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ABSTRACT

Many signal and image estimation problems such as
maximum entropy reconstruction and positron emission
tomography, require the minimization of a criterion con-
taining a barrier function i.e., an unbounded function
at the boundary of the feasible solution domain. This
function has to be carefully handled in the optimiza-
tion algorithm. When an iterative descent method is
used for the minimization, a search along the line sup-
ported by the descent direction is usually performed at
each iteration. However, standard line search strategies
tend to be inefficient in this context. In this paper, we
propose an original line search algorithm based on the
majorize-minimize principle. A tangent majorant func-
tion is built to approximate a scalar criterion containing
a barrier function. This leads to a simple line search en-
suring the convergence of several classical descent opti-
mization strategies, including the most classical variants
of nonlinear conjugate gradient. The practical efficiency
of the proposal scheme is illustrated by means of two ex-
amples of signal and image reconstruction.

1. INTRODUCTION

The solution of several problems in signal and image es-
timation involves the minimization of a criterion F in
the strictly feasible domain C defined by some concave
inequalities ci(x) > 0, i = 1, . . . , N . These constraints
are implicitly taken into account when F contains a bar-
rier function, which makes the criterion unbounded at
the boundary of C so that its minimizers belong to C.
For example, the minimizer of F (x) = F0(x)−∑

i log xi

is strictly positive because of the unboundness of the
logarithmic function at the neighborhood of zero.

This property is used by interior point methods [13]
to minimize F0(x) subject to ci(x) > 0 , a barrier func-
tion B being artificially introduced to keep the solution
inside the feasible domain. The augmented criterion can
be expressed as Fµ(x) = F0(x) + µB(x), where µ > 0
is the barrier parameter and B is the barrier function
associated to the constraints ci(x) > 0. For instance,
B(x) = −∑

i log(ci(x)). The minimization of Fµ must
be performed for a sequence of parameter values µ that
decreases to 0. This method can be applied to sparse
signal reconstruction and compressed sensing [4] as il-
lustrated in section 4.

The barrier term can also be part of the criterion
itself such as in maximum entropy terms and Poissonian
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log-likelihoods. For instance, let us consider the inverse
problem of recovering a signal or an image x from a set
of noisy observations y, where the measurement process
is represented by the linear model y = Hx + ǫ with H
is a known matrix and ǫ a noise term. An estimate of
x can be obtained as the minimizer of a cost function
F depending on the noise statistics and on the desired
solution properties.

In the case of a Gaussian likelihood, maximum
entropy reconstruction [6, 12] consists in minimizing

F (x) = ‖y − Hx‖2

2
+ λS(x) where λ is the regular-

ization parameter and S(x) is an entropy term such as

S(x) =

{ ∑

i xi log xi Shannon entropy

−∑

i log xi Burg entropy

In both cases, S acts not only as a regularization func-
tion but also as a barrier function for positivity con-
straints. In the case of Shannon entropy, although S
remains bounded in the nonnegative orthant, positivity
is enforced by the unboundness of the norm of ∇S(x)
for small positive values of x.

In a penalized Poissonian likelihood case, the crite-
rion to minimize reads F (x) = L(y,Hx)+λR(x), where
R is the penalization function and L is the fidelity to
data term defined as

L(y,Hx) =
∑

m

[Hx]m − ym log([Hx]m). (1)

The logarithmic term in L plays the role of a barrier
function ensuring the positivity of [Hx]m. In section 4,
we will consider an emission tomography problem [11]
that calls for the minimization of this criterion form.

The aim of this paper is to address optimization
problems that read

min
x

(F (x) = P (x) + µB(x)) , µ > 0 (2)

where P is a differentiable function and B is a differen-
tiable barrier function ensuring the fulfillment of some
linear constraints [Ax]i + ρi > 0.

Many optimization algorithms are based on itera-
tively decreasing the criterion by moving the current
solution xk along a direction dk,

xk+1 = xk + αkdk, (3)

where αk > 0 is the stepsize and dk is a descent direction
i.e., satisfying ∇F (xk)T dk < 0. In practice, such itera-
tive descent direction methods consist in alternating the
following steps
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1. Construction of dk: the direction depends on the
gradient of the criterion at the current value xk.
More elaborate methods also involve the Hessian ma-
trix (e.g., Newton, Quasi-Newton) or also depend on
the previous descent directions (e.g., conjugate gra-
dient methods, L-BFGS).

2. Determination of αk (line search): the value of αk is
obtained by minimizing the scalar function f(α) =
F (xk + αdk).

However, the barrier function causes the inefficiency of
standard line search strategies [8]. In the next section
we propose an original line search procedure based on
the majorize-minimize (MM) principle [2] by deriving
an adequate form of a tangent majorant function well
suited to approximate a criterion containing a barrier
function.

2. LINE SEARCH STRATEGIES

2.1 Problem statement

According to Wolfe conditions, αk is acceptable if there
exists (c1, c2) ∈ (0; 1) such that

F (xk + αkdk) 6 F (xk) + c1αkgT
k dk (4)

|∇F (xk + αkdk)T dk| 6 c2|gT
k dk| (5)

where gk , ∇F (xk). There exist several strategies [10]
for finding such an acceptable stepsize: exact minimiza-
tion of f(α), backtracking or more generally dichotomy,
approximation of f(α) using a cubic interpolating func-
tion [7, 10] or approximation of f(α) by a quadratic
function [5]. However, the barrier term B(x) implies
that f(α) tends to infinity when α is equal to the
smallest positive step ᾱ cancelling some constraint at
x + ᾱd. Consequently, we must ensure that during the
line search, the step values remain in the interval [0; ᾱ)
since the function f is undefined for α > ᾱ. Moreover,
due to the vertical asymptote at ᾱ, methods using cu-
bic interpolations or quadratic approximations are not
suited [8].

Some line search strategies adapted to barrier func-
tion optimization have been proposed in [8]. They make
use of specific interpolating functions accounting for the
barrier term in f(α). Unfortunately, the resulting al-
gorithms are not often used in practice, probably be-
cause the proposed interpolating functions are difficult
to compute. In contrast, our approach is not based on
interpolation, but rather on majorization, with a view
to devise a simple line search strategy with strong con-
vergence properties.

2.2 MM algorithms

In MM algorithms [2, 3], the minimization of a function
f is obtained by performing successive minimizations of
tangent majorant functions for f . Function h(u,v) is
said tangent majorant for f(u) at v if h(u,v) > f(u)
and h(v,v) = f(v). The initial optimization problem
is then replaced by a sequence of easier subproblems,
corresponding to the MM update rule

uj+1 = arg min
u

h(u,uj).

Recently, a line search procedure based on an MM
algorithm has been introduced [5]. In this strategy, the
stepsize value αk results from J successive minimiza-
tions of quadratic tangent majorant functions for the
scalar function f(α). The convergence of a family of
non-linear conjugate gradient methods associated to this
line search strategy is proved in [5] whatever the value
of J . However, since the function f(α) resulting from
problem (2) is unbounded, there is no quadratic that
majorizes f(α) in the whole definition domain of α. Ac-
tually, it would be sufficient to majorize f(α) within the
level set Lk = {α, F (xk + αdk) 6 F (xk)} but this set
is difficult to determine or even to approximate.

2.3 A new tangent majorant for MM line search

Instead of a quadratic, we propose the following form of
tangent majorant function:

h(α) = p0 + p1α+ p2α
2 − p3 log(ᾱ− α), (6)

which is reminiscent of interpolation functions proposed
in [8, 9]. According to MM theory, the stepsize αk is
defined by

α0
k = 0,

αj+1

k = arg min
α

hj
k(α, αj

k), j = 0, . . . , J − 1,

αk = αJ
k ,

(7)

where hj
k(α, αj

k) is the tangent majorant function

hj
k(α,αj

k) = f(αj
k) + (α− αj

k)ḟ(αj
k) +

1

2
mj

k(α− αj
k)2

+ γj
k

[

(ᾱk − αj
k) log

( ᾱk − αj
k

ᾱk − α

)

− α+ αj
k

]

(8)

which depends on two parameters mj
k, γ

j
k. It is easy to

check that hj
k(α, α) = f(α) for all α. There remains to

find values of mj
k, γ

j
k such that hj

k(α, αj
k) > f(α) holds

for all α ∈ [0; ᾱk).
In [1], the case of a logarithmic barrier associated

with linear inequality constraints

B(x) = −
∑

i

ti log([Ax]i + ρi), µ, ti > 0,

is dealt with (Figure 1 illustrates a example of scalar
criterion and the obtained majorant). Assuming that
p(α) = P (xk +αdk) is majorized by the quadratic func-
tion

p(αj
k) + (α− αj

k) ṗ(αj
k) +

1

2
mp(α− αj

k)2, (9)

the majorization of f is given by the following property.

Property 1. Let a = Axk + ρ and δ = Adk, so that
f has a barrier located at

ᾱ = min
i|δi<0

−ai/δi. (10)
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Figure 1: Example of a tangent majorant function
h0

k(α, 0) for f(α) = (α− 5)2 −∑10

i=1
log(i−α). h0

k(α, 0)
is defined by (8) with m0

k = 2, γ0
k = 1.55 and ᾱ = 1

If αj
k = 0, let also mj

k = mp + µmb and γj
k = µγb with

mb = b̈1(0) and γb = b̈2(0)ᾱ. Otherwise, let

mb =
b1(0) − b1(α

j
k) + αj

k ḃ1(α
j
k)

(αj
k)2/2

γb =
b2(0) − b2(α

j
k) + αj

k ḃ2(α
j
k)

(ᾱ− αj
k) log(1 − αj

k/ᾱ) + αj
k

(11)

where b1(α) =
∑

i|δi>0
−ti log(ai + αδi) and b2(α) =

∑

i|δi<0
−ti log(ai + αδi). Then, function hj

k(·, αj
k) is a

tangent majorant of f(·)

Moreover, (11) implies mj
k, γ

j
k > 0, so hj

k(·, αj
k) is

strictly convex. Hence, it has a unique minimizer, which
takes an explicit form:

αj+1

k = αj
k +

−A2 +
√

A2
2 − 4A1A3

2A1

, (12)

with A1 = −mj
k, A2 = γj

k − ḟ(αj
k) + mj

k(ᾱ − αj
k) and

A3 = (ᾱ − αj
k)ḟ(αj

k). In such conditions, (7) produces

monotonically decreasing values {f(αj
k)} and the series

{αj
k} converges to a stationnary point of f(α) [2].

3. CONVERGENCE ANALYSIS RESULTS

This section focuses on the convergence of the iterative
scheme (3) where αk is chosen according to our MM
strategy. Only the main results are presented here, while
a detailed analysis can be found in [1]. In the whole
section, dk is assumed to be a descent direction, so that
ḟ(0) = dT

k gk < 0.

3.1 Lower and upper bounds for the stepsize

Property 2. There exists ν > 0 such that

α1
k > −νgT

k dk/ ‖dk‖2
. (13)

Moreover, ∀j > 1, there exist (cmin, cmax
j ) such that

cminα1
k 6 αj

k 6 cmax
j α1

k. (14)

3.2 Wolfe conditions

Given a current solution xk and a current descent direc-
tion dk, the chosen stepsize αk must induce a sufficient
decrease of F . The first Wolfe condition (4) measures
this decrease. It is equivalent to

f(α) − f(0) 6 c1αkḟ(0). (15)

The following result holds.

Property 3. The stepsize (7) fulfills (15) with

c1 = (2cmax
J )

−1 ∈ (0; 1) (16)

On the other hand, it turned out difficult or even
impossible to fulfill the second Wolfe condition (5) for
any value of J . Fortunately, it is easier to show that the
so-called Zoutendijk condition holds, the latter being a
weaker condition that is nonetheless sufficient to lead us
to convergence results.

3.3 Zoutendijk condition

The global convergence of a descent direction method
is non only ensured by a ‘good choice’ of the step but
also by well-chosen search directions dk. Convergence
proofs are often based on the fulfillment of Zoutendijk
condition

∞
∑

k=0

‖gk‖2
cos2 θk <∞, (17)

where θk is the angle between dk and the steepest de-
scent direction −gk,

cos θk = −gT
k dk/(‖gk‖ ‖dk‖). (18)

Inequality (17) implies that cos θk ‖gk‖ vanishes for
large values of k. Moreover, provided that dk is not
orthogonal to −gk (i.e., cos θk > 0), condition (17) im-
plies the convergence of the algorithm in the sense

lim
k→∞

‖gk‖ = 0. (19)

In the case of the proposed line search, the following
result holds [1].

Property 4. Let αk be defined by (7). Then, according
to Properties 2 and 3, Zoutendijk condition (17) holds.

3.4 Convergence of Newton-like methods

The Newton-like methods are defined by the following
recurrence

xk+1 = xk + αkdk,

dk = −B−1

k gk.
(20)

Property 5. Assume that matrices Bk are positive def-
inite for all k and that there exists M > 0 such that

‖Bk‖ ‖B−1

k ‖ 6 M, ∀k. (21)

Algorithm (20) is convergent when αk is defined by (7)
in the sense

lim
k→∞

‖gk‖ = 0. (22)
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This result covers the following classical methods

• Steepest descent: dk = −gk,
• Newton: dk = −∇2F (xk)−1gk in the convex case,
• Quasi Newton (BFGS) in the convex case.

3.5 Convergence of conjugate gradient methods

The nonlinear conjugate gradient algorithm (NLCG) is
defined by the following recurrence

xk+1 = xk + αkdk

dk = −ck sign(gT
k ck)

ck = −gk + βkdk−1

(23)

Property 6. The NLCG algorithm is convergent when
αk is defined by (7) and βk is chosen according to a
classical conjugacy formula such as Polak Ribière Polyak
(PRP), Fletcher Reeves (FR) or Hestenes Stiefel (HS),
in the sense

lim
k→∞

inf ‖gk‖ = 0. (24)

4. APPLICATIONS

We consider here two image/signal processing examples
with the aim to analyse the performances of descent
optimization algorithms when the step size is obtained
by the proposed MM line search procedure.

4.1 Positron emission tomography

The measurements in positron emission tomography
(PET) [11] are modeled as Poisson random variables

y ∼ Poisson(Hx + r) (25)

where the ith entry of x represents the radioisotope con-
centration in pixel i and H is the projection matrix
whose elements Hmi model the contribution of the ith
pixel to themth datapoint. The components of y are the
counts measured by the pairs detectors of and r models
the background events. We consider a simulated exam-
ple using data generated with J.A. Fessler’s code avail-
able at http://www.eecs.umich.edu/~fessler. For
this simulation, we take an object of size 128× 128 pix-
els and assume M = 24924 pairs of detectors.

4.1.1 Objective function

According to the noise statistics, the log-likelihood of
the emission data is

J(x) =
∑

m

(

[Hx]m + rm − ym log([Hx]m + rm)
)

.

A useful penalization aiming at favorizing smoothness
of the estimated image is given by

RHub(x) =
∑

t∈T

ωtψ([Dx]t),

where ψ is the edge preserving potential fonction ψ(u) =√
δ2 + u2 − δ and [Dx]t is the vector of difference be-

tween neighboring pixel intensities. The weights depend

on the relative position of the neighbors: ωt = 1 for ver-
tical and horizontal neighbors and ωt = 1/

√
2 for diago-

nal neighbors. To ensure the positivity of the estimate,
a logarithmic barrier term is added:

RPos(x) = −
N

∑

i=1

log xi. (26)

Finally, the estimated image is the minimizer of the
following objective function

F (x) = J(x) + λ1RHub(x) + λ2RPos(x). (27)

4.1.2 Optimization strategy

The NLCG algorithm with PRP conjugacy is employed
with or without preconditioning. The aim is to com-
pare the performance of the proposed MM line search
with Moré and Thuente’s cubic interpolation procedure
(MT) [7]. The algorithm is initialized with a uniform
positive object and the convergence is checked using the
following stopping rule [10]

‖gk‖∞ < 10−5(1 + |F (xk)|). (28)

The regularization and barrier parameters are set to
λ1 = 10, δ = 0.01 and λ2 = 0.1. This choice leads
to a fairly acceptable reconstructed image quality.

4.1.3 Results and discussion

Table 1 summarizes the performance results in terms of
iteration number n1 and computation time T on an Intel
Pentium 4 3.2 GHz, 3 GB RAM. The design parameters
are the Wolfe condition constants (c1, c2) for the MT
method and the number of subiterations J for the MM
procedure.

NLCG PNLCG

M
T

c1 c2 n1 T (s) n1 T (s)

10−4 0.1 403 1043.3 18 78.66

10−4 0.5 207 454.6 17 73.64

10−4 0.9 196 418.5 19 82.81

10−4 0.999 170 362.7 19 83.27

M
M

J n1 T (s) n1 T (s)

1 232 287.45 18 58.76

2 275 375.27 16 55.34

5 304 512.28 22 83.02

10 474 1017.7 24 100.45

Table 1: Comparison between MM and MT line search
strategies for a PET reconstruction problem.

It can be noted that the NLCG algorithm with MM
line search requires more iterations than the NLCG-MT
approach provided that the parameters (c1, c2) are ap-
propriately chosen. However, the NLCG-MM is faster
because of a smaller computational cost per iteration.
Moreover, the proposed MM procedure admits a unique
tuning parameter, namely the subiteration number J ,
and J = 1 always seems a good choice. Furthermore,
resorting to the diagonal Hessian preconditioner signif-
icantly speeds up the convergence in the sense of both
n1 and T .
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4.2 Sparse spike deconvolution

The observation vector y ∈ R
M results from the noisy

convolution of a sparse spike train sequence x ∈ R
N

with a filter h of length L. The added noise is centered,
white Gaussian. In this experiment, M = 1020, L = 20,
N = 1000, the spike train sequence is simulated from
a Bernoulli-Gaussian distribution with parameter β =
0.06, and the signal to noise ratio is 13dB.

4.2.1 Objective function

The ℓ1 norm is a suited regularization function to ac-
count for the sparseness of x, which leads to the follow-
ing optimization problem

min
x

‖y − h ⋆ x‖2

2
+ λ ‖x‖

1
. (29)

To tackle the non differentiability of the ℓ1 norm, prob-
lem (29) can be classicaly reformulated as a quadratic
programming problem [4]:

min
x,u

F (x,u) = ‖y − h ⋆ x‖2

2
+ λ

∑

i

ui

subject to − ui 6 xi 6 ui, i = 1, . . . , N (30)

4.2.2 Optimization strategy

An interior-point method is proposed in [4] to solve (30).
The augmented criterion has the form (2) where P (x) ≡
F (x,u) and the barrier function is

B(x,u) = −
∑

i

log(ui + xi) −
∑

i

log(ui − xi). (31)

For a decreasing sequence of µ, the augmented cri-
terion Fµ(x,u) is minimized using a truncated Newton
method where the search direction is obtained by ap-
plying a preconditioned conjugate gradient (PCG) to
the Newton equations. The stepsize α satisfying the
first Wolfe condition (4) results from a backtracking line
search and the barrier parameter µ is decreased when
α > αmin. The Matlab code of the algorithm is avail-
able at S. Boyd’s homepage http://www.stanford.
edu/~boyd. Here, we propose to compare the perfor-
mances of this algorithm when the backtracking is re-
placed by our MM line search.

4.2.3 Results and discussion

Table 2 reports the computational results when Boyd’s
code is used with its default parameters αmin = 0.5 and

n1 n2 n3 T

Backtracking 13 1 50.07 8.35

M
M

(J
)

1 10 1.9 56.75 13.41
2 10 1.7 58.67 13.81
3 10 1.6 57.47 11.58
4 11 1.27 51.67 9.32
5 12 1 49.08 7.77
6 12 1 49.08 7.85
7 12 1 49.15 7.98

Table 2: Comparison between MM and backtracking
line search for a spike train deconvolution problem.

λ = 0.01. n1 is the number of µ updates, n2 is the av-
erage number of iterations for minimizing Fµ(x,u) and
n3 is the average number of PCG iterations. The use of
our MM line search slightly enhances the performances
of the deconvolution algorithm. On this particular prob-
lem, the best results have been obtained when J is larger
or equal to 5.

5. CONCLUSION

In [5], a simple and efficient quadratic MM line search
method has been proposed. However, it is restricted to
gradient-Lipschitz criteria, which excludes the case of
barrier functions. This case can be handled with the
MM line search method presented in this paper. This
method benefits from strong convergence results, it is
still very easy to implement, and shows itself at least as
efficient as classical techniques on practical problems.
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