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Barrier functions

Definition
B is said barrier function associated to the constraint x ∈ C if
B(x) is unbounded at the boundary of C

E.g.: Logarithmic barrier function
for positivity contraints

B(x) = −
∑

n

log(xn)

C = {x > 0}
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B(x) = − log(x1)− log(x2)

x2
x1

⇒ If a criterion contains a barrier function, its minimizers belong to C.
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Criteria involving barrier functions

① Interior point methods:

min
ci (x)>0

P(x)⇔ minP(x)−µ
∑

i

log(ci (x)), {µ} → 0

② Emission tomography:

x̂ = arg min
∑

i

[Hx]i−yi log[Hx]i + λR(x)⇒Hx̂ > 0

③ Maximum entropy:

x̂ = arg min ‖Hx− y‖2 + λ
∑

n

xn log xn ⇒ x̂ > 0
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General formulation

Objective function

minimize (F (x) = P(x) + µB(x)) , µ > 0 (1)

◮ B(x) =
∑I

i=1 bi (a
T
i x + ρi ): barrier function,
e.g., bi (u) = − log u or u log u

Algorithmic scheme

xk+1 = xk + αkdk , for k = 1, . . . ,K

◮ dk descent direction i.e., dT
k ∇F (xk) < 0: (P)CG, L-BFGS, ...

◮ αk > 0 stepsize given by a 1D nonquadratic MM algorithm
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Line search strategies

Goal: Given xk and dk , find αk that ensures the convergence of the
algorithm

◮ Classical strategies: Dichotomy, backtracking, cubic
interpolation, quadratic approximation...

◮ Iterative minimization of F (xk + αdk)

◮ Identifying αk that fulfills some convergence conditions

e.g.: Wolfe conditions
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Problem statement

f (α) = F (xk + αdk) = P(xk + αdk) + µB(xk + αdk)
︸ ︷︷ ︸

barrier term b(α)

b undefined for α > ᾱ if there exists i such that ci (xk + ᾱdk) = 0.

◮ Line search constrained to α ∈ [0, ᾱ)

◮ Vertical asymptote at ᾱ

◮ Classical methods not suited
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The Majorize-Minimize (MM) principle [Hunter04]

Goal: find u that minimizes f over E

For all v ∈ E , let h(.,v) a tangent majorant for f at v i.e.,

h(u, v) > f (u), ∀u ∈ E ,

h(v, v) = f (v)

MM algorithm:

uj+1 = arg min
u∈E

h(u, uj)

uj uj+1

f

h(.,uj)
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Proposed 1D nonquadratic MM stepsize strategy

Curvature of the barrier term unbounded at ᾱ

⇒ No quadratic majorizing approximation for f .
αj ᾱ

f

Finding majorizing approximations of f of the form

h(α, αj) = p0 + p1α + p2α
2 − p3 log(ᾱ− α)

◮ Construction of h fairly easy for −log and “entropic” barriers

◮ arg minα h(α, αj) is a root of degree 2 polynomial
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Toy Example

f (α) = (α− 5)2 −
10∑

i=1

log(i − α)

ᾱ = 1
m0 = 2, γ0 = 1.55
α1 = 0.7805
comparing with α∗ = 0.8258
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Convergence analysis results [Chouzenoux09]

Goal: Discussing the convergence of the iterative descent algorithm

xk+1 = xk + αkdk , k = 1, . . . , K

Stepsize properties

After any number of MM subiterates,

◮ Armijo and Zoutendijk conditions hold

◮ The stepsize bounded away from 0

⇒ Convergence of several optimization algorithms:

Steepest descent, CG, truncated Newton, (L)BFGS ...
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Monodimensional Nuclear Magnetic Resonance

NMR model

y(τ) =

∫
∞

0
x(T ) exp−

τ

T dT

T : relaxation time
τ : echo time
y(τ): measured echo
x(T ): spectrum to estimate
After discretization,

y = Hx + ǫ, x ∈ R
n, y ∈ R

m

Goal: Estimate x from y subject to x > 0
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Maximum entropy method

min
x>0

F (x) = P(x) + µB(x)

◮ Fit to data: Least square P(x) = ‖Hx− y‖2

◮ Regularization: Entropy measure B(x) =
∑

n xn ln xn

Optimization strategy

◮ NLCG algorithm with specific SVD preconditionner

◮ Comparison of a classical Wolfe line search [Moré94] with the
proposed MM line search.
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M
T

c1 c2 K T (s)

10−3 0.1 25 1.08

10−3 0.5 28 1.27

10−3 0.9 34 1.28

10−3 0.99 49 1.69

M
M

J K T (s)

1 24 0.86

2 26 1.17

5 28 1.73

10 27 2.44

K : Iterates number
T : Time before convergence
(c1, c2): Wolfe parameters
J: Number of MM subiterates
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Figure: NMR reconstruction of synthetic
data with SNR = 40dB
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Interior point for quadratic programming

Convex quadratic programming problem

min
x∈Rn

F0(x) = ρ0 + aT
0 x +

1

2
xTA0x (2)

s.t. : ci (x) = −
1

2
xTAix + aT

i x + ρi > 0, 1 6 i 6 m

Augmented criterion

Fµ(x) = F0(x)− µ

m∑

i=1

log(ci (x))

Interior point: Solve arg minFµ for a series {µ} → 0.
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Interior Point algorithm [Boyd04]

1) Set µ = 1, tolerances ǫ, ξ and select a feasible point x

2) WHILE 1
2(dT∇Fµ)2 > ξ,

Compute Newton direction d of Fµ

Compute step size α

Update x← x + αd

3) IF µ < ǫ, RETURN

ELSE Set µ← θµ and GO TO step 2.
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Interior Point algorithm [Boyd04]

1) Set µ = 1, tolerances ǫ, ξ and select a feasible point x

2) WHILE 1
2(dT∇Fµ)2 > ξ,

Compute Newton direction d of Fµ

Compute step size α

Update x← x + αd

3) IF µ < ǫ, RETURN

ELSE Set µ← θµ and GO TO step 2.

Results
50 random problems of size n = 400, m = 200

Backtracking 273.24 iter 5636.87 s
Damping [Nesterov94] 135.30 iter 465.07 s
Proposed MM linesearch 64.40 iter 225.03 s
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Emission tomography reconstruction

See article
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Conclusion and future work

Main result
MM linesearch strategy for criteria involving barrier functions

◮ Simple stepsize scheme

◮ Strong convergence results

◮ Efficient in practice

Constrained optimization

Possible adaptation to

◮ Primal interior point [Johnson2000]

◮ L-BFGS-B [Byrd1995]

◮ Multiplicative algorithm [Lanteri2001]

◮ Kullback proximal algorithm [Teboulle1997,Chrétien2000]
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