1/19

A Parallel Block-Coordinate Approach for Primal-Dual Splitting with Arbitrary Random Block Selection

Jean-Christophe Pesquet

Laboratoire d'Informatique Gaspard Monge - CNRS Univ. Paris-Est Marne-Ia-Vallée, France

EUSIPCO 2015 - Nice

Introduction	Primal-dual algorithms	Application to 3D mesh denoising	Conclusion
00	000000000	000	00
EUSIPCO 2015			2/19

In collaboration with

A. Repetti

E. Chouzenoux

Introduction	Primal-dual algorithms	Application to 3D mesh denoising	Conclusion
•0	000000000	000	00
EUSIPCO 2015			3/19

Variational formulation

OBJECTIVE FUNCTION:

Find a solution to the convex optimization problem

 $\underset{\mathbf{x}\in\mathsf{H}}{\operatorname{minimize}} \ \Phi(\mathbf{x})$

where

- H: signal space (separable real Hilbert space),
- $\Phi \in \Gamma_0(H)$: class of convex lower-semicontinuous functions from H to $]-\infty, +\infty]$ with a nonempty domain.

Introduction	Primal-dual algorithms	Application to 3D mesh denoising	Conclusion
•0	000000000	000	00
EUSIPCO 2015			3/19

Variational formulation

OBJECTIVE FUNCTION:

Find a solution to the convex optimization problem

 $\underset{\mathbf{x}\in\mathsf{H}}{\operatorname{minimize}} \ \Phi(\mathbf{x})$

where

- H: signal space (separable real Hilbert space),
- $\Phi \in \Gamma_0(H)$: class of convex lower-semicontinuous functions from H to $]-\infty, +\infty]$ with a nonempty domain.

In the context of large scale problems, how to find an optimization algorithm able to deliver a reliable numerical solution in a reasonable time, with low memory requirement?

Introduction	Primal-dual algorithms	Application to 3D mesh denoising	Conclusion
00	000000000	000	00
EUSIPCO 2015			4/19

Fundamental Tools in Convex Analysis

The inf-convolution of $f: H \to]-\infty, +\infty]$ and $g: H \to]-\infty, +\infty]$ is $f \Box g: H \to [-\infty, +\infty]: x \mapsto \inf_{y \in H} f(y) + g(x - y).$

Particular case: $f \Box \iota_{\{0\}} = f$,

where, for $C \subset H$,

$$(\forall \mathsf{x} \in \mathsf{H}) \quad \iota_{\mathsf{C}}(\mathsf{x}) = \begin{cases} 0 & \text{if } \mathsf{x} \in \mathsf{C}, \\ +\infty & \text{otherwise}. \end{cases}$$

Introduction	Primal-dual algorithms	Application to 3D mesh denoising	Conclusion
0●	000000000	000	00
EUSIPCO 2015			4/19

Fundamental Tools in Convex Analysis

The inf-convolution of $f: H \to]-\infty, +\infty]$ and $g: H \to]-\infty, +\infty]$ is

 $f \, \Box \, g \colon H \to [-\infty, +\infty] \colon x \mapsto \inf_{y \in H} f(y) + g(x-y).$

The conjugate of $f: H \to]-\infty, +\infty]$ is $f^*: H \to [-\infty, +\infty]$ such that $(\forall u \in H) \qquad f^*(u) = \sup_{x \in H} (\langle x \mid u \rangle - f(x)).$

Introduction	Primal-dual algorithms	Application to 3D mesh denoising	Conclusion
0●	000000000	000	00
EUSIPCO 2015			4/19

Fundamental Tools in Convex Analysis

The inf-convolution of $f: H \to]-\infty, +\infty]$ and $g: H \to]-\infty, +\infty]$ is

 $f \, \Box \, g \colon H \to [-\infty, +\infty] \colon x \mapsto \inf_{y \in H} f(y) + g(x-y).$

The conjugate of $f: H \to]-\infty, +\infty]$ is $f^*: H \to [-\infty, +\infty]$ such that

$$(\forall u \in H)$$
 $f^*(u) = \sup_{x \in H} (\langle x \mid u \rangle - f(x)).$

Let $f\in \Gamma_0(H).$ Let $U:H\to H$ be a strongly positive self-adjoint linear operator.

The proximity operator $\operatorname{prox}_{f}^{U}(x)$ of f at $x \in H$ relative to the metric induced by U is the unique vector $\widehat{y} \in H$ such that

$$\mathsf{f}(\widehat{\mathsf{y}}) + \frac{1}{2} \| \widehat{\mathsf{y}} - \mathsf{x} \|_{\mathsf{U}}^2 = \inf_{\mathsf{y} \in \mathsf{H}} \mathsf{f}(\mathsf{y}) + \frac{1}{2} \langle \mathsf{y} - \mathsf{x} \mid \mathsf{U}(\mathsf{y} - \mathsf{x}) \rangle.$$

In O	troduction o	Primal-dual algorithms •000000000	Application to 3D mesh denoising	Conclusion
E	USIPCO 2015			5/19
F	Parallel pro	ximal primal-dua	al problem	
	PRIMAL We want to mi	PROBLEM inimize $h(x) + \sum_{k=1}^{q} (g_k \square$	$ _k)(L_k x).$	
	We want to v_1	$\underset{\in G_1,\ldots,v_q\inG_q}{\text{minimize}} h^* \big(-\sum_{k=1}^q L_j^2 \big)$	$\begin{array}{c} \qquad \qquad$	Л

- ▶ h: H → \mathbb{R} convex, μ -Lipschitz differentiable function with $\mu \in]0, +\infty[$
- ▶ $g_k \in \Gamma_0(G_k)$ with G_k separable real Hilbert space
- ► $I_k \in \Gamma_0(G_k) \ \nu_k$ -strongly convex with $\nu_k \in]0, +\infty[$ $\Leftrightarrow I_k^* \in \Gamma_0(G) \ \nu_k$ -Lipschitz differentiable
- $L_k : H \to G_k$ linear and bounded.

Introduction 00	Primal-dual algorithms •000000000	Application to 3D mesh denoising	Conclusion
EUSIPCO 2015			5/19
Parallel pro	ximal primal-du	al problem	
PRIMAL We want to m	PROBLEM inimize $h(x) + \sum_{k=1}^{q} (g_k)$	$\Box I_k)(L_k x).$	
We want to v_1	$\underset{\in G_1, \dots, v_q \in G_q}{\text{minimize}} h^* \big(-\sum_{k=1}^q I$	$Dual proble_{k}^{q}v_{k} + \sum_{k=1}^{q}g_{k}^{*}(v_{k}) + I_{k}^{*}(v_{k}).$	EM

DIFFICULTIES:

- * Large-size optimization problem
- Functions g_k often nonsmooth (indicator functions of constraint sets, sparsity measures,...).
- Linear operators required by standard optimization methods (e.g. ADMM) difficult to invert due to the form of operators L_k
 (e.g. weighted incidence matrices of graphs).

Introduction	Primal-dual algorithms	Application to 3D mesh denoising	Conclusion
00	000000000	000	00
EUSIPCO 2015			6/19

for
$$n = 0, 1, ...$$

 $\mathbf{s}_n \simeq \mathbf{x}_n - \mathbf{W} \nabla \mathbf{h}(\mathbf{x}_n)$
 $\mathbf{y}_n = \mathbf{s}_n - \mathbf{W} \sum_{k=1}^q \mathbf{L}_k^* \mathbf{v}_{k,n}$
for $k = 1, ..., q$
 $\begin{bmatrix} \mathbf{u}_{k,n} \simeq \operatorname{prox}_{\mathbf{g}_k^*}^{\mathbf{U}_k^*} (\mathbf{v}_{k,n} + \mathbf{U}_k (\mathbf{L}_k \mathbf{y}_n - \nabla \mathbf{I}_k^* (\mathbf{v}_{k,n}))) \\ \mathbf{v}_{k,n+1} = \mathbf{v}_{k,n} + \lambda_n (\mathbf{u}_{k,n} - \mathbf{v}_{k,n}) \end{bmatrix}$
 $\mathbf{p}_n = \mathbf{s}_n - \mathbf{W} \sum_{k=1}^q \mathbf{L}_k^* \mathbf{u}_{k,n}$
 $\mathbf{x}_{n+1} = \mathbf{x}_n + \lambda_n (\mathbf{p}_n - \mathbf{x}_n).$

Introduction	Primal-dual algorithms	Application to 3D mesh denoising	Conclusion
00	000000000	000	00
EUSIPCO 2015			6/19

for
$$n = 0, 1, ...$$

 $\mathbf{s}_n \simeq \mathbf{x}_n - \mathbf{W} \nabla \mathbf{h}(\mathbf{x}_n)$
 $\mathbf{y}_n = \mathbf{s}_n - \mathbf{W} \sum_{k=1}^{q} \mathbf{L}_k^* \mathbf{v}_{k,n}$
for $k = 1, ..., q$
 $\left[\begin{array}{c} \mathbf{u}_{k,n} \simeq \operatorname{prox}_{\mathbf{g}_k^*}^{\mathbf{U}_k^{-1}} \left(\mathbf{v}_{k,n} + \mathbf{U}_k (\mathbf{L}_k \mathbf{y}_n - \nabla \mathbf{I}_k^* (\mathbf{v}_{k,n}))\right)\right)$
 $\mathbf{v}_{k,n+1} = \mathbf{v}_{k,n} + \lambda_n (\mathbf{u}_{k,n} - \mathbf{v}_{k,n})$
 $\mathbf{p}_n = \mathbf{s}_n - \mathbf{W} \sum_{\substack{k=1 \\ k=1}}^{q} \mathbf{L}_k^* \mathbf{u}_{k,n}$
 $\mathbf{x}_{n+1} = \mathbf{x}_n + \lambda_n (\mathbf{p}_n - \mathbf{x}_n).$

Introduction	Primal-dual algorithms	Application to 3D mesh denoising	Conclusion
00	00000000	000	00
EUSIPCO 2015			6/19

$$\begin{aligned} & \text{for } n = 0, 1, \dots \\ & \mathsf{s}_n \simeq \mathsf{x}_n - \mathsf{W} \nabla \mathsf{h}(\mathsf{x}_n) \\ & \mathsf{y}_n = \mathsf{s}_n - \mathsf{W} \sum_{k=1}^q \mathsf{L}_k^* \mathsf{v}_{k,n} \\ & \text{for } k = 1, \dots, q \\ & \left\lfloor \mathsf{u}_{k,n} \simeq \operatorname{prox}_{\mathsf{g}_k^*}^{\mathsf{U}_k^*} \left(\mathsf{v}_{k,n} + \mathsf{U}_k \big(\mathsf{L}_k \mathsf{y}_n - \nabla \mathsf{I}_k^* (\mathsf{v}_{k,n}) \big) \right) \\ & \mathsf{v}_{k,n+1} = \mathsf{v}_{k,n} + \lambda_n \big(\mathsf{u}_{k,n} - \mathsf{v}_{k,n} \big) \\ & \mathsf{p}_n = \mathsf{s}_n - \mathsf{W} \sum_{k=1}^q \mathsf{L}_k^* \mathsf{u}_{k,n} \\ & \mathsf{x}_{n+1} = \mathsf{x}_n + \lambda_n \big(\mathsf{p}_n - \mathsf{x}_n \big). \end{aligned}$$

where

$$\begin{split} & \mathsf{W} \colon \mathsf{H} \to \mathsf{H} \text{ and } (\forall k \in \{1, \dots, q\}) \; \mathsf{U}_k \colon \mathsf{G}_k \to \mathsf{G}_k \text{ strongly positive self-adjoint bounded linear operators such that} \\ & \min \left\{ \mu^{-1} \|\mathsf{W}\|^{-1}, \nu^{-1} \Big(1 - \sum_{k=1}^q \|\mathsf{U}_k^{1/2} \mathsf{L}_k \mathsf{W}^{1/2}\|^2 \Big) \right\} > 1/2 \\ & \text{with } \nu = \max\{\nu_1 \|\mathsf{U}_1\|, \dots, \nu_q \|\mathsf{U}_q\|\}. \end{split}$$

Introduction	Primal-dual algorithms	Application to 3D mesh denoising	Conclusion
00	000000000	000	00
EUSIPCO 2015			6/19

for
$$n = 0, 1, ...$$

 $\mathbf{s}_n \simeq \mathbf{x}_n - \mathbf{W} \nabla \mathbf{h}(\mathbf{x}_n)$
 $\mathbf{y}_n = \mathbf{s}_n - \mathbf{W} \sum_{k=1}^{q} \mathbf{L}_k^* \mathbf{v}_{k,n}$
for $k = 1, ..., q$
 $\begin{bmatrix} \mathbf{u}_{k,n} \simeq \operatorname{prox}_{\mathbf{g}_k^*}^{\mathbf{U}_k^*} \left(\mathbf{v}_{k,n} + \mathbf{U}_k (\mathbf{L}_k \mathbf{y}_n - \nabla \mathbf{I}_k^* (\mathbf{v}_{k,n})) \right) \\ \mathbf{v}_{k,n+1} = \mathbf{v}_{k,n} + \lambda_n (\mathbf{u}_{k,n} - \mathbf{v}_{k,n})$
 $\mathbf{p}_n = \mathbf{s}_n - \mathbf{W} \sum_{k=1}^{q} \mathbf{L}_k^* \mathbf{u}_{k,n}$
 $\mathbf{x}_{n+1} = \mathbf{x}_n + \lambda_n (\mathbf{p}_n - \mathbf{x}_n).$

where

• $(\forall n \in \mathbb{N}) \lambda_n \in]0,1]$ such that $\inf_{n \in \mathbb{N}} \lambda_n > 0$.

Introduction	Primal-dual algorithms	Application to 3D mesh denoising	Conclusion
00	00000000	000	00
EUSIPCO 2015			6/19

$$\begin{aligned} & \text{for } n = 0, 1, \dots \\ & \mathsf{s}_n \simeq \mathsf{x}_n - \mathsf{W} \nabla \mathsf{h}(\mathsf{x}_n) \\ & \mathsf{y}_n = \mathsf{s}_n - \mathsf{W} \sum_{k=1}^q \mathsf{L}_k^* \mathsf{v}_{k,n} \\ & \text{for } k = 1, \dots, q \\ & \left\lfloor \begin{array}{c} \mathsf{u}_{k,n} \simeq \operatorname{prox}_{g_k^*}^{\mathsf{U}_k^*} \big(\mathsf{v}_{k,n} + \mathsf{U}_k \big(\mathsf{L}_k \mathsf{y}_n - \nabla \mathsf{I}_k^* (\mathsf{v}_{k,n}) \big) \big) \\ & \mathsf{v}_{k,n+1} = \mathsf{v}_{k,n} + \lambda_n (\mathsf{u}_{k,n} - \mathsf{v}_{k,n}) \\ & \mathsf{p}_n = \mathsf{s}_n - \mathsf{W} \sum_{k=1}^q \mathsf{L}_k^* \mathsf{u}_{k,n} \\ & \mathsf{x}_{n+1} = \mathsf{x}_n + \lambda_n (\mathsf{p}_n - \mathsf{x}_n). \end{aligned}$$

Assume that there exists $\overline{x} \in H$ such that

$$0 \in \nabla \mathsf{h}(\overline{\mathsf{x}}) + \sum_{k=1}^{q} \mathsf{L}_{k}^{*}(\partial \mathsf{g}_{k} \Box \partial \mathsf{I}_{k}) \big(\mathsf{L}_{k} \overline{\mathsf{x}}\big).$$

We have:

- ★ $x_n \rightarrow \hat{x}$ where \hat{x} is a solution to the primal problem
- ★ $(\forall k \in \{1, ..., q\}) \lor_{k,n} \rightharpoonup \widehat{\lor}_k$ where $(\widehat{\lor}_k)_{1 \leq k \leq q}$ is a solution to the dual problem.

Introduction	Primal-dual algorithms	Application to 3D mesh denoising	Conclusion
00	000000000	000	00
EUSIPCO 2015			7/19

Proximal primal-dual algorithm

ADVANTAGES:

- * No linear operator inversion.
- ⋆ Use of proximable or/and differentiable functions.
- Less restrictive convergence conditions than other primal-dual algorithms.

DISADVANTAGES: At each iteration,

- ★ all the dual variables are updated in parallel,
- \star it is necessary to update the full primal variable.

Proximal primal-dual algorithm

BIBLIOGRAPHICAL REMARKS:

- ★ Pioneering work in the 1950's: Arrow-Hurwicz method.
- ★ Methods based on Forward-Backward iteration
 - type I: [Vu 2013][Condat 2013] (extensions of [Esser et al. - 2010][Chambolle and Pock - 2011])
 - type II : [Combettes et al. 2014]
 (extensions of [Loris and Verhoeven 2011][Chen et al. 2014])
- Methods based on Forward-Backward-Forward iteration [Combettes and Pesquet - 2012] [Bot and Hendrich - 2014]
- Projection based methods

[Alotaibi et al. - 2013]

Introduction	Primal-dual algorithms	Application to 3D mesh denoising	Conclusion
00	00000000	000	00
EUSIPCO 2015			9/19

Improvement via block alternation

► Idea: split variable.

 H_1, \ldots, H_p are real separable Hilbert spaces

Introduction	Primal-dual algorithms	Application to 3D mesh denoising	Conclusion
00	00000000	000	00
EUSIPCO 2015			9/19

Improvement via block alternation

Assumption: h is an additively block separable function.

 $(\forall j \in \{1, \dots, p\}) \mathbf{h}_j$ convex and μ_j -Lipschitz differentiable with $\mu_j \in]0, +\infty[$.

Introduction	Primal-dual algorithms	Application to 3D mesh denoising	Conclusion
00	000000000	000	00
EUSIPCO 2015			10/19

Block-coordinate strategy

★ At each iteration $n \in \mathbb{N}$, update only a subset of components (~ Gauss-Seidel methods).

ADVANTAGES:

- * Reduced computational cost at each iteration.
- ★ Reduced memory requirement.
- ⋆ More flexibility.

Introduction	Primal-dual algorithms	Application to 3D mesh denoising	Conclusion
00	0000000000	000	00
EUSIPCO 2015			11/19

Primal-dual problem

PRIMAL PROBLEM

$$\underset{\mathsf{x}_{1}\in\mathsf{H}_{1},\ldots,\mathsf{x}_{p}\in\mathsf{H}_{p}}{\text{minimize}} \sum_{j=1}^{p}\mathsf{h}_{j}(\mathsf{x}_{j}) + \sum_{k=1}^{q} \left(\mathsf{g}_{k}\Box\mathsf{I}_{k}\right)\left(\sum_{j=1}^{p}\mathsf{L}_{k,j}\mathsf{x}_{j}\right)$$

$$(\forall j \in \{1, \dots, p\}) (\forall k \in \{1, \dots, q\})$$

- H_j and G_k real separable Hilbert spaces
- ▶ h_j : $H_j \to \mathbb{R}$ convex, μ_j -Lipschitz differentiable, with $\mu_j \in]0, +\infty[$
- ▶ $g_k \in \Gamma_0(\mathsf{G}_k)$
- ▶ $I_k \in \Gamma_0(G_k) \nu_k$ -strongly convex, with $\nu_k \in]0, +\infty[$
- ▶ $L_{k,j}$: $H_j \rightarrow G_k$ is linear and bounded

 $\blacktriangleright \mathbb{L}_{k} = \left\{ j \in \{1, \dots, p\} \mid \mathsf{L}_{k,j} \neq 0 \right\} \neq \emptyset, \text{ and } \mathbb{L}_{j}^{*} = \left\{ k \in \{1, \dots, q\} \mid \mathsf{L}_{k,j} \neq 0 \right\} \neq \emptyset.$

Introduction	Primal-dual algorithms	Application to 3D mesh denoising	Conclusion
00	0000000000	000	00
EUSIPCO 2015			11/19

Primal-dual problem

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \label{eq:problem} \\ \begin{array}{c} \underset{x_{1} \in \mathsf{H}_{1}, \dots, \mathsf{x}_{p} \in \mathsf{H}_{p}}{\text{minimize}} & \sum_{j=1}^{p} \mathsf{h}_{j}(\mathsf{x}_{j}) + \sum_{k=1}^{q} \left(\mathsf{g}_{k} \Box \mathsf{I}_{k} \right) \left(\sum_{j=1}^{p} \mathsf{L}_{k, j} \mathsf{x}_{j} \right) \end{array} \end{array} \\ \end{array}$$

▶ Assume that there exists $(\overline{x}_1, ..., \overline{x}_p) \in H_1 \times ... \times H_p$ such that

$$(\forall j \in \{1,\ldots,p\}) \quad 0 \in \partial \nabla \mathsf{h}_j(\overline{\mathsf{x}}_j) + \sum_{k=1}^q \mathsf{L}_{k,j}^* (\partial \mathsf{g}_k \Box \partial \mathsf{I}_k) (\mathsf{L}_{k,j}\overline{\mathsf{x}}_j).$$

OBJECTIVE: Let **F** and **F**^{*} be the sets of solutions to the primal and dual problems. Find an $\mathbf{F} \times \mathbf{F}^*$ -valued random variable (\hat{x}, \hat{v}) .

Introduction	Primal-dual algorithms	Application to 3D mesh denoising	Conclusion
00	00000000000	000	00
EUSIPCO 2015			12/19

$$\begin{aligned} & \mathsf{For} \; n = 0, 1, \dots \\ & \mathsf{for} \; j = 1, \dots, p \\ & \int \mathsf{for} \; j = 1, \dots, p \\ & \int \mathsf{for} \; j = 1, \dots, p \\ & \int \mathsf{g}_{j,n} = \max\left\{ \varepsilon_{p+k,n} \mid k \in \mathbb{L}_{j}^{*} \right\} \\ & s_{j,n} = \eta_{j,n} \left(x_{j,n} - \mathsf{W}_{j} \left(\nabla \mathsf{h}_{j}(x_{j,n}) + a_{j,n} \right) \right) \\ & y_{j,n} = \eta_{j,n} \left(s_{j,n} - \mathsf{W}_{j} \sum_{k \in \mathbb{L}_{j}^{*}} \mathsf{L}_{k,j}^{*} v_{k,n} \right) \\ & \mathsf{for} \; k = 1, \dots, q \\ & \left[\begin{array}{c} u_{k,n+1} = \varepsilon_{p+k,n} \left(\mathsf{pros}_{\mathfrak{g}_{k}^{*}}^{\mathsf{U}_{k}^{-1}} \left(v_{k,n} + \mathsf{U}_{k} \sum_{j \in \mathbb{L}_{k}} \mathsf{L}_{k,j} y_{j,n} - \mathsf{U}_{k} \left(\nabla \mathsf{I}_{k}^{*}(v_{k,n}) + c_{k,n} \right) \right) + b_{k,n} \right) \\ & v_{k,n+1} = v_{k,n} + \lambda_{n} \varepsilon_{p+k,n} (u_{k,n} - v_{k,n}) \\ & \mathsf{for} \; j = 1, \dots, p \\ & \left[\begin{array}{c} p_{j,n+1} = \varepsilon_{j,n} \left(s_{j,n} - \mathsf{W}_{j} \sum_{k \in \mathbb{L}_{j}^{*}} \mathsf{L}_{k,j}^{*} v_{k,n} \right) \\ & v_{j,n+1} = x_{j,n} + \lambda_{n} \varepsilon_{j,n} (p_{j,n} - x_{j,n}). \end{array} \right. \end{aligned} \right. \end{aligned}$$

where

• $(\epsilon_n)_{n\in\mathbb{N}}$ \rightsquigarrow binary variables signaling the blocks to be activated

Introduction	Primal-dual algorithms	Application to 3D mesh denoising	Conclusion
00	0000000000	000	00
EUSIPCO 2015			12/19

$$\begin{split} & \text{For } n = 0, 1, \dots \\ & \text{for } j = 1, \dots, p \\ & \left| \begin{array}{c} \eta_{j,n} = \max\left\{ \varepsilon_{p+k,n} \mid k \in \mathbb{L}_{j}^{*} \right\} \\ & s_{j,n} = \eta_{j,n} \left(x_{j,n} - \mathsf{W}_{j} \left(\nabla \mathsf{h}_{j} (x_{j,n}) + a_{j,n} \right) \right) \\ & y_{j,n} = \eta_{j,n} \left(s_{j,n} - \mathsf{W}_{j} \sum_{k \in \mathbb{L}_{j}^{*}} \mathbb{L}_{k,j}^{*} v_{k,n} \right) \\ & \text{for } k = 1, \dots, q \\ & \left| \begin{array}{c} u_{k,n+1} = \varepsilon_{p+k,n} \left(\operatorname{prox}_{\mathbf{s}_{k}^{k}}^{\mathbb{L}^{*}} \left(v_{k,n} + \mathsf{U}_{k} \sum_{j \in \mathbb{L}_{k}} \mathsf{L}_{k,j} y_{j,n} - \mathsf{U}_{k} \left(\nabla \mathsf{I}_{k}^{*} (v_{k,n}) + c_{k,n} \right) \right) + b_{k,n} \right) \\ & \text{for } j = 1, \dots, p \\ & \left| \begin{array}{c} p_{j,n+1} = \varepsilon_{j,n} \left(s_{j,n} - \mathsf{W}_{j} \sum_{k \in \mathbb{L}_{j}^{*}} \mathbb{L}_{k,j}^{*} v_{k,n} \right) \\ & x_{j,n+1} = x_{j,n} + \lambda_{n} \varepsilon_{j,n} (p_{j,n} - x_{j,n}). \end{array} \right. \end{split}$$

where

- ▶ $(\epsilon_n)_{n \in \mathbb{N}}$ identically distributed \mathbb{D} -valued random variables with $\mathbb{D} = \{0, 1\}^{p+q} \smallsetminus \{0\}$
 - ---- binary variables signaling the blocks to be activated
- ▶ x_0 , $(a_n)_{n \in \mathbb{N}}$, and $(c_n)_{n \in \mathbb{N}}$ H-valued random variables, v_0 , $(b_n)_{n \in \mathbb{N}}$, and $(d_n)_{n \in \mathbb{N}}$ G-valued random variables with $\mathbf{G} = \mathbf{G}_1 \times \cdots \times \mathbf{G}_q$ $\rightsquigarrow (a_n)_{n \in \mathbb{N}}$, $(b_n)_{n \in \mathbb{N}}$ and $(c_n)_{n \in \mathbb{N}}$: error terms

Introduction	Primal-dual algorithms	Application to 3D mesh denoising	Conclusion
00	0000000000	000	00
EUSIPCO 2015			12/19

$$\begin{split} & \text{For } n = 0, 1, \dots \\ & \text{ for } j = 1, \dots, p \\ & \eta_{j,n} = \max\{\varepsilon_{p+k,n} \mid k \in \mathbb{L}_{j}^{*}\} \\ & s_{j,n} = \eta_{j,n} \left(x_{j,n} - \mathsf{W}_{j} \left(\nabla h_{j}(x_{j,n}) + a_{j,n}\right)\right) \\ & y_{j,n} = \eta_{j,n} \left(s_{j,n} - \mathsf{W}_{j} \sum_{k \in \mathbb{L}_{j}^{*}} \mathsf{l}_{k,j} v_{k,n}\right) \\ & \text{ for } k = 1, \dots, q \\ & u_{k,n+1} = \varepsilon_{p+k,n} \left(\mathsf{prox}_{\mathbf{z}_{k}^{*}}^{\mathbf{U}_{k}^{-1}} \left(v_{k,n} + \mathsf{U}_{k} \sum_{j \in \mathbb{L}_{k}} \mathsf{L}_{k,j} y_{j,n} - \mathsf{U}_{k} \left(\nabla \mathfrak{l}_{k}^{*}(v_{k,n}) + c_{k,n}\right)\right) + b_{k,n} \right) \\ & \text{ for } j = 1, \dots, p \\ & p_{j,n+1} = \varepsilon_{j,n} \left(s_{j,n} - \mathsf{W}_{j} \sum_{k \in \mathbb{L}_{j}^{*}} \mathsf{L}_{k,j}^{*} v_{k,n} \right) \\ & p_{j,n+1} = \varepsilon_{j,n} \left(s_{j,n} - \mathsf{W}_{j} \sum_{k \in \mathbb{L}_{j}^{*}} \mathsf{L}_{k,j}^{*} v_{k,n}\right) \\ & x_{j,n+1} = x_{j,n} + \lambda_{n} \varepsilon_{j,n} (p_{j,n} - x_{j,n}). \end{split}$$

where

- ▶ $(\epsilon_n)_{n \in \mathbb{N}} \rightsquigarrow$ binary variables signaling the blocks to be activated
- $(a_n)_{n \in \mathbb{N}}, (b_n)_{n \in \mathbb{N}}$ and $(c_n)_{n \in \mathbb{N}}$: error terms
- (∀j ∈ {1,..., p}) W_j: H_j → H_j and (∀k ∈ {1,..., q}) U_k: G_k → G_k strongly positive self-adjoint preconditioning linear operators such that

$$\min\left\{\mu^{-1} \|\mathbf{W}\|^{-1}, \nu^{-1} \left(1 - \sum_{k=1}^{q} \|\mathbf{U}_{k}^{1/2} \mathbf{L}_{k} \mathbf{W}^{1/2}\|^{2}\right)\right\} > 1/2$$

with $\mu = \max\{\mu_1 \| W_1 \|, \dots, \mu_p \| W_p \|\}$ and $\nu = \max\{\nu_1 \| U_1 \|, \dots, \nu_q \| U_q \|\}.$

Introduction	Primal-dual algorithms	Application to 3D mesh denoising	Conclusion
00	00000000000	000	00
EUSIPCO 2015			12/19

$$\begin{split} & \mathsf{For} \; n = 0, 1, \dots \\ & \mathsf{for} \; j = 1, \dots, p \\ & \mathsf{for} \; j = 1, \dots, p \\ & \mathsf{for} \; j = 1, \dots, p \\ & \mathsf{for} \; j = 1, \dots, p \\ & \mathsf{for} \; s_{j,n} = \max \left\{ \varepsilon_{p+k,n} \mid k \in \mathbb{L}_{j}^{*} \right\} \\ & s_{j,n} = \eta_{j,n} \left(s_{j,n} - \mathsf{W}_{j} \left(\nabla \mathsf{h}_{j}(x_{j,n}) + a_{j,n} \right) \right) \\ & y_{j,n} = \eta_{j,n} \left(s_{j,n} - \mathsf{W}_{j} \sum_{k \in \mathbb{L}_{j}^{*}} \mathsf{L}_{k,j}^{*} v_{k,n} \right) \\ & \mathsf{for} \; k = 1, \dots, q \\ & \mathsf{l}_{k,n+1} = \varepsilon_{p+k,n} \left(\mathsf{pros}_{\mathfrak{g}_{k}^{k}}^{\mathsf{U}_{k}^{-1}} \left(v_{k,n} + \mathsf{U}_{k} \sum_{j \in \mathbb{L}_{k}} \mathsf{L}_{k,j} y_{j,n} - \mathsf{U}_{k} (\nabla \mathsf{I}_{k}^{*}(v_{k,n}) + c_{k,n}) \right) + b_{k,n} \right) \\ & \mathsf{for} \; j = 1, \dots, p \\ & \mathsf{for} \; j = 1, \dots, p \\ & \mathsf{for} \; j = 1, \dots, p \\ & \mathsf{p}_{j,n+1} = \varepsilon_{j,n} \left(s_{j,n} - \mathsf{W}_{j} \sum_{k \in \mathbb{L}_{j}^{*}} \mathsf{L}_{k,j}^{*} v_{k,n} \right) \\ & \mathsf{x}_{j,n+1} = x_{j,n} + \lambda_{n} \varepsilon_{j,n} (p_{j,n} - x_{j,n}). \end{split}$$

where

- ▶ $(\varepsilon_n)_{n \in \mathbb{N}} \rightsquigarrow$ binary variables signaling the blocks to be activated
- $(a_n)_{n\in\mathbb{N}}, (b_n)_{n\in\mathbb{N}} \text{ and } (c_n)_{n\in\mathbb{N}}$: error terms
- ► $(\forall j \in \{1, ..., p\}) W_j : H_j \to H_j \text{ and } (\forall k \in \{1, ..., q\}) U_k : G_k \to G_k$ strongly positive self-adjoint preconditioning linear operators
- $(\forall n \in \mathbb{N}) \lambda_n \in [0, 1]$ such that $\inf_{n \in \mathbb{N}} \lambda_n > 0$.

Introduction	Primal-dual algorithms	Application to 3D mesh denoising	Conclusion
00	0000000000	000	00
EUSIPCO 2015			13/19

Let $(\Omega, \mathcal{F}, \mathsf{P})$ be the underlying probability space. Set $(\forall n \in \mathbb{N}) \mathfrak{X}_n = (x_{n'}, v_{n'})_{0 \leq n' \leq n}$. Assume that

$$\begin{split} & \sum_{n \in \mathbb{N}} \sqrt{\mathsf{E}(\|\boldsymbol{a}_n\|^2 \,|\, \boldsymbol{\mathfrak{X}}_n)} < +\infty, \, \sum_{n \in \mathbb{N}} \sqrt{\mathsf{E}(\|\boldsymbol{b}_n\|^2 \,|\, \boldsymbol{\mathfrak{X}}_n)} < +\infty, \, \text{and} \\ & \sum_{n \in \mathbb{N}} \sqrt{\mathsf{E}(\|\boldsymbol{c}_n\|^2 \,|\, \boldsymbol{\mathfrak{X}}_n)} < +\infty \, \text{a.s.} \end{split}$$

- The variables (ε_n)_{n∈ℕ} are identically distributed such that (∀j ∈ {1,...,p}) P[ε_{j,0} = 1] > 0.
- For every $n \in \mathbb{N}$, ε_n and \mathfrak{X}_n are independent.

► For every
$$k \in \{1, ..., q\}$$
 and $n \in \mathbb{N}$,
$$\varepsilon_{p+k,n} = \max_{1 \leqslant j \leqslant p} \left\{ \varepsilon_{j,n} \mid j \in \mathbb{L}_k \right\}.$$

- $(\boldsymbol{x}_n)_{n \in \mathbb{N}}$ converges weakly a.s. to an **F**-valued random variable.
- $(v_n)_{n \in \mathbb{N}}$ converges weakly a.s. to an **F**^{*}-valued random variable.

Proof: Based on properties of quasi-Fejér stochastic sequences [Combettes and Pesquet – 2014].

Introduction	Primal-dual algorithms	Application to 3D mesh denoising	Conclusion
00	000000000	000	00
EUSIPCO 2015			14/19

Variable selection $(\forall n \in \mathbb{N})$

$x_{1,n}$	activated when $\varepsilon_{1,n} = 1$
$x_{2,n}$	activated when $\varepsilon_{2,n} = 1$
$x_{3,n}$	activated when $\varepsilon_{3,n} = 1$
$x_{4,n}$	activated when $\varepsilon_{4,n} = 1$
$x_{5,n}$	activated when $\varepsilon_{5,n} = 1$
$x_{6,n}$	activated when $\varepsilon_{6,n} = 1$

Introduction	Primal-dual algorithms	Application to 3D mesh denoising	Conclusion
00	00000000	000	00
EUSIPCO 2015			14/19

Variable selection $(\forall n \in \mathbb{N})$

$x_{1,n}$	activated when $\varepsilon_{1,n} = 1$
$x_{2,n}$	activated when $\varepsilon_{2,n} = 1$
$x_{3,n}$	activated when $\varepsilon_{3,n} = 1$
$x_{4,n}$	activated when $\varepsilon_{4,n} = 1$
$x_{5,n}$	activated when $\varepsilon_{5,n} = 1$
$x_{6,n}$	activated when $\varepsilon_{6,n} = 1$

$$\mathsf{P}[\pmb{\varepsilon}_n = (1, 1, 0, 0, 0, 0)] = 0.1$$

Introduction	Primal-dual algorithms	Application to 3D mesh denoising	Conclusion
00	00000000	000	00
EUSIPCO 2015			14/19

Variable selection $(\forall n \in \mathbb{N})$

$x_{1,n}$	activated when $\varepsilon_{1,n} = 1$
$x_{2,n}$	activated when $\varepsilon_{2,n} = 1$
$x_{3,n}$	activated when $\varepsilon_{3,n}=1$
$x_{4,n}$	activated when $\varepsilon_{4,n}=1$
$x_{5,n}$	activated when $\varepsilon_{5,n}=1$
$x_{6,n}$	activated when $\varepsilon_{6,n} = 1$

$$\mathsf{P}[\boldsymbol{\varepsilon}_n = (1, 1, 0, 0, 0, 0)] = 0.1$$

$$\mathsf{P}[\varepsilon_n = (1, 0, 1, 0, 0, 0)] = 0.2$$

Introduction	Primal-dual algorithms	Application to 3D mesh denoising	Conclusion
00	00000000	000	00
EUSIPCO 2015			14/19

Variable selection $(\forall n \in \mathbb{N})$

$x_{1,n}$	activated when $\varepsilon_{1,n} = 1$
$x_{2,n}$	activated when $\varepsilon_{2,n} = 1$
$x_{3,n}$	activated when $\varepsilon_{3,n} = 1$
$x_{4,n}$	activated when $\varepsilon_{4,n} = 1$
$x_{5,n}$	activated when $\varepsilon_{5,n} = 1$
$x_{6,n}$	activated when $\varepsilon_{6,n} = 1$

$$\mathsf{P}[\boldsymbol{\varepsilon}_n = (1, 1, 0, 0, 0, 0)] = 0.1$$

$$\mathbf{P}[\boldsymbol{\varepsilon}_n = (1, 0, 1, 0, 0, 0)] = 0.2$$

$$\mathsf{P}[\boldsymbol{\varepsilon}_n = (1, 0, 0, 1, 1, 0)] = 0.2$$

Introduction	Primal-dual algorithms	Application to 3D mesh denoising	Conclusion
00	00000000	000	00
EUSIPCO 2015			14/19

Variable selection $(\forall n \in \mathbb{N})$

$x_{1,n}$	activated when $\varepsilon_{1,n} = 1$
$x_{2,n}$	activated when $\varepsilon_{2,n} = 1$
$x_{3,n}$	activated when $\varepsilon_{3,n} = 1$
$x_{4,n}$	activated when $\varepsilon_{4,n} = 1$
$x_{5,n}$	activated when $\varepsilon_{5,n} = 1$
$x_{6,n}$	activated when $\varepsilon_{6,n} = 1$

$$\mathsf{P}[\boldsymbol{\varepsilon}_n = (1, 1, 0, 0, 0, 0)] = 0.1$$

$$\mathbf{P}[\boldsymbol{\varepsilon}_n = (1, 0, 1, 0, 0, 0)] = 0.2$$

$$\mathbf{P}[\boldsymbol{\varepsilon}_n = (1, 0, 0, 1, 1, 0)] = 0.2$$

$$\mathsf{P}[\boldsymbol{\varepsilon}_n = (0, 1, 1, 1, 1, 1)] = 0.5$$

Introduction	1
00	

Primal-dual algorithms

Application to 3D mesh denoising •oo

EUSIPCO 2015

Application: 3D mesh denoising

Undirected nonreflexive graph

OBJECTIVE: Estimate $\overline{\mathbf{x}} = (\overline{\mathbf{x}}_i)_{1 \leq i \leq M}$ from noisy observations $\mathbf{z} = (\mathbf{z}_i)_{1 \leq i \leq M}$ where, for every $i \in \{1, \dots, M\}$, $\overline{\mathbf{x}}_i \in \mathbb{R}^3$ is the vector of 3D coordinates of the *i*-th vertex of a mesh

 $\star \, \mathsf{H} = (\mathbb{R}^3)^M$

Introduction	Primal-dual algorithms	Application to 3D mesh denoising	Conclusion
EUSIPCO 2015			15/19

Application: 3D mesh denoising

OBJECTIVE: Estimate $\overline{\mathbf{x}} = (\overline{\mathbf{x}}_i)_{1 \leq i \leq M}$ from noisy observations $\mathbf{z} = (\mathbf{z}_i)_{1 \leq i \leq M}$ where, for every $i \in \{1, \dots, M\}$, $\overline{\mathbf{x}}_i \in \mathbb{R}^3$ is the vector of 3D coordinates of the *i*-th vertex of a mesh

COST FUNCTION:

$$\Phi(\mathbf{x}) = \sum_{j=1}^{M} \psi_j (x_j - z_j) + \iota_{C_j} (x_j) + \eta_j \| (x_j - x_i)_{i \in \mathcal{N}_j} \|_{1,2}$$
where $(\forall j \in \{1, \dots, M\})$,
 $\star \ \psi_j \colon \mathbb{R}^3 \to \mathbb{R} \colon \ell_2 - \ell_1$ Huber function
• robust data fidelity measure
• convex, Lipschitz differentiable function
 $\star \ C_j \colon$ nonempty convex subset of \mathbb{R}^3
 $\star \ \mathcal{N}_j \colon$ neighborhood of *j*-th vertex

★ $(\eta_j)_{1 \leq j \leq M}$: nonnegative regularization constants.

Introduction	Primal-dual algorithms	Application to 3D mesh denoising ●○○	Conclusion
EUSIPCO 2015			15/19

Application: 3D mesh denoising

OBJECTIVE: Estimate $\overline{\mathbf{x}} = (\overline{\mathbf{x}}_i)_{1 \leq i \leq M}$ from noisy observations $\mathbf{z} = (\mathbf{z}_i)_{1 \leq i \leq M}$ where, for every $i \in \{1, \ldots, M\}$, $\overline{\mathbf{x}}_i \in \mathbb{R}^3$ is the vector of 3D coordinates of the *i*-th vertex of a mesh

COST FUNCTION:

$$\Phi(\mathbf{x}) = \sum_{j=1}^{M} \psi_j(\mathbf{x}_j - \mathbf{z}_j) + \iota_{\mathsf{C}_j}(\mathbf{x}_j) + \eta_j \| (\mathbf{x}_j - \mathbf{x}_i)_{i \in \mathcal{N}_j} \|_{1,2}$$

IMPLEMENTATION DETAILS: a block \equiv a vertex

$$p = M, \quad q = 2M$$

$$\star \quad (\forall j \in \{1, ..., M\}) \quad h_j = \psi_j(\cdot - z_j)$$

$$(\forall k \in \{1, ..., M\})(\forall x \in (\mathbb{R}^3)^M)$$

$$\star \quad g_k(L_k x) = \|(x_k - x_i)_{i \in \mathcal{N}_k}\|_{1,2}$$

$$\star \quad g_{M+k}(L_{M+k} x) = \iota_{C_k}(x_k)$$

$$\star \quad l_k = \iota_{\{0\}}$$

Introduction	Primal-dual algorithms	Application to 3D mesh denoising ○●○	Conclusion
EUSIPCO 2015			16/19

Simulation results

- positions of the original mesh are corrupted through an additive i.i.d. zero-mean Gaussian mixture noise model.
- \star a limited number r of variables can be handled at each iteration, where

$$\sum_{j=1}^{p} \varepsilon_{j,n} = r \leqslant p.$$

 \star mesh decomposed into p/r non-overlapping sets.

Original mesh, M = 100250.

Introduction	Primal-dual algorithms	Application to 3D mesh denoising	Conclusion
00	000000000	000	00
EUSIPCO 2015			16/19

Simulation results

Proposed reconstruction

 $\mathsf{MSE} = 8.09 \times 10^{-8}$

Laplacian smoothing MSE = 5.23×10^{-7}

Introduction	Primal-dual algorithms	Application to 3D mesh denoising ○○●	Conclusion
EUSIPCO 2015			17/19

Complexity

- dashed line: required memory
- * continuous line: reconstruction time

Introduction	Primal-dual algorithms	Application to 3D mesh denoising	Conclusion ●○
EUSIPCO 2015			18/19

Conclusion

- ► No linear operator inversion.
- Flexibility in the random activation of primal/dual components.
- ► Existing parallel proximal primal-dual algorithms recovered when p = 1 and $\varepsilon_n \equiv (1, ..., 1)$.
- Possibility to address other graph processing problems than denoising.
 [Couprie et al.,2013]
- Available extensions: asynchronous distributed algorithms (stochastic, primal-dual, proximal, defined on a hypergraph).

EUSIPCO 2015 19/19	Introduction 00	Primal-dual algorithms	Application to 3D mesh denoising	Conclusion ○●
	EUSIPCO 2015			19/19

Some references

P. L. Combettes and JC. Pesquet Proximal splitting methods in signal processing in <i>Fixed-Point Algorithms for Inverse Problems in Science and Engineering,</i> H. H. Bauschke, R. Burachik, P. L. Combettes, V. Elser, D. R. Luke, and H. Wolkowicz editors. Springer-Verlag, New York, pp. 185-212, 2011.
C. Couprie, L. Grady, L. Najman, JC. Pesquet, and H. Talbot Dual constrained TV-based regularization on graphs SIAM Journal on Imaging Sciences, vol. 6, no 3, pp. 1246-1273, 2013.
P. L. Combettes, L. Condat, JC. Pesquet, and B. C. Vū A forward-backward view of some primal-dual optimization methods in image recovery IEEE International Conference on Image Processing (ICIP 2014), pp. 4141-4145, Paris, France, Oct. 27-30, 2014.
P. Combettes and JC Pesquet Stochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping SIAM Journal on Optimization, vol. 25, no. 2, pp. 1221-1248, July 2015.
N. Komodakis and JC. Pesquet Playing with duality: An overview of recent primal-dual approaches for solving large-scale optimization problems to appear in <i>IEEE Signal Processing Magazine</i> , 2015.
JC. Pesquet and A. Repetti A class of randomized primal-dual algorithms for distributed optimization to appear in <i>Journal of Nonlinear and Convex Analysis</i> , 2015.
A. Repetti, E. Chouzenoux and JC. Pesquet A random block-coordinate primal-dual proximal algorithm with application to 3D mesh denoising IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2015), pp. 3561-3565, South Brisbane, Australia, 19-24 April 2015.