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Abstract Fitting Gaussian functions to empirical data is a

crucial task in a variety of scientific applications, especially

in image processing. However, most of the existing approa-

ches for performing such fitting are restricted to two di-

mensions and they cannot be easily extended to higher di-

mensions. Moreover, they are usually based on alternating

minimization schemes which benefit from few theoretical

guarantees in the underlying nonconvex setting. In this pa-

per, we provide a novel variational formulation of the multi-

variate Gaussian fitting problem, which is applicable to any

dimension and accounts for possible non-zero background

and noise in the input data. The block multiconvexity of our

objective function leads us to propose a proximal alternat-

ing method to minimize it in order to estimate the Gaus-

sian shape parameters. The resulting FIGARO algorithm is

shown to converge to a critical point under mild assump-

tions. The algorithm shows a good robustness when tested

on synthetic datasets. To demonstrate the versatility of FI-

GARO, we also illustrate its excellent performance in the

fitting of the Point Spread Functions of experimental raw

data from a two-photon fluorescence microscope.
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1 Introduction

Fitting Gaussian shapes from noisy observed data points is

an essential task in various science and engineering applica-

tions. In the one-dimensional (1D) case, it lies for instance at

the core of spectroscopy signal analysis techniques in physi-

cal science [21,31]. In the two-dimensional (2D) case, where

Gaussian profile parameters are estimated from images, some

worth mentioning applications include Gaussian beam char-

acterization, particle tracking, and sensor calibration [28,37,

15]. In the domain of image recovery, a particularly impor-

tant application of Gaussian shape fitting is the modeling of

Point Spread Functions (PSF) from raw data of optical sys-

tems (e.g., microscopes, telescopes). The success of image

restoration strategies strongly depends on the accuracy of

the PSF estimation [13]. This estimation is often performed

through a preliminary step of image acquisition of normal-

ized and calibrated objects, associated with a model fitting

strategy. The PSF model is chosen as a trade-off between

accuracy and simplicity. Gaussian models often lead to both

tractable and good quality approximations [35,32,1,42,41].

Let L1(RQ) denote the space of real-valued summable

functions defined on R
Q. In this paper, we address the prob-

lem of fitting a Gaussian model to an observed function

y ∈ L1(RQ). We assume that the observed function y can

be modeled as

(∀uuu ∈ R
Q) y(uuu) = a+bp(uuu)+ v(uuu), (1.1)

where a ∈ R is a background term, b ∈ (0,+∞) is a scal-

ing parameter, p ∈ L1(RQ) represents a noiseless version of

the observed field, and v is a function accounting for acqui-

sition errors. The main assumption is that p is close, in a

sense to be made precise, to the probability density function

uuu 7→ g(uuu,µµµ,CCC), of a Q-dimensional normal distribution with

mean µµµ ∈R
Q and precision (i.e., inverse covariance) matrix
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CCC ∈ S
++

Q
1. This distribution is expressed as

(∀uuu ∈ R
Q)(∀µµµ ∈ R

Q)(∀CCC ∈ S
++

Q )

g(uuu,µµµ,CCC) =

√
|CCC|

(2π)Q
exp

(
−1

2
(uuu−µµµ)⊤CCC(uuu−µµµ)

)
,

(1.2)

where |CCC| denotes the determinant of matrix CCC. The fitting

problem thus consists of finding an estimate (â, b̂, p̂, µ̂µµ,ĈCC)
of (a,b, p,µµµ,CCC) in accordance with model (1.1)

Because of its prominent importance in applications, there

has been a significant amount of works on this subject [12,

25,24,23,34,42]. To the best of our knowledge, all existing

works consider that p = g(·,µµµ,CCC) and they are focused on

fitting parameters (â, b̂, µ̂µµ,ĈCC) from y. Two main classes of

methods can be distinguished. The first set of approaches

[25,24,34] is based on the search for the best fitting pa-

rameters minimizing a least-squares cost between the obser-

vations and the sought model. The minimization process is

based on the famous Levenberg-Marquardt alternating min-

imization strategy. However, it is worth mentioning that few

established convergence guarantees are available for this me-

thod, which may be detrimental to its reliable use in prac-

tice. The second class of methods uses the so-called Caru-

ana’s formulation [12]. The idea here is to assume that the

background term a is zero and to search for (b̂, µ̂µµ,ĈCC) which

minimize the difference of logarithms between the data and

the model [23,1]. The advantage of such a strategy is that

it gives rise to a convex formulation, for which efficient and

reliable optimization techniques can be applied. It is how-

ever worth emphasizing that all the aforementioned works

are focused on the resolution of the fitting problem in low

dimensions, that is when Q = 1 [12,25,23,34] or Q = 2 [24,

1,42]. Moreover, except in [34] where a polynomial back-

ground is accounted for, the background term a is consid-

ered as zero. These assumptions however usually do not cor-

respond to constraints inherent to an experimental setup or

environment.

The aim of this paper is to propose a new multivariate

Gaussian fitting strategy which avoids the aforementioned

limitations. Our method relies on the minimization of a hy-

brid cost function combining a least-squares data fidelity

term, a Kullback-Leibler divergence regularizer for improved

robustness, and range constraints on the parameters. This

original variational formulation results in a nonconvex mini-

mization problem for which we propose a theoretically sound

and efficient proximal alternating iterative resolution scheme.

When applied to the analysis of 3D raw data acquired with

1 Throughout the paper, S
++

Q will denote the set of symmetric pos-

itive definite matrices of R
Q×Q, S

+
Q the set of symmetric positive

semidefinite matrices of RQ×Q and SQ the set of symmetric matrices

of RQ×Q

a two-photon fluorescence microscope, our new computa-

tional strategy shows an unprecedented accuracy and relia-

bility.

In Section 2, the data fitting problem is formulated in

a variational manner. A proximal alternating optimization

method called FIGARO is then proposed in Section 3 for

finding a minimizer of the proposed nonconvex cost func-

tion. The implementation of the algorithm steps is discussed.

The convergence of the sequence of iterates resulting from

FIGARO is established in Section 4. Section 5 illustrates

the high robustness of our approach to a model mismatch,

when compared to a standard nonlinear least squares fitting

strategy on 3D synthetic data. In Section 6, the scope of our

approach is demonstrated through the analysis of the Point

Spread Function of a 3D two-photon fluorescence micro-

scope. Finally, Section 7 concludes the paper.

2 Proposed Variational Formulation

The key ingredient of our method relies on measuring the

closeness of p to the Gaussian probability density functions

by using the Kullback-Leibler (KL) divergence [5]. Let us

first recall the definition of KL divergence. Let P denote

the set of probability density functions supported on R
Q:

P =
{

q ∈ L1(RQ) | (∀uuu ∈ R
Q) q(uuu)≥ 0

∫

Ω
q(uuu)duuu = 1

}
. (2.1)

Suppose that (p,q) ∈ P2 and q takes (strictly) positive val-

ues, the KL divergence from q to p reads

KL (p‖ q) =
∫

RQ
p(uuu) log

(
p(uuu)

q(uuu)

)
duuu, (2.2)

with the convention 0log0 = 0.

In order to avoid singularity issues, we will assume that

the Gaussian variances in each direction are bounded above

by some maximal values. The spectrum of the precision ma-

trix CCC is thus bounded from below, in the sense that there

exists some ε > 0 such that CCC = DDD+ εIIIQ where DDD belongs

to S
+

Q and IIIQ ∈ R
Q×Q denotes the identity matrix of RQ.

We then propose to define (â, b̂, p̂, µ̂µµ, D̂DD) as a minimizer of

a hybrid cost function, gathering information regarding the

observation model (1.1) and the Gaussian shape prior (1.2).

The minimization problem reads

minimize
a∈A ,b∈B

µµµ∈RQ,p∈P,DDD∈S
+
Q

1

2

∫

RQ

(
y(uuu)−a−bp(uuu)

)2
duuu

+λKL
(

p‖ g(·,µµµ,DDD+ εIIIQ)
)
. (2.3)
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Hereabove, A and B are some nonempty closed bounded

real intervals corresponding to known bounds on a and b re-

spectively, and λ > 0 is a regularization parameter weight-

ing the KL penalty term favoring the proximity between p

and the Gaussian model (1.2) parametrized by (µµµ,DDD).

In practice, however, one generally has access only to a

sampling of y, which is performed on a bounded Borel set

Ω of RQ. The set Ω is supposed here chosen large enough

so that it captures most of the probability mass of the sought

Gaussian disribution. More precisely, we will assume that Ω
is paved into N ∈N voxels of volume ∆ ∈ (0,+∞) and mass

centers (xxxn)1≤n≤N . The available vector of observations is

then yyy = (yn)1≤n≤N where, for every n ∈ {1, . . . ,N}, yn =

y(xxxn). After this discretization, by assuming that y and p are

continuous functions in (2.3) and that ∆ is small enough,

the following more tractable optimization problem is thus

substituted for the original variational formulation:

minimize
a∈A ,b∈B

µµµ∈RQ,ppp∈Pd,DDD∈S
+
Q

1

2
‖yyy−a111N −bppp‖2

+λ
N

∑
n=1

pn log

(
pn

g(xxxn,µµµ,DDD+ εIIIQ)

)
, (2.4)

where ‖ · ‖ denotes the standard Euclidean norm. The prob-

ability density function p has been replaced by the vector

ppp = (pn)1≤n≤N which belongs Pd = [0,+∞)N ∩C , where

C is the affine hyperplane

C =

{
ppp ∈ R

N

∣∣∣∣∣
N

∑
n=1

pn = ∆−1

}
. (2.5)

The discrete KL term in (2.4) can be rewritten as

N

∑
n=1

pn log

(
pn

g(xxxn,µµµ,DDD+ εIIIQ)

)

=
N

∑
n=1

ent(pn)+ pn

(Q

2
log(2π)− 1

2
log(|DDD+ εIIIQ|)

+
1

2
(xxxn −µµµ)⊤(DDD+ εIIIQ)(xxxn −µµµ)

)
, (2.6)

where

(∀υ ∈ R) ent(υ) =





υ logυ , υ > 0,

0, υ = 0,

+∞, otherwise.

(2.7)

Note that the above definition of the function ent allows us

to impose directly the nonnegativity of the components of ppp.

For technical reasons which will appear later, we will also

need to perform a twice continuously differentiable exten-

sion of the function DDD 7→ − log(|DDD+εIIIQ|) on the whole do-

main SQ. This extension ϕ is defined as follows. For every

DDD ∈ SQ decomposed as UUU Diag(σσσ)UUU⊤ with UUU ∈ R
Q×Q an

orthogonal matrix and σσσ = (σq)1≤q≤Q the associated vector

of eigenvalues of DDD,

ϕ(DDD) = ϕ̃(σσσ)

=





− log(|DDD+ εIIIQ|) =−
Q

∑
q=1

log(σq + ε),

if DDD ∈ S
+

Q ,

ϕ̃(000Q)+σσσ⊤∇ϕ̃(000Q)+
1
2
σσσ⊤∇2ϕ̃(000Q)σσσ ,

otherwise,

(2.8)

where 000Q is the Q-dimensional null vector, 111Q the Q-dimensional

vector of all ones, and

ϕ̃(000Q) =−Q logε ,∇ϕ̃(000Q) =−ε−1111Q,∇2ϕ̃(000Q) = ε−2IIIQ.

(2.9)

Let us denote by ιS the indicator function of a set S , which

is equal to 0 on this set and +∞ otherwise. We are now ready

to define the cost function which is minimized in our Gaus-

sian fitting approach:

(∀a ∈ R)(∀b ∈ R)(∀ppp ∈ R
N)(∀µµµ ∈ R

Q)(∀DDD ∈ SQ)

F(a,b, ppp,µµµ,DDD) =
1

2
‖yyy−a111N −bppp‖2 + ιA (a)

+ ιB(b)+λΨ(ppp,µµµ,DDD), (2.10)

where

(∀ppp ∈ R
N)(∀µµµ ∈ R

Q)(∀DDD ∈ SQ)

Ψ(ppp,µµµ,DDD) =
N

∑
n=1

(
ent(pn)+

pn

2

(
Q log(2π)+ϕ(DDD)

+(xxxn −µµµ)⊤(DDD+ εIIIQ)(xxxn −µµµ)
))

+ ιC (ppp)+ ι
S

+
Q
(DDD).

(2.11)

Remark 1 The proposed formulation deals with a regular

grid but it can be easily extended to the case of irregular

sampling by changing the definition of C into

C =

{
ppp ∈ R

N

∣∣∣∣∣
N

∑
n=1

∆n pn = 1

}
(2.12)

where, for every n ∈ {1, . . . ,N}, ∆n ∈ (0,+∞)N is the vol-

ume of the n-th voxel.

3 FIGARO Minimization Algorithm

3.1 Proposed Algorithm

The objective function (4.1) is nonconvex, yet convex with

respect to each variable. A standard resolution approach is

thus to adopt an alternating minimization strategy, where, at
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each iteration, F is minimized with respect to one variable

while the others remain fixed. This approach, sometimes re-

ferred to as Block Coordinate Descent or nonlinear Gauss-

Seidel method, has been widely used in the context of PSF

model fitting [42,30,32]. However, its convergence is only

guaranteed under restrictive assumptions [38]. In order to

get sounder convergence results, we propose to use an al-

ternative strategy based on proximal tools which consists of

replacing, at each iteration the direct minimization step by

a proximal one ([33, Def. 1.22], [6, Def. 12.23], [18, Def.

10.1] [11]).

Definition 1 (Domain) Let f be a function from R
n to

(−∞,+∞]. The domain of f is defined by

dom f := {x ∈ R
n : f (x)<+∞}.

The function f is proper if and only if dom f is nonempty.

Definition 2 (Proximity operator) Let f : Rn → (−∞,+∞]
be a convex, proper, lower semi-continuous function. The

proximity operator of f at x ∈ R
n is defined as

prox f (x) = argmin
y∈Rn

f (y)+
1

2
‖y− x‖2.

Let S be a nonempty closed convex subset of R
n. Then

proxιS is equal to the projection PS onto S .

The application of the proximal alternating method [4,2,

8] to the minimization of (4.1) yields Algorithm 1, called

FIGARO (Fitting Gaussians with Proximal Optimization).

Algorithm 1 FIGARO method

a0 ∈ A ,b0 ∈ B, ppp0 ∈ C ,µµµ0 ∈ R
Q,DDD0 ∈ S

+
Q ,

(γa,γb,γp,γµ ,γD) ∈ (0,+∞)5.

for i = 1,2, . . . do

a(i+1) = proxγaF(·,b(i),ppp(i),µµµ(i),DDD(i))
(a(i))

b(i+1) = proxγbF(a(i+1),·,ppp(i),µµµ(i),DDD(i))
(b(i))

ppp(i+1) = proxγpF(a(i+1),b(i+1),·,µµµ(i),DDD(i))
(ppp(i))

µµµ(i+1) = proxγµ F(a(i+1),b(i+1),ppp(i+1),·,DDD(i))
(µµµ(i))

DDD(i+1) = proxγDF(a(i+1),b(i+1),ppp(i+1),µµµ(i+1),·)(DDD
(i))

end for

Remark that other methods such as those proposed in

[40,17,10] are also applicable to our problem, but the con-

sidered alternating proximal point algorithm may appear prefer-

able because of its simplicity.

3.2 Expressions of the Proximity Operators

In this part, we show that the proximity operators required

in Algorithm 1 have closed form expressions.

Proposition 1 Let (a,b, ppp,µµµ,DDD) ∈R×R×R
N ×R

Q ×SQ

and (γa,γb) ∈ (0,+∞)2. The proximity operator of

γaF(·,b, ppp,µµµ,DDD) at a is given by

proxγaF(·,b,ppp,µµµ ,DDD)(a) = PA

(
a+ γa111⊤N (yyy−bppp)

1+ γaN

)
(3.1)

and the proximity operator of γbF(a, ·, ppp,µµµ,DDD) at b is given

by

proxγbF(a,·,ppp,µµµ ,DDD)(b) = PB

(
b+ γb(yyy−a111N)

⊤ppp

1+ γb‖ppp‖2

)
. (3.2)

Proof Calculating the proximity operator of γaF(·,b, ppp,µµµ,DDD)
is equivalent to calculating the proximity operator of the

one-variable function ϑ + ιA where

(∀a ∈ R) ϑ(a) =
γa

2

N

∑
n=1

(yn −a−bpn)
2. (3.3)

It follows from [14] that

proxγaF(·,b,ppp,µµµ ,DDD) = PA ◦proxϑ . (3.4)

On the other hand, it follows from [18] that

proxϑ (a) =
a+ γa111⊤N (yyy−bppp)

1+ γaN
. (3.5)

Expression (3.2) is obtained by similar arguments. ⊓⊔

Proposition 2 Let (a,b, ppp,µµµ,DDD) ∈R×R×R
N ×R

Q ×SQ

and γp > 0. The proximity operator of γpF(a,b, ·,µµµ,DDD) at ppp

is given by

proxγpF(a,b,·,µµµ,DDD)(ppp) = (ρ−1W
(
ρ exp

(
wn(ν̂)

))
1≤n≤N

,

(3.6)

where W denotes the Lambert-W function [19],

ρ =
γpb2 +1

γpλ
, (3.7)

and, for every n ∈ {1, . . . ,N}, wn is the function defined as

(∀ν ∈R) wn(ν)=−1−cn+(γpλ )−1(pn+γpb(yn−a)−ν),
(3.8)

with

cn =
Q

2
log(2π)+

1

2
ϕ(DDD)

+
1

2
(xxxn −µµµ)⊤(DDD+ εIIIQ)(xxxn −µµµ). (3.9)

Moreover, ν̂ ∈ R is the the unique zero of the function

(∀ν ∈ R) Φ(ν) = ρ−1
N

∑
n=1

W
(
ρ exp(wn(ν))

)
−∆−1.

(3.10)
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Proof Let p̃pp ∈ R
N . Then,

p̂pp = proxγpF(a,b,·,µµµ,DDD)( p̃pp)

= argmin
ppp∈RN

γpF(a,b, ppp,µµµ,DDD)+
1

2
‖ppp− p̃pp‖2

= argmin
ppp∈C

γp

N

∑
n=1

1

2
(yn −a−bpn)

2 + γpλ
N

∑
n=1

(pn log pn + pncn)

+
1

2

N

∑
n=1

(pn − p̃n)
2. (3.11)

The Lagrangian function associated with the above constrained

problem reads

(∀ppp ∈ [0,+∞)N)(∀ν ∈ R) L (ppp,ν) = γp

N

∑
n=1

1

2
(yn −a−bpn)

2

+
N

∑
n=1

γpλ (pn log pn + pncn)+
1

2
(pn − p̃n)

2

+ν
( N

∑
n=1

pn −∆−1
)
. (3.12)

Since Slater’s condition obviously holds, there exists ν̂ ∈ R

such that ( p̂pp, ν̂) is a saddle point of the L [7]. By Fermat’s

rule [6], p̂pp = ( p̂n)1≤n≤N is thus obtained by finding a zero of

the partial subdifferential of L with respect to variable ppp.

By using (3.7), this yields, for every n ∈ {1, . . . ,N},

γp(b
2 pn −byn +ab)+ γpλ (1+ log pn + cn)

+ pn − p̃n + ν̂ = 0

⇔ ρ pn + log pn = wn(ν̂)
⇔ ρ pn exp(ρ pn) = ρ exp(wn(ν̂)). (3.13)

By recalling that the Lambert-W function is such that (∀z ∈
R) W(z)exp(W(z)) = z, we deduce (3.6).

In addition, canceling the derivative of L with respect to

ν amounts to finding a zero of function Φ defined in (3.10).

This existence of a zero is guaranteed by the existence of

p̂pp. Let us now establish its uniqueness by evaluating the

derivative Φ ′ using the following property of the Lambert

W-function:

(∀z ∈ R
+) W′(z) =

1

(W(z)+1)eW(z)
=

W(z)

(W(z)+1)z
.

(3.14)

We have then

(∀ν ∈ R)

Φ ′(ν) =
N

∑
n=1

W′(ρ exp(wn(ν))
)

exp
(
wn(ν)

)
w′

n(ν)

=− 1

γpλρ

N

∑
n=1

(
1− 1

W
(
ρ exp(wn(ν))

)
+1

)
. (3.15)

Therefore, since W takes positive values on (0,+∞), Φ ′(ν)<
0 for every ν ∈R, i.e., Φ is strictly decreasing. We thus con-

clude that it has a unique zero ν̂ . ⊓⊔

The computation of the above proximity operator re-

quires to determine the zero of the scalar function Φ . The

following lemma shows that this can be achieved with high

precision using Newton algorithm, the convergence of which

is guaranteed for any initialization.

Lemma 1 The Newton iteration

(∀t ∈ N) ν(t+1) = ν(t)− Φ(ν(t))

Φ ′(ν(t))
(3.16)

converges to the unique zero of Φ from any starting point

ν(0) ∈ R.

Proof We have already shown that Φ is strictly decreasing

on R and has a unique zero. Let us now establish the con-

vexity of Φ by calculating its second-order derivative

(∀ν ∈ R)

Φ ′′(ν) =− 1

γpλ

N

∑
n=1

W′(ρ exp(wn(ν)))exp(wn(ν))w′
n(ν)

(W(ρ exp(wn(ν)))+1)2

=
1

γ2
pλ 2ρ

N

∑
n=1

W(ρ exp(wn(ν)))
(W(ρ exp(wn(ν)))+1)3

. (3.17)

Since W(ρ exp(wn(ν))) > 0 for every n ∈ {1, . . . ,N} and

ν ∈ R, we have Φ ′′(ν) > 0 for all ν ∈ R, i.e., Φ is strictly

convex. Now, let us ascertain the convergence of Newton’s

method for finding the unique root of Φ . The remaining of

our proof follows similar arguments as the one of [29, Chap-

ter 3, Theorem 2]. For every t ∈N, let e(t) is the error defined

as

(∀t ∈ N) e(t) = ν(t)− ν̂,

where ν̂ is the zero of Φ . From the definition of the Newton

iteration, we have

(∀t ∈ N) e(t+1) = ν(t+1)− ν̂ = ν(t)− Φ(ν(t))

Φ ′(ν(t))
− ν̂

= e(t)− Φ(ν(t))

Φ ′(ν(t))
=

e(t)Φ ′(ν(t))−Φ(ν(t))

Φ ′(ν(t))
.

(3.18)

By performing a second-order Taylor expansion, we get

(∀t ∈ N) 0 = Φ(ν̂) = Φ(ν(t)− e(t))

= Φ(ν(t))− e(t)Φ ′(ν(t))+
1

2
(e(t))2Φ ′′(ξ (t)), (3.19)

where, for all t ∈N, ξ (t) ∈ [min(ν̂ ,ν(t)),max(ν̂ ,ν(t))]. Com-

bining the latter equality with (3.18) yields

(∀t ∈ N) et+1 =
1

2

Φ ′′(ξ (t))

Φ ′(ν(t))
(e(t))2. (3.20)
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Recall that Φ ′(ν) < 0 and Φ ′′(ν) > 0 for all ν ∈ R. Ac-

cording to (3.20), for every t ∈ N, e(t+1) < 0, which im-

plies that ν(t) < ν̂ for all t ≥ 1. Thus, since Φ is strictly

decreasing, (∀t ≥ 1) Φ(ν(t))> Φ(ν̂) = 0. By (3.18), (∀t ≥
1) e(t+1) > e(t), and thus (e(t))t≥1 is increasing and upper

bounded by 0. Hence, (ν(t))t≥1 is also increasing and up-

per bounded by ν̂ . Therefore, the limits e∗ = limt→+∞ e(t)

and ν∗ = limt→+∞ ν(t) exist. We deduce from (3.18) that

e∗ = e∗−Φ(ν∗)/Φ ′(ν∗), which implies that Φ(ν∗) = 0 and

ν∗ = ν̂ . ⊓⊔

Proposition 3 Let (a,b, ppp,µµµ,DDD) ∈R×R×R
N ×R

Q ×SQ

and γµ > 0. The proximity operator of γµ F(a,b, ppp, ·,DDD) at µµµ
is given by

proxγµ F(a,b,ppp,·,DDD)(µµµ) =
(

IIIQ + γµ λ (111⊤N ppp)(DDD+ εIIIQ)
)−1

×
(

µµµ + γµ λ
N

∑
n=1

pn(DDD+ εIIIQ)xxxn

)
. (3.21)

Proof Calculating the proximity of operator of γµ F(a,b, ppp, ·,DDD)

is equivalent to calculating the proximity operator of the

quadratic function

µµµ 7→ γµ λ
N

∑
n=1

pn

2
(xxxn −µµµ)⊤(DDD+ εIIIQ)(xxxn −µµµ). (3.22)

The result then follows from [18]. ⊓⊔

Proposition 4 Let (a,b, ppp,µµµ,DDD)∈R×R×R
N ×R

Q×S (Q)

and γD > 0. The proximity operator of γDF(a,b, ppp,µµµ, ·) at DDD

is given by

proxγDF(a,b,ppp,µµµ ,·)(DDD) =

1

2
VVV Diag

((
max

(
ωq − ε +

√
(ωq + ε)2 +4m,0

))

1≤q≤Q

)

×VVV⊤, (3.23)

where ωωω = (ωq)1≤q≤Q is a vector of eigenvalues of DDD− SSS

and VVV is a Q × Q orthogonal matrix such that DDD − SSS =

VVV Diag(ωωω)VVV⊤ with SSS= 1
2
γDλ ∑N

n=1 pn(xxxn−µµµ)(xxxn−µµµ)⊤ and

m =
1

2
γDλ (111⊤N ppp).

Proof Let ‖ ·‖F denote the Frobenius norm and let D̃DD ∈SQ.

We have

proxγDF(a,b,ppp,µµµ ,·)(D̃DD)

= argmin
DDD∈SQ

γDF(a,b, ppp,µµµ,DDD)+
1

2
‖DDD− D̃DD‖2

F

= argmin
DDD∈SQ

1

2
‖DDD− D̃DD‖2

F + tr(DDDSSS)+mϕ(DDD)+ ι
S

+
Q
(DDD)

= proxmϕ+ι
S

+
Q

(D̃DD−SSS). (3.24)

Since ϕ and ι
S

+
Q

are spectral functions on SQ associated

with the functions ϕ̃ and ι[0,+∞)Q , respectively, it follows

from [6, Corollary 24.65] that

proxγDF(a,b,ppp,µµµ ,·)(D̃DD) =VVV Diag
(
proxmϕ̃+ι

[0,+∞)Q
(ωωω)

)
VVV⊤,

(3.25)

where ωωω = (ωq)1≤q≤Q is a vector of eigenvalues of D̃DD −
SSS and VVV is a Q×Q orthogonal matrix such that D̃DD− SSS =

VVV Diag(ωωω)VVV⊤. Since mϕ̃ + ι[0,+∞)Q is a separable function,

proxmϕ̃+ι
[0,+∞)Q

(ωωω) = (σ̂q)1≤q≤Q, (3.26)

where, for every q ∈ {1, . . . ,Q},

σ̂q = argmin
σq∈[0,+∞)

−m log(σq + ε)+
1

2
(σq −ωq)

2

=
1

2
max

(
ωq − ε +

√
(ωq + ε)2 +4m,0

)
. (3.27)

4 Convergence Analysis

Let us now establish the convergence of the iterates gener-

ated by Algorithm 1. Our analysis will rely on the observa-

tion that FIGARO can be viewed as a special instance of

the regularized Gauss-Seidel method from [4].

4.1 Preliminaries

Let us first recall some useful definitions concerning vari-

ational analysis and the fundamental Kurdyka-Łojasiewicz

property that will be at the core of the convergence analysis

of our algorithm.

Definition 3 (Subdifferential) [33, Def. 8.3] Let f : Rn →
(−∞,+∞] be a proper function.

(a) For a given x ∈ dom f , the Fréchet subdifferential of f

at x, written ∂̂ f (x), is the set of all vectors u ∈R
n which

satisfy

lim
y 6=x

inf
y→x

f (y)− f (x)−〈u,y− x〉
‖y− x‖ ≥ 0.

When x /∈ dom f , we set ∂̂ f (x) =∅.

(b) The limiting-subdifferential, or simply the subdifferen-

tial, of f at x ∈ dom f , written ∂ f (x), is defined as

∂ f (x) =
{

v ∈ R
n |

∃x(t) → x, f (x(t))→ f (x),v(t) ∈ ∂̂ f (x(t))→ v
}
.
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Definition 4 (Kurdyka-Łojasiewicz property) [10] The func-

tion f : Rn → (−∞,+∞] is said to satisfy the Kurdyka-Ło-

jasiewicz (KL) property at x∗ ∈ dom∂ f if there exist η ∈
(0,+∞], a neighbourhood U of x∗, and a continuous con-

cave function ϕ : [0,η)→ R
+ such that

(a) ϕ(0) = 0,

(b) ϕ is C 1 on (0,η),
(c) for all s ∈ (0,η), ϕ ′(s)> 0,

(d) for all x ∈ U ∩ [ f (x∗) < f < f (x∗) +η ], the Kurdyka-

Łojasiewicz inequality holds:

ϕ ′( f (x)− f (x∗))dist(0,∂ f (x))≥ 1.

Moreover, f is called a KL function if it satisfies the Kurdyka-

Łojasiewicz inequality at every point in dom∂ f .

4.2 Convergence Theorem

In order to establish convergence results, we will show that

the objective function is KL, and that it can be split into the

sum of a locally Lipschitz differentiable part involving all

the variables, and non differentiable separable terms.

Lemma 2 Function (4.1) is a KL function.

Proof Let us recall that there exists an o-minimal structure,

denoted by S(Ran,exp) with Ran,exp :=(R,+, ·,( f ),exp), that

contains the exponential functions and every restricted an-

alytic functions (see [20, Example (6), pp. 505]). Note that

S(Ran,exp) also contains the logarithm function log:

(0,+∞)→ R and (·)r : R→ R defined by

a 7→
{

ar, a > 0

0, a ≤ 0,

where r ∈ R. Then, by using [20, Section 5], we conclude

that F is definable in an o-minimal structure. As a conse-

quence, the results of [9] and Theorem 4.1 of [3] apply and

hence F is a KL function.

Lemma 3 Function (4.1) can be rewritten as

(∀a ∈ R)(∀b ∈ R)(∀ppp ∈ R
N)(∀µµµ ∈ R

Q)(∀DDD ∈ SQ)

F(a,b, ppp,µµµ,DDD) = G(a,b, ppp,µµµ,DDD)

+ f1(a)+ f2(b)+ f3(ppp)+ f4(DDD), (4.1)

where

(∀a ∈ R)(∀b ∈ R)(∀ppp ∈ R
N)(∀µµµ ∈ R

Q)(∀DDD ∈ S (Q))

G(a,b, ppp,µµµ,DDD) =
1

2
‖yyy−a111N −bppp‖2

+λ
N

∑
n=1

pn

2

(
(xxxn −µµµ)⊤(DDD+ εIIIQ)(xxxn −µµµ)+ϕ(DDD)

)
,

(4.2)

(∀a ∈ R) f1(a) = ιA (a), (4.3)

(∀b ∈ R) f2(b) = ιB(b), (4.4)

(∀ppp ∈ R
N) f3(ppp) = ιC (ppp)

+λ
N

∑
n=1

(
ent(pn)+ pn

Q

2
log(2π)

)
, (4.5)

(∀DDD ∈ S (Q)) f4(DDD) = ιS +(Q)(DDD). (4.6)

Moreover, G is C2 on R×R×R
N ×R

Q ×S (Q).

Proof We first calculate the gradients ∇aG, ∇bG, ∇pppG, ∇µµµ G

and ∇DDDG of G with respect to the different variables. Let us

denote by (eeen,N)1≤n≤N the canonical basis of RN . For every

(a,b, ppp,µµµ,DDD) ∈ R×R×R
N ×R

Q ×S (Q),

∇aG(a,b, ppp,µµµ,DDD) = b111⊤N ppp+Na−111⊤N yyy,

∇bG(a,b, ppp,µµµ,DDD)= b‖ppp‖2−yyy⊤ppp+a111⊤N ppp=(bppp−yyy+a111N)
⊤ppp,

∇pppG(a,b, ppp,µµµ,DDD) = b2 ppp−byyy+ab111N

+
λ
2

N

∑
n=1

(
(xxxn −µµµ)⊤(DDD+ εIIIQ)(xxxn −µµµ)+ϕ(DDD)

)
eeen,N ,

∇µµµ G(a,b, ppp,µµµ,DDD) = λ
N

∑
n=1

pn(DDD+ εIIIQ)(µµµ − xxxn),

∇DDDG(a,b, ppp,µµµ,DDD) =




λ
2

N

∑
n=1

pn

(
(xxxn −µµµ)(xxxn −µµµ)⊤− (DDD+ εIIIQ)

−1
)

if DDD ∈ S +(Q),

λ
2

N

∑
n=1

pn

(
(xxxn −µµµ)(xxxn −µµµ)⊤− ε−1IIIQ + ε−2DDD

)

otherwise.

(4.7)

Let us now calculate the partial second-order derivatives of

G. In the following, ⊗ denotes the matrix Kronecker product

and vec(MMM) the columnwise ordering of a matrix MMM. For

every (a,b, ppp,µµµ,DDD)∈R×R×R
N ×R

Q×S (Q), by setting



8 Emilie Chouzenoux1,2 et al.

ddd = vec(DDD), we have

∇2
aG(a,b, ppp,µµµ,DDD) = N,

∇2
bG(a,b, ppp,µµµ,DDD) = ‖ppp‖2,

∇2
pppG(a,b, ppp,µµµ,DDD) = b2IIIN ,

∇2
µµµ G(a,b, ppp,µµµ,DDD) = λ

N

∑
n=1

pn(DDD+ εIIIQ),

∇2
a,bG(a,b, ppp,µµµ,DDD) = 111⊤N ppp,

∇2
ppp,aG(a,b, ppp,µµµ,DDD) = b111N ,

∇2
µµµ ,aG(a,b, ppp,µµµ,DDD) = 000Q,

∇2
ddd,aG(a,b, ppp,µµµ,DDD) = 000Q2 ,

∇2
ppp,aG(a,b, ppp,µµµ,DDD) = 2bppp− yyy+a111N ,

∇2
µµµ ,bG(a,b, ppp,µµµ,DDD) = 000Q,

∇2
ddd,bG(a,b, ppp,µµµ,DDD) = 000Q2 ,

∇2
µµµ ,pppG(a,b, ppp,µµµ,DDD) = λ (DDD+ εIIIQ)

N

∑
n=1

(µµµ − xxxn)eee
⊤
n,N ,

∇2
ppp,dddG(a,b, ppp,µµµ,DDD)

=





λ
2

N

∑
n=1

(
(xxxn −µµµ)⊤⊗

(
eeen,N(xxxn −µµµ)⊤

)

−eeen,Nvec
(
(DDD+ εIIIQ)

−1
)⊤)

if DDD ∈ S +(Q),

λ
2

N

∑
n=1

(
(xxxn −µµµ)⊤⊗

(
eeen,N(xxxn −µµµ)⊤

)

−ε−1eeen,N(111Q2 − ε−1ddd)⊤
)

otherwise,

∇2
µµµ ,dddG(a,b, ppp,µµµ,DDD) = λ

N

∑
n=1

pn(µµµ − xxxn)
⊤⊗ IIIQ,

∇2
dddG(a,b, ppp,µµµ,DDD)=





λ
2
(111⊤N ppp)(DDD+ εIIIQ)

−1 ⊗ (DDD+ εIIIQ)
−1

if DDD ∈ S +(Q),
λ
2
(111⊤N ppp)ε−2IIIQ2

otherwise.

(4.8)

Thanks to the definition of ϕ , the Hessian of G is thus de-

fined and continuous on R×R×R
N ×R

Q ×S (Q). Hence

the result.

We are now ready to prove the convergence of FIGARO.

Theorem 4.1 Let (ttt(i))i∈N = (a(i),b(i), ppp(i),µµµ(i),DDD(i))i∈N be

a sequence generated by Algorithm 1. If (DDD(i))i∈N is upper

bounded, then (ttt(i))i∈N converges to t̂tt = (â, b̂, p̂pp, µ̂µµ, D̂DD) sat-

isfying the following equilibrium:

(∀a ∈ R)(∀b ∈ R)(∀ppp ∈ R
N)(∀µµµ ∈ R

Q)(∀DDD ∈ S (Q))

F(a, b̂, p̂pp, µ̂µµ, D̂DD)≥ F(â, b̂, p̂pp, µ̂µµ, D̂DD)

F(â,b, p̂pp, µ̂µµ, D̂DD)≥ F(â, b̂, p̂pp, µ̂µµ, D̂DD)

F(â, b̂, ppp, µ̂µµ, D̂DD)≥ F(â, b̂, p̂pp, µ̂µµ, D̂DD)

F(â, b̂, p̂pp,µµµ, D̂DD)≥ F(â, b̂, p̂pp, µ̂µµ, D̂DD)

F(â, b̂, p̂pp, µ̂µµ,DDD)≥ F(â, b̂, p̂pp, µ̂µµ, D̂DD). (4.9)

Moreover the sequence (ttt(i))i∈N has a finite length.

Proof In (4.1), it appears that, if ppp 6∈ [0,+∞)N ∩C or DDD 6∈
S +(Q), then F(a,b, ppp,µµµ,DDD) = +∞, whereas, if

ppp ∈ [0,+∞)N ∩C and DDD ∈ S +(Q),

G(a,b, ppp,µµµ,DDD)

≥ λ
N

∑
n=1

pn

2

(
(xxxn −µµµ)⊤(DDD+ εIIIQ)(xxxn −µµµ)+ϕ(DDD)

)

≥ λ
∆−1

2

(
ε inf

n∈{1,...,N}
‖xxxn −µµµ‖2 −Q logε

)
, (4.10)

f1(a)≥ 0, f2(b)≥ 0, f4(DDD) = 0, (4.11)

f3(ppp)≥ λ
N

∑
n=1

ent(pn)≥−Ne−1λ . (4.12)

Hence

F(a,b, ppp,µµµ,DDD)

≥ λ
∆−1

2

(
ε inf

n∈{1,...,N}
‖xxxn −µµµ‖2 −Q logε

)
−Ne−1λ .

(4.13)

This shows that F is bounded from below. Moreover, since

FIGARO alternates proximal steps,
(
F(ttt(i))

)
i∈N is a decay-

ing convergent sequence. It then follows from (4.13) that

(µµµ(i))i∈N is bounded (otherwise the function value sequence

would be divergent). Since (a(i))i∈N, (b(i))i∈N and (DDD(i))i∈N
are bounded sequences, (ttt(i))i∈N is bounded. Moreover, ac-

cording to Lemma 3, G is C2 on R×R×R
N ×R

Q ×S (Q),
which implies that G is C1 with locally Lipschitz gradient

on R×R×R
N ×R

Q ×S (Q). Consequently, all the condi-

tions in [4, Theorem 6.2] are met to guarantee that (ttt(i))i∈N
is a finite length sequence converging to a critical point of

F . We then deduce (4.9) from the fact that F is convex with

respect to each of its argument.

Remark 2 Note that the assumption on the boundedness of

(DDD(i))i∈N becomes unnecessary if an upper bound on DDD is

introduced in the formulation of the optimization problem.

This however was not observed to influence the practical be-

haviour of the algorithm.
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5 Experiments on Synthetic Data

In order to validate the good performance of the FIGARO

Algorithm 1, we generate 3D synthetic data yyy=(y(xxxn))1≤n≤N

where (xxxn)1≤n≤N are coordinates in R
3 regularly spaced on a

grid with size N = 15×15×50 and voxel dimension 0.05×
0.05×0.1µm3. For every n ∈ {1, . . . ,N}, yn = a+bp̃(xxxn)+

vn. In order to illustrate the robustness of our formulation,

we define p̃ from the multivariate generalized Gaussian prob-

ability density function:

(∀n ∈ {1, . . . ,N}) p̃(xxxn) =
√

|CCC| ρΓ ( 3
2
)

π 3
2 2

3
2ρ Γ ( 3

2ρ )ς
3
2

exp

(
− 1

2ςρ ((xxxn −µµµ)⊤CCC(xxxn −µµµ))ρ
)
,

with scale and shape parameters (ς ,ρ) ∈ (0,+∞)2. Vari-

ous values will be tested for ρ , and for each of them, the

scale parameter ς is adjusted such that most of the prob-

ability mass lies in the observation grid. When ρ = 1, we

recover the standard multivariate Gaussian distribution. We

set a = b = 1, µµµ = [0.3,0.4,2]⊤, and

CCC =
(

RDiag([0.1,0.05,0.5]⊤)R⊤
)−1

with R ∈ R
3×3 the rotation matrix associated with angles

equal to
(
0.2,10−4,0.1

)
radians. Note that these values for

the distribution parameters (b,C,µµµ) have been chosen in our

tests in order to correspond to typical values encountered in

our target application to PSF estimation in microscopy. Fi-

nally, v = (vn)1≤n≤N is the realization of a zero-mean Gaus-

sian noise, with standard deviation σ chosen so as to obtain

a given input signal-to-noise ratio (SNR).

The regularization parameter λ > 0 in FIGARO is set

automatically thanks to a golden bisection search, so as to

satisfy the χ2 criterion ‖yyy− â− b̂p̂pp‖ = σ
√

N [22]. We set

amin = bmin = 0, amax = bmax = 105, ε = 10−8. The initial-

ization of the algorithm is of particular matter, as the cost

function is nonconvex. Here, we observed that a good ini-

tialization strategy is to take a(0) = minn∈{1,...,N} yn,b
(0) =

1, ppp(0) = yyy, µµµ(0) as the position of the maximum intensity in

yyy, and CCC(0) a diagonal matrix with entries equal to the voxel

size in each direction. The algorithm iterations are stopped

as soon as the relative residual between two consecutive it-

erates on the fitting model (a+ bg(xxxn,µµµ,DDD+ εI))1≤n≤N is

below 10−5.

We provide in Fig. 1 the performance of our approach,

in terms of the Percent Root Mean Square Difference (PRD)

between the estimated (â+ b̂p̂(xxxn))1≤n≤N and the true vec-

tor (a + bp̃(xxxn))1≤n≤N , averaged on 50 noise realizations.

The range of values for the standard deviations (std) is in-

dicated in the figure caption. We also provide the averaged

PRD and associated std range, obtained when solving the

problem with the nonlinear least squares approach based on

Levenberg-Macquardt (LM) algorithm. We use the

lsqcurvefit function available in Matlab software with

the same initialization as FIGARO2. It is important to em-

phasize that, even in the case when ρ 6= 1, we still assume a

Gaussian model in both fitting approaches in order to assess

their robustness to an imperfect model.

The plots show that FIGARO outperforms LM, in all

scenarios in terms of averaged PRD. FIGARO is, in addi-

tion, very stable to a model mismatch (i.e., ρ 6= 1), while

LM performance highly decreases as soon as the data are not

generated by using the Gaussian model. This clearly high-

lights the advantage of our formulation, relying on the extra

variable ppp whose shape is controlled by the KL divergence

penalty term. Finally, it is noticeable that FIGARO is much

more stable to noise fluctuations, as confirmed by the low

values of std on the PRD. In contrast, the PRD values for

LM are highly dispersed, which questions its reliability for

the systematic treatment of real datasets.
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Fig. 1 Quality of 3D fitting results in terms of PRD, using FIGARO

and LM strategies, for different shape parameters ρ and SNR values

(in dB). Averaged values over 50 noise realizations. For FIGARO, the

std varies between 0.05 and 1.72, while for LM, it lies between 7.91

and 20.1.

6 Application of FIGARO to Two-photon Microscopy

The objective of this part is to illustrate experimentally the

good performance of our fitting strategy in the context of

computational imaging. Multiphoton microscopy (MPM) is

a popular method for biomedical imaging at the micron scale,

able to generate 3D images in vivo and in depth, starting

from a superposition of 2D image stacks. However, the in-

strumental PSF in MPM has a particularly negative impact

on the resulting images especially when a sub-micrometer

resolution is searched (about less than 0.5 µm) or when the

sample emits a low level multiphoton signal. These situa-

tions represent most of the cases encountered in MPM where

2 Our implementation relies on the extension to the 3D

case of the 2D Gaussian fitting software publicly available at:

https://fr.mathworks.com/matlabcentral/fileexchange/

41938-fit-2d-gaussian-with-optimization-toolbox.
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the PSF is responsible for the resolution and contrast dete-

riorations, with an increase of the image blur and noise. We

propose to apply our multivariate Gaussian fitting strategy

FIGARO to experimental MPM 3D images of fluorescent

microbeads, with the aim to better analyze the instrumen-

tal PSF of this modality and to get high quality restoration

results. This section is organized as follows. First, the exper-

imental and algorithmic setup is described in Subsection 6.1.

Numerical results obtained with FIGARO are presented in

Subsection 6.2, and Subsection 6.3 shows a comparison with

the state-of-the-art MetroloJ plugin based on 1D Gaussian

fitting on marginalized data, which is highly employed in

many platforms as a routine tool for analysis of microscopes

resolution power. Finally, Subsection 6.4 illustrates restora-

tion results obtained by using our estimated PSF model.

6.1 Presentation of the Experimental Setup

The experimental dataset has been recorded from a com-

mercial multiphoton microscope (Olympus, BX61WI) em-

ployed in a routine protocol for two-photon fluorescence

imaging. A standard femtosecond titan sapphire laser source,

(Chameleon Ultra II, Coherent Inc., 800 nm, 150 fs, 10 nm,

82 MHz, 4 W) is coupled to the working station ended by a

25× water immersion microscope objective (Olympus,

XLPLN 25× WMP, 1.05 numerical aperture). In order to

characterize experimentally the optical performance of the

microscope and especially its response function, images of

fluorescent spherical latex microbeads, having a known di-

ameter smaller than the resolution spot, are generated. The

retained microbeads have been provided by Molecular Probes,

and have a diameter of 0.2 µm. Such a small diameter of the

beads allows us to consider each observed one as the (space-

variant) instrument PSF at the bead center coordinates. Mi-

crobeads are diluted into liquid gelatin and, after a short

period at frig, the gelatin is solidified. The imaged sample

thus constitutes the microbeads homogeneously distributed

and immobilized into a bulk and solid volume. Their fluores-

cence emission at 515 nm is detected with a photomultiplier

tube coupled with an optical filter between 495 and 540 nm.

A dichroic mirror at 690 nm splits the excitation beam from

the laser source and the back-fluorescence from the volume

of microbeads which is the exclusive one directed to the de-

tection module.

2D image slices are generated, with a dimension of 1600×
1600 squared pixels. 230 slices with a pixel size of 0.053 µm

are realized in deepness and spaced 0.1 µm apart; the super-

position of the 230 slices consequently results in a 3D image

having the following dimensions in XYZ: 85×85×23 µm3.

From this 3D image, forty volumes of interest (VOIs) are se-

lected, each of them corresponding to the noisy and blurry

observation of a single bead. For each selected VOI, the FI-

GARO algorithm is ran, using the same settings than those

provided in Section 5, giving rise to a set of estimated pa-

rameters (â, b̂, p̂pp, µ̂µµ,ĈCC) (with ĈCC = D̂DD+ εIIIQ) directly related

to the position, size and orientation of the PSF.

6.2 3D Estimation Results

Figure 2 shows an illustration of the 3D fitting results for

four VOIs. Dots represent the raw data acquired experimen-

tally while red spheres with their axis represent the recon-

structed 3D image of each microbead inside its VOI, re-

sulting from our multivariate Gaussian fitting strategy. Here,

the contour plots delimit the full-width at the half maximum

(FWHM) region, i.e., where xxxn is such that â+ b̂g(xxxn, µ̂µµ,ĈCC)=

0.5×max(â+ b̂g(xxxn, µ̂µµ,ĈCC))1≤n≤N .
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Fig. 2 Example of 3D fitting results using FIGARO on two-photon

microscopy data.

In biomedical MPM, the carrying medium has often scat-

tering and absorbing properties not well-known or well-cha-

racterized. The more the imaged medium is scattering or ab-

sorbing the light (laser excitation or fluorescence emission),

the more the image will be deteriorated. This phenomenon

is often increasing with the imaging depth. FIGARO fit-

ting results allow us to quantify this PFS variation along the

depth of the sample. To this aim, we compute the FWHM

along the 3 main axes of the Gaussian shapes for each VOIs,

defined as (2
√

2log2si)1≤i≤3 where (si)1≤i≤3 are the eigen-

values of ĈCC
−1

.

An analysis of these results for the whole set of VOIs

shows that, for this dataset and this range of depths, the pla-

nar width, related to the FWHM associated to the second and
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Fig. 3 Evolution of the estimated FWHM along the axial axis of the

fitted 3D Gaussian shapes, with respect to the bead center depth.

third eigenvalues of ĈCC
−1

, does not vary much with respect

to the beads location. Here, the averaged FWHM of the esti-

mated Gaussian shapes is of (0.21, 0.27) µm, which appears

to be consistent with the theoretical limit of optical planar

resolution of 0.2 µm for this emission wavelength and nu-

merical aperture. The axial PSF width values, related to the

maximum eigenvalue of ĈCC
−1

, are displayed in Figure 3 as a

function of the depth of bead centers. The origin of the ab-

scissa axis is related to the surface of the sample, it is not

represented here as the beads employed for these measure-

ments are only present in depths between 3 µm and 20 µm

under the surface of the sample. One can observe that the

axial PSF width is slightly increasing when the depth of the

bead center increases, as it is expected from optical theory

[26]. The averaged axial resolution is of 1.49 µm which fits

well the theoretical resolution limit of 1.5 µm displayed in

the literature [36]. Consequently, FIGARO appears as a so-

lution very well adapted for estimating the 3D variability of

the PSF of a system.
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Fig. 4 3D representation of the estimated PSF main axis.

Additionally to the relevant and reliable measurement

of PSF widths, our computational strategy gives also ac-

cess to the orientation of each PSF inside its corresponding

VOI. Of particular interest is the computation of the Euler

angles (Φ1,Φ2) characterizing the slope of the main direc-

tion of the PSF, i.e., the eigenvector of CCC associated with its

largest eigenvalue. We represent a 3D representation of the

PSF main axes regarding its center position in Figure 4. Due

to the presence of optical aberrations, the PSF orientations

measured with FIGARO change according to the beads lo-

cation. In particular, the tilt angle quantifying the angle be-

tween the Z axis and the main PSF direction (i.e., Φ2) varies

for this dataset between 0.6◦ and 7.7◦.

6.3 Comparison with A Standard Procedure

Let us now present the comparison of our results with those

obtained from the MetroloJ plugin 3 of Fiji. MetroloJ pre-

sents several interests in microscopy: it is a free plugin of

an open source software, allowing to have a precise idea of

the PSF of the microscope, and is now a routine tool for

tracking microscope performances. Unfortunately, like other

available Fiji plugins for PSF analysis in fluorescence mi-

croscopy (eg, QuickPALM [27] and rapidSTORM [39]),

it only performs 1D shape fitting, and thus only allows to

treat marginalized versions of the datasets. Thus, one may

expect that such dimension reduction comes at the price of

a loss in modeling accuracy and thus restoration quality.

For the sake of our comparisons, we have selected four

samples from the VOI set. The experimental results are gath-

ered in Table 1. For each VOI, we provide the estimation

of the center coordinates of the fitted Gaussian shapes, the

FWHM, and the orientation (Euler angles) resulting from

FIGARO and MetroloJ approaches. Since the latter is based

on 1D Gaussian fitting on the 3 marginals, only center posi-

tion and FWHM along the axis XYZ of the image are avail-

able as outputs. In contrast, for FIGARO, the FWHM is

estimated along the actual bead axis, accounting for its in-

clination angles.

As already observed in the previous section, the PSF ori-

entations measured with FIGARO change according to the

beads location. The 1D-based analysis of MetroloJ does not

have access to such a precise estimation of the tilt angle,

yet of main importance for an efficient computational pro-

cessing of the microscope images. Concerning the estimated

center positions, they are quite similar for both methods,

mainly because of the small size of the VOIs. But results

from Table 1 highlight substantial differences in FWHM es-

timations of the PSF between the two ways of calculations.

With MetroloJ method, several estimations of FWHM are

not significant since the computed sizes are highly below the

true bead dimension. The high variability of the estimated

FWHM by MetroloJ probably results from (i) the ignorance

of 3D inclination of the PSF shape, (ii) a high sensitivity to

3 Available at: http://imagejdocu.tudor.lu/doku.php?id=

plugin:analysis:metroloj:start
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Table 1 Example of fitting results on 4 VOIs for our approach, and the MetroloJ plugin from Fiji.

Volume of Interest n◦1 n◦2 n◦3 n◦4
M

et
ro

lo
J

Center (µm) (62.77,18.59,5.46) (41.62,65.69,5.50) (66.01,0.35,13.82) (10.24,66.96,10.46)

FWHM (µm) (0.32,0.03,0.05) (0.29,0.03,0.001) (0.028,0.19,0.1) (0.05,0.04,0.57)

F
IG

A
R

O

Center (µm) (62.78,19.19,7.57) (41.71,66.27,6.10) (66.22,1.03,14.61) (10.29,67.59,11.72)

FWHM (µm) (0.192,0.247,1.275) (0.201,0.307,1.282) (0.198,0.252,1.539) (0.205,0.259,1.601)

Angles (◦) (73.1,2.38) (67.3,5.63) (87.2,1.54) (105.6,2.24)

noise and model mismatch, both reasons making impossible

a correct estimation of the PSF width. This emphasizes the

importance of robustly and directly dealing with 3D mod-

els, for which FIGARO is able to give reliable and relevant

results.

6.4 Increasing the Resolving Power

We finalize this experimental section by presenting restora-

tion results of a section of the same acquired dataset with

size 200×200×50 voxels, corresponding to a field of view

of 10× 10× 5 µm3. A constant 3D Gaussian PSF shape is

considered in this region, whose width and orientation are

deduced from our previously described fitting results by in-

terpolation. The deblurring step is performed using the OP-

TIMISM toolbox from Fiji 4 [16]. Figure 5 illustrates one

2D slice extracted from the input dataset (top) and the cor-

responding restored image (bottom). In Figure 5(top), the

presence of approximately seven microbeads is supposed in

this 2D image. For the biggest and brightest one, its diam-

eter is about 1 µm on the raw image, exceeding highly the

expected 0.2 µm. No conclusion can be drawn from such

poor observation quality. When applying OPTIMISM with

FIGARO fitted PSF, this halo of light appears in fact as a

bunch of microbeads as it is visible on Figure 5(bottom).

These microbeads were too small and too close to each other

to be individually identified with the multiphoton micro-

scope alone and the help of a suitable 3D PSF model, as the

one resulting from FIGARO, is thus mandatory for increas-

ing numerically the resolving power of the MPM device.

7 Conclusion

In this paper, a new algorithm has been proposed for mul-

tivariate Gaussian fitting of observed data corrupted by ad-

ditive Gaussian noise. Our approach relies on the proposal

of an original hybrid cost function combining a Kullback-

Leibler divergence regularizer, a least-squares data fidelity

term and range constraints on the parameters. An efficient

4 Available at: http://sites.imagej.net/Dbenielli/

Slice 32 of input data

Restored volume

Fig. 5 Deblurring results.

proximal alternating iterative resolution scheme, grounded

on solid mathematical foundations, has been proposed for

the resolution of the underlying nonconvex minimization

problem. The interest of this strategy named FIGARO has

been illustrated by means of experiments in fitting synthetic

data when a model mismatch is present. We have also pre-

sented experimental results in the context of computational

fluorescence microscopy. The objective was to characterize

the instrumental space-varying 3D PSF of a two-photon flu-

orescence microscope from raw observations of microbeads.

Our numerical tests have shown the efficiency of our method
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for PSF model determination. Future work will address the

cases of more general multivariate models and noise statis-

tics.
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