ≡ 0, the random block coordinate descent algorithm is obtained [Nesterov, 2012].

Introduction	Fundamental tools in convex analysis	Stochastic problem	Batch problem oooooo●ooo	Conclusion
GDR ISIS				25/30

Convergence theorem [Pesquet et al., 2015]

Set, for every $n \in \mathbb{N}^*$, $\mathfrak{X}_n = (\mathbf{x}_{n'}, \mathbf{v}_{n'})_{1 \leq n' \leq n}$. Let $\mathsf{F} \neq \emptyset$ denote the set of minimizers of $\Phi + g \circ \mathbf{D}$. Assume that:

- (i) Φ is convex, β -Lipschitz differentiable on \mathbb{R}^N , g is lower-semicontinuous convex on \mathbb{R}^N ,
- (ii) The blocks activation is performed at each iteration n independently of \mathfrak{X}_n , with positive probabilities $(\varepsilon_1, \ldots, \varepsilon_K)$,

(iv) The primal and dual stepsizes
$$(\tau, \gamma)$$
 satisfy $\frac{1}{\tau} - \gamma \max_{1 \leq k \leq K} \|\boldsymbol{D}_k\|^2 > \frac{\beta}{2}$,

Then, $(x_n)_{n\in\mathbb{N}^*}$ converges weakly almost surely to an F-valued random variable.

Introduction 0000	Fundamental tools in convex analysis	Stochastic problem	Batch problem	Conclusion 00
GDR ISIS				26/30

Bibliographical remarks

CONVERGENCE ANALYSIS

- Almost sure convergence [Pesquet et al., 2015],
- Worst case convergence rates [Richtarik et al., 2014] [Necoara et al., 2014] [Lu et al., 2015].

VARIANTS OF THE METHOD

- Improved convergence conditions in some specific cases [Fercoq et al., 2015],
- Dual ascent strategies in the strongly convex case (~ dual forward-backward) [Shalev-Shwartz et al., 2014] [Jaggi et al., 2014] [Qu et al., 2014],
- Douglas-Rachford/ADMM approaches [Combettes et al., 2015] [lutzeler et al., 2013],
- Asynchronous distributed algorithms [Pesquet *et al.*, 2014] [Bianchi *et al.*, 2014].

 \Rightarrow Dual ascent strategies and asynchronous distributed methods are closely related to **incremental gradient algorithms**.

Introduction 0000	Fundamental tools in convex analysis	Stochastic problem	Batch problem	Conclusion
GDR ISIS				27/30

Simulation results

Original mesh, N = 100250.

Goal: Restore the nodes positions of an original mesh corrupted through an additive i.i.d. zero-mean Gaussian mixture noise model,

Limited memory available \Rightarrow The mesh is decomposed into K/r non-overlapping blocks with size $r \leq K$, and ϵ is such that only one block is updated at each iteration.

Introduction	Fundamental tools in convex analysis	Stochastic problem	Batch problem 000000000●	Conclusion
GDR ISIS				28/30

► Reconstruction results using the stochastic primal-dual proximal algorithm for 3D mesh denoising from [Repetti *et al.*, 2015]:

Proposed reconstruction

 $\text{MSE} = 8.09 \times 10^{-8}$

Laplacian smoothing MSE = 5.23×10^{-7}

Introduction	Fundamental tools in convex analysis	Stochastic problem	Batch problem ○○○○○○○○●	Conclusion 00
GDR ISIS				28/30

► Reconstruction results using the stochastic primal-dual proximal algorithm for 3D mesh denoising from [Repetti *et al.*, 2015]:

Memory requirement, and computation time, for different number of blocks.

Introduction 0000	Fundamental tools in convex analysis	Stochastic problem	Batch problem	Conclusion ●○
GDR ISIS				29/30
Conclu	sion			

Introduction	Fundamental tools in convex analysis	Stochastic problem	Batch problem	Conclusion 0
GDR ISIS				30/30

M. Pereyra, P. Schniter, E. Chouzenoux, J.-C. Pesquet, J.-Y. Tourneret, A. O. Hero and S. McLaughlin.

A Survey of Stochastic Simulation and Optimization Methods in Signal Processing.

To appear in IEEE Journal of Selected Topics in Signal Processing. Available at http://arxiv.org/abs/1505.00273

P. Combettes and J.-C Pesquet

Stochastic Quasi-Fejér Block-Coordinate Fixed Point Iterations with Random Sweeping SIAM Journal on Optimization, 25(2), pp. 1221-1248, 2015.

J.-C. Pesquet and A. Repetti

A Class of Randomized Primal-Dual Algorithms for Distributed Optimization to appear in *Journal of Nonlinear and Convex Analysis*, 2015.

A. Repetti, E. Chouzenoux and J.-C. Pesquet

A Random Block-Coordinate Primal-Dual Proximal Algorithm with Application to 3D Mesh Denoising IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2015), pp. 3561-3565, Brisbane, Australia, Apr. 19-24, 2015.

E. Chouzenoux, J.-C. Pesquet and A. Florescu.

A Stochastic 3MG Algorithm with Application to 2D Filter Identification European Signal Processing Conference (EUSIPCO 2014), pp. 1587-1591, Lisboa, Portugal, 1-5 Sept. 2014.