Radio Environmental Maps (REMs): A Cognitive Tool for Environmental Awareness

Berna Sayrac, Sana Ben Jemaa & Pascal Cordier Orange Labs

Outline

- The concept of REM
- Architectural elements
- Scenarios \rightarrow operator-centric scenarios
- Example use case: A REM-enabled Soft
 Frequency Reuse scheme for OFDM networks
- REM Construction: Kriging interpolation
- Faramir FP7 project and ETSI RRS
- Conclusions and further work

The concept of REM

The REM concept - Origins

- REM was introduced by the Virginia Tech team [1]
- It is a centralized or distributed *database* containing information on the radio environment including:
 - Device locations and their activities
 - Policies and regulations
 - Geographical features
 - Services
- Proposed for IEEE 802.22 to exploit TV White Spaces (TV WS)
- The main functionality is storage
- REM is a dumb database that is consulted by intelligent entities

^[1] Zhao, Youping; Reed, Jeffrey H.; Mao, Shiwen; Bae, Kyung K.; , "Overhead Analysis for Radio Environment Mapenabled Cognitive Radio Networks," *Networking Technologies for Software Defined Radio Networks,* 2006.

The REM concept – ongoing work @ Orange Labs (1/1)

- REM is a concept that is based on *geo-localized measurements*
- Apart from storing, it *processes* data \rightarrow spatial interpolation

- It can be either static or dynamic
- If dynamic, then *temporal* interpolation/processing is also necessary

The REM concept – ongoing work @ Orange Labs (1/2)

- Dense urban measurements on UMTS downlink
- Kriging to obtain the REM
- Ongoing work on REM (PhD theses)

The REM concept – Obtaining Environmental Information

- Network architecture related data (Transmitter locations,...)
 - Small amount of data
 - Easily available
 - Quite static
 - Limited use
- Dedicated measurements
 - High data volume and overheads \rightarrow measurements are expensive
 - Good knowledge of the radio environment \rightarrow more efficient optimization possible
- Models
 - Easy to use
 - Requires assumptions \rightarrow realistic?
- Measurements and statistical modeling
 - Reduces the requirements for measurements
 - Fits the model to the real world data
 - Allows for dynamic updates

REM functional architecture

The REM concept – Functional Architecture

REM is a cognitive enabler in different types of scenarios

- Intra-Operator Radio Resource Management
 - In-band Coverage/Capacity Improvement by Relays
 - Performance Optimization (Interference Mitigation, Handover optimization etc.)
 - Self-Configuration and Self-Optimization of in-band Femto-Cells
 - Introduction of New Technologies through Refarming
- Hierarchical Spectrum Access on Licensed Bands
 - Coordinated and non-coordinated Spectrum Access between PUs and SUs
 - Multiple Secondary Networks: Spectrum Leaser
 - Out-of-band (cognitive) Femto-cells
 - Home Networks (IEEE 802.11af)
 - Smart metering communication in White Space
 - LTE in TV white spaces
- Spectrum Sharing on Unlicensed Bands
 - Coordinated spectrum access: Coordination among ad-hoc networks
 - Non-coordinated Spectrum Access of mobile ad-hoc networks
 - Extension of LDR (Low Data Rate) licensed network to out-of-band HDR (High Data Rate) unlicensed bands

Dedicated Spectrum Monitoring on Licensed and Unlicensed Bands

Minimization of Drive Tests (MDT)

- 3GPP feature (Rel.11 ongoing)
- RF measurement collection from the mobiles upon the demand of the operator
 - processing at the O&M by the operator for troubleshooting, optimization purposes
- Enhanced diagnosis
 - More accurate detection of the "red zones"
- Enhanced troubleshooting
 - Fine-tuned solution/optimization

Coverage/Capacity Improvement by Relays

Relay based solutions

REM helps...

- -detecting the coverage holes and traffic hotspots
- -fine-tuning the relay parameters to fit the holes/hotspots

Handover Optimization 1/2

- Vertical HandOvers (VHOs)
 - REM suppresses the need for out of band sensing
 - Enables blind HO to the best inter-system neighboring cell

Handover Optimization 2/2

- Handover optimization between macro and femto layers
 - Minimize unnecessary handovers.

Coexistence of neighboring technologies 1/2

- REM facilitates co-existence planning and significantly reduces the need for margin and guard bands
 - e.g. Introduction of New Technologies through Refarming

Coexistence of neighboring technologies 2/2

17

Example: LTE radio resource allocation optimization based on REM information

orange

REM to manage femto/macro interference

MD connected to femto on 3G mode is interfered by the 3G macro. What if the MD switches to LTE technology (on the femto)?

 \rightarrow REM information guarantees that the switch will not create a worst interference situation with an outdoor LTE eNB

An example use case: Soft Frequency Reuse (SFR) scheme optimization for OFDM based networks

- We consider the downlink of an OFDM based cellular network.
- REM provides the received power and traffic maps available for each BS.
- What would be the most efficient power allocation? Reuse-3, reuse-1 or something else?
- We deal with an optimization zone of 19 BSs each of which has a power mask over 3 sub-bands.

A REM-enabled SFR scheme for OFDM networks

We have developed an algorithm which derives the *expected* throughput:

- for a newly arriving user,
- at any geographical point over the area of interest
- for every power mask configuration of the involved BSs

$$\mathbb{E}(U(T_P)) = \int_{m \in \mathcal{T}} \sum_{n \leq n_t} \sum_{b \in \mathcal{T}} \sum_{s \leq S} \mathcal{P}_{n,b,s}^{\mathcal{T},\mathcal{B}_l,n_t}(m) U \xrightarrow{t \text{ link-level curve}}{n+1}$$
Intereference map

$$SINR(m, b, s) = \frac{1}{N_0 + \sum_{b' \neq b} P^{b's} L_{b'}(m) A_{b'}(m)}$$

$$\mathcal{P}_{n,b,s}^{\mathcal{T},\mathcal{B}_l,n_t}(m) = \mathbb{P}(N_u = n | M_u = m, B_u = b, S_u = s)$$

$$Scheduler$$

$$\mathbb{P}(S_u = s | M_u = m, B_u = b)$$

$$\mathbb{P}(B_u = b | M_u = m)$$

$$\mathbb{P}(B_u = b | M_u = m)$$

$$Traffic map$$

- obile location
- b serving BS index
- s resource block
- n number of co-channel users scheduled on the same resource block
- U(.) is a utility function (chosen according to operator policies)

A REM-enabled SFR scheme for OFDM networks What the REM data actually looks like

- Traffic maps are used to establish how likely a user repartition is
- Power maps are used to apply link level curves and hence derive the user throughput

A REM-enabled SFR scheme for OFDM networks

- Genetic algorithm for optimization with and without REM
- Results show that neither reuse-1 nor reuse-3 are optimal, and adding the REM gives about 13% of throughput increase

Building the REM

Building the REM – The underlying model

- Trade-off between overhead and accuracy.
- The propagation is modeled as a deterministic loss plus a correlated shadowing term.

$$\vec{\mathbf{P}} = \begin{bmatrix} P_1 \\ \vdots \\ P_N \end{bmatrix} = \mathbf{N} \begin{bmatrix} 1 & -\log_{10}(d_{1,BS}) \\ \vdots & \vdots \\ 1 & -\log_{10}(d_{1,BS}) \end{bmatrix} \begin{bmatrix} P_0 \\ \alpha \end{bmatrix}, \sigma^2 R(\phi)$$

- P_m is the received power level at position m
- P_0 is the transmit power of the BS
- α is the path-loss constant
- ϕ is the correlation distance
- σ is the shadowing standard deviation (dBm)
- *R* positive definite covariance matrix
- $d_{m,BS}$ is the distance between the mobile at position m and its BS
- This stochastic model can be used for capturing the pathloss + shadowing effects and for finding the propagation parameters

Building the REM – Kriging Interpolation

- Kriging interpolation consists of finding the most likely values of the vector \vec{P} conditioned on the measurements

Interpolated values
$$\left(\begin{array}{c} P_1 \\ P_2 \end{array} \right) \equiv \mathcal{N} \left(\begin{pmatrix} D_1 \\ D_2 \end{pmatrix} \begin{pmatrix} p_0 \\ \alpha \end{pmatrix}, \sigma^2 \begin{pmatrix} R_{11}(\phi) & R_{12}(\phi) \\ R_{21}(\phi) & R_{22}(\phi) \end{pmatrix} \right)$$

Measured values $\left(\begin{array}{c} P_1 \\ P_2 \end{array} \right) = \mathcal{N} \left(\begin{pmatrix} D_1 \\ D_2 \end{pmatrix} \begin{pmatrix} p_0 \\ \alpha \end{pmatrix}, \sigma^2 \begin{pmatrix} R_{11}(\phi) & R_{12}(\phi) \\ R_{21}(\phi) & R_{22}(\phi) \end{pmatrix} \right)$

$$\overrightarrow{P_{1|2}} \equiv \mathcal{N}\left(\overrightarrow{\mu_{1|2}}, \Sigma_{1|2}\right)$$

$$\mu_{1|2} = D_1 \begin{pmatrix} p_0 \\ \alpha \end{pmatrix} + R_{12}(\phi) R_{22}(\phi)^{-1} (\overrightarrow{P_2} - D_2 \begin{pmatrix} p_0 \\ \alpha \end{pmatrix})$$

$$\Sigma_{1|2} = R_{11}(\phi) - R_{12}(\phi) R_{22}(\phi)^{-1} R_{21}(\phi)$$

- With a few measurements the Kriging method generates the whole map
- The error variance is minimized subject to unbiasedness condition
- Estimated points are expressed as a linear combination of measurement points
- Kriging computes the best linear unbiased estimator of \vec{P}_1 based on a stochastic model of the spatial dependence quantified by the pathloss model

Building the REM – Maps

IST FP7 project Faramir on REMs

- Flexible and spectrum-Aware Radio Access through Measurements and modelling In cognitive Radio systems
- The main goal is to research and develop techniques for increasing the radio environmental and spectral awareness of future wireless systems
 - Spectrum sensing hardware efficiently integrated to handheld devices
 - Measurements performed at multiple nodes in a cooperative fashion on a network level
 - Radio Environmental Map providing basis for system optimization
- FP7 STREP with 10 partners
- FT/Orange contributions on:
 - Scenarios and use cases
 - Measurement campaigns
 - Spectrum usage models

- Radio Environmental Maps (PhD thesis)

Standardisation on REM in ETSI RRS

- ETSI RRS Scope : Standardization activities related to Reconfigurable Radio Systems encompassing system solutions related to Software Defined Radio (SDR) and Cognitive Radio (CR).
- Active Work Item on REM:
 - TR 102 947 "Use Cases for building and exploitation of Radio Environment Maps for intra-operator scenarios"
 - The working group is led by FT
 - Supporting members: Toshiba, Telefonica, Telecom Italia, DAC-UPC, Huawei.

Conclusion

- REMs are cognitive enablers that enhance environment awareness
- Not only storing, but also processing of geo-localized measurement data
- Background processing at the O&M for troubleshooting & optimization \rightarrow important tool for the operator
- Further work:
 - Construction with real data \rightarrow measurement campaigns
 - Steps toward implementation \rightarrow demonstration platforms
 - Architectural work \rightarrow interfaces & protocols
 - Standardization \rightarrow A WI @ ETSI RRS

Thank you...

Questions?

