


Gibbs fields approaches in image processing
problems

X. Descombes T, E. Zhizhina,

Abstract In this paper, we address the problem of image denoising using
a stochastic differential equation approach. Proposed stochastic dynamics
schemes are based on the property of the diffusion dynamics to converge to
a distribution on global minima of the energy function of the model, under
a special cooling schedule (the annealing procedure). To derive algorithms
for computer simulations we consider discrete time approximations of the
stochastic differential equation. We study convergence of the corresponding
Markov chains to the diffusion process. We give conditions for the ergodicity
of the Euler approximation scheme. In the conclusion, we compare results
of computer simulations using the diffusion dynamics algorithms and the
standard Metropolis-Hasting algorithm. Results are shown on synthetic and
real data.

1 Introduction. Bayesian approach in image
restoration problems.
One of the main problems of image processing is to create fast algorithms

which can be applied to image denoising and restoration problems. Image de-
noising is of fundamental importance for visualizing and interpreting images
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but also as a preprocessing step to improve the performance of image pro-
cessing tasks such as classification, segmentation or feature extraction. There
exist numerous approaches to image denoising based on filtering. Indeed, the
noise is typically a high frequency component of the image. However, high
frequencies contain also some important features of an image, such as edge
information. Simple low pass filtering results in blurring the image during
the denoising process. Therefore, the trade-off consists in preserving edges
and informative features while denoising.

Besides filtering, model based approaches have been traditionally used in
image processing problems. The most popular method of this type is the
Bayesian approach based on the analysis of a posteriori distribution on the
configuration space of the model. The goal of the Bayesian image restoration
is to find a configuration which maximizes a posteriori distribution. This con-
figuration is accepted as the denoised image. There exist different methods
in the framework of the Bayesian approach. They depends on the form of
a posteriori distribution and on the way how to obtain the denoised image
(deterministic or stochastic). Deterministic methods are known to be fast
but depend on an initial configuration, and stochastic methods have been
proposed to avoid this dependency with respect to an initial configuration.
We consider here stochastic algorithms under a posteriori Gibbs distribution
with an energy function (the Hamiltonian of the Gibbs field) depending on
given noisy image. Our restoration algorithm is the further application of the
Gibbs field methods in image processing. It is based on the relaxation prop-
erties of a diffusion dynamics, which is constructed as a reversible process
with respect to the background Gibbs distribution. Furthermore, we give a
general form of the generator of the reversible diffusion dynamics, which can
be described as an adaptive diffusion process with inhomogeneous over the
space coefficients depending on the current configuration.

The basic idea of our method is to construct the denoised image as the
limit configuration of a stochastic iterative scheme. In this scheme, a next
configuration on each iteration step is found by a distribution depending on
the current configuration, the energy of the model and the current parame-
ters of the model (the temperature and the step of the time discretization).
The choice of the energy function plays a crucial role in the Gibbs fields
approaches. We consider a case, when the energy function depends on given
noisy image.

Let us remark that in our algorithms we propose a double annealing
procedure, when the temperature and the discretization step are slowly de-



creased to zero during iterations. We formulate conditions on the speed of
decrease for both parameters and prove the ergodicity of the corresponding
inhomogeneous Markov chain using Dobrushin’s criterion of ergodicity.

The paper is organized as follows. A spin model for image restoration
is introduced in section 2. In section 3 we consider a stochastic diffusion
dynamics on the configuration space with a stationary Gibbs distribution.
We discuss here also a global optimization scheme called the annealing pro-
cedure. Under this cooling procedure the stationary process transforms to
a non-stationary one, and it asymptotically tends to one of low energy con-
figurations. To simulate the diffusion dynamics, we consider discrete time
Markov processes, which are approximated the diffusion dynamics in time.
These approximations are described in section 4. The convergence and er-
godicity properties of the approximation schemes are discussed in section 5
and 6. In section 7, using computer simulations we compare the new dif-
fusion based algorithms with the standard Metropolis — Hastings approach.
First, the tests are conducted on synthetic data, then we consider the tests
on real data. We compare results after a small and a large number of iter-
ations. The results after a large number of iterations for all schemes have
comparable quality. However, we observe a new more robust behavior of the
diffusion dynamics algorithms with respect to the Metropolis-Hastings one
when using a small number of iterations. That allows us to propose a new
fast optimization scheme, which can be applied to image denoising problems.

2 A model for image restoration

The idea to apply Gibbs fields and corresponding stochastic dynamics to
image denoising problems has been proposed in 80 years (see [1]), and since
then Gibbs fields methods have been intensively developed in a framework of
the Bayesian image restoration. The realization of Gibbs fields approach in
image processing was made possible after the denoising procedure has been
rewritten on the language of statistical physics. Under this view a digital
image can be considered as a configuration of a Gibbs random field on the
lattice with a single spin, running values on the real line or on a subset of
the real line. We identify the values of the single spin with the intensity of a
color (from black to white) at given point of the image.

Let us introduce now the model. We consider a lattice spin system (the
image lattice) in a finite volume A C Z?, |A| = m of two dimensional lattice



with a single spin space (the grey level space) S = [0,s] C R'. Then S™ is
the configuration space, and any configuration

XesS" X={X;,ieA}, X,€S8

corresponds to some image.

Our goal is to find a denoised image, which is constructed as a solution
of an optimization scheme minimizing noise on given data. Following the
Bayesian approach, the required configuration should maximize a posteriori
distribution on the configurations, i.e.

X is a solution, if P(X|0) = max P(X10), (1)

where 0 = {0;,i € A} denotes given data. A posteriori distribution has the
Gibbs form: 1
P(X|0) = e X0, (2)
ZO'
with the energy function H(X,#) and the normalizing factor Z,, o is the
parameter of the model. Given data are introduced to the potential of the
model by so-called self-interaction term. The energy function is defined by
the sum of an interaction term, modeling some prior knowledge about the
solution, and a data driven term:

H(X,0) = &, (X) + s (X, 0). (3)

Here

o(X)=8 ) = Ui(Xi-Xy), (4)

(i.3)EA?:]i—j|=1

03(X,0) = A (Xi—6)7, (5)
ieA
B, A > 0 are parameters of the model. The choice of the interaction potential
derives from the following properties of the required solution. On the one
hand the solution should be smooth in the regions of homogeneity, and on
the other hand the information about boundaries of objects on the image
should be very precise. In particular, the potential of the form

U(X; — X;) = (X, — X;)?,



leads to blurred image during the denoising process. The ®-interaction term

introduced in [2]
1

U(Xi = Xj) = —x =7
J 1+ (deéXJ)Z

is more adapted to preserve edges during the restoration process. We will
use later this ®-potential in the simulations.

Thus, under the Gibbs fields approach with a posteriori distribution (2)
in the Gibbs form, the solution of the problem (1) is a configuration (or
configurations) minimizing the total energy of the system:

Epin = argmin H(X,0), X € Epn. (6)

Either deterministic or stochastic way is usually exploited to find these con-
figurations. Deterministic algorithms are based on the variational principle,
the stochastic ones use ergodic properties of stochastic dynamics. In this
paper we will study algorithms of the second type which depend on behavior
of stochastic systems.

3 Stochastic dynamics based algorithms

The Metropolis — Hastings (MH) scheme has served up to now as a good
tool for image restoration problems. MH algorithm is based on properties of
the Glauber dynamics for the Potts models in combination with simulated
annealing (see [1, 3, 4]). This small modification of the Glauber dynamics,
simulating a slow cooling procedure, yields an algorithm which theoretically
finds a set of global minimizers F.;, (6), independently on starting configu-
rations:

lim P(X(n) € Enin) = 1. (7)

n—o0

Let us remind that the MH algorithm is associated with the following single
spin dynamics. If we denote by p a proposal distribution on the spin space
S ={s1,..., s} defined by a symmetric transition matrix p, ,, then one can
randomly picks a new configuration value X; € S at the site i € A by p. We
denote by Y a new configuration

Y: {Xl’...,Xi,---Xm}7



which differs from the configuration X only at one site . Then the new
configuration Y is accepted with probability

Qxr = exp { - Z1H(,0) - B0},

n

where [u]|T = v as u > 0 and [u]" = 0 as u < 0, and correspondingly, not
accepted with probability 1 — @xy. In such a manner, values of the new
configuration X (n + 1) = {X;(n+ 1)} are chosen consequently over all sites
of the volume A. In addition the parameter o, is decreased to zero by a
special way as n — oo during the process (so called cooling schedule). It was
proved in [1, 3] that (7) holds under

lim o2 logn > R,
n—0o0
where the constant R depends on the energy function H.

If we take a model with a continuous compact single spin space, then
for any o we can consider a diffusion dynamics reversible with respect the
the given Gibbs distribution, so that the Gibbs measure is the stationary
measure of the process. Diffusion processes of this sort have been studied
in many papers, even on the whole lattice, see for instance, [5, 6]. Then as
above we modify the stationary process using the cooling procedure to obtain
a non-stationary process meeting (7). It was proved in [7] - [9], that again
(7) holds if the parameter o(t) is vanishing as ¢ — oo not faster than

2= 150, ®)
logt
where C' > 0 is large enough. The proof exploited on ideas and constructions
of the Wentzell — Freidlin theory [10] - [12] developed for the analysis of
invariant measures of diffusion processes with a small diffusion coefficient.
The corresponding diffusion processes are described by a system of stochas-
tic interaction differential equations (see (12) below). We will not pose the
problem to find a solution in the explicit form, since we consider a general
class of stochastic differential equations. Our goal is to construct an approx-
imation for the solution of any such an equation. To do this we will study
discretizations (on time) for the diffusion processes, i.e. we will propose ap-
proximation schemes and prove the convergence of discrete time processes to

the continuous time diffusion process.



Let us denote by 2 = [—s, s]™, and let L4(£2, du,) be the Hilbert space of
functions on the configuration space €2 with periodical boundary conditions.
The scalar product is defined by the Gibbs measure
2 H(X,9)

i (X) = 5 (X), o

where dug = [] dv; is the reference measure, v is the normalized Haar mea-
1EA
sure on [—s, s] and Z, (o) is the normalizing factor. The generator L, of the

reversible with respect to the Gibbs measure (9) diffusion process on €, i.e.
such that (see [13]),

(Lo f, g)ua = (f, Lcrg)ua (10)

has the following general form:

(e %2_ fX )+ 2 G 50

]

af
1,j=1
where the matrix B(X) = {b;;(X)} for any X is symmetric and positive
definite. Condition (10) in particular implies that the process generated by
L, has a stationary distribution (9).

In what follows we will consider the identity diffusion matrix B(X) = E,
in this case the drift term depends only on the gradient of the energy function:
o0 f 0H Of
X7 Z ox T €L duo).

(11)
The operator L, is the generator of a process X7(¢) on Q reversible with
respect to p,. This process is said to be diffusion or Langevin dynamics, and
it can be represented as a solution of stochastic differential equations

0.2
Lgfngf—VH-Vf—

i€

dX(t) = a(X(t))dt + cdW (), ¢> 0. (12)

Here o > 0 is the parameter setting the inverse temperature of the system,
the function
a(X) =a(X,0) = -VxH(X,0)



determines a drift dependent on the data 6 and on the current configuration
X, dW(t) is the diffusion term, W = {W(t),t > 0} is a m-dimensional
Wiener process. We won’t use later on the index ¢ in notations for X7(t),
however we will keep in mind that the solution depends on o.

Following the above reasoning we get that for typical realizations of (12)
the process X (t) as t — oo and 0 = o(t) — 0 under (8) converges to one of
the global minimizers X € Ep;, of the energy function H(X,#). This is a
crucial property for the ground of stochastic dynamics based algorithms.

4 Approximations for the diffusion dynamics

Let us rewrite the solution of (12) in the integral representation:

t t

Xi(t):Xi(s)+/ai(X(u),9)du+0/dWi(u), i=1....m  (13)

S S

with m = |A|, 0 < s < t. To find the solution of (12) using computer
simulations we have to approximate the continuous time process (13) by a
discrete time process and to derive corresponding algorithms. Using the Ito
formula for the stochastic process X (t) satisfying (12) (see for instance, [14])

we have for s < u < tandeach:i=1,...,m:
Xi(1) ZXi(S)+/CL¢(X(S),0)du+U/dm(u)+
+// <§; (X(y),e)ai(X(y),9)+%g;; (X(y),g)) dydu-+
+ / / g;‘gi (X (y), 0)odWi(y)du =
> X,(s) + ai(X(s),0)(t — s) + o (Wi(t) — Wi(s))+
i (aa; (X(s), 0)ai(X (s), 6) %%(X( ),9)) SE-o ()



+a§; (X(s),0) j / AW, (y)du.

Now two first approximations follow directly from (14). We will present them
in the next subsections, see also [15].

Let us remark that all approximation schemes under consideration be-
low are Markov chains with the state space R™. If we take the periodic
continuation of 2 on R™, then we can identify the process on (2 with the
corresponding factorization of the process on R™.

4.1 The Euler approximation

The Euler approximation is the simplest discretization scheme considering
terms up to the order (¢ — s) in the decomposition (14). Let

T(d) :{TTH n:031a23"'ant}

be a time discretization of the interval (0,%) by time steps 0, = Tny1 — Tn-
The Euler approximation

Y(n)={Yi(n)}, i=1,....m, n=0,1,...,n,

has the same initial state X (0) as the process X (t), and the process Y (n) is
constructed by the following iterative scheme:

Yiin+1) =Yi(n) 4+ a;(Y(n),0) 6, + 0 Wi(1ms1) — Wi(m)) - (15)
Here W;, + = 1,...,m are independent random variables, and the random

variable &, = W(r,41) — W(r,) is distributed by a centered normal law
N(0, d,,) with a mean 0 and a variance §,,.

4.2 The Strong Taylor approximation

((t—s) = /t/udW(y)du

Let us denote by

10



a random variable incoming to the last term of the decomposition (14). Then
1) E¢(t —s) =0,

2) BC(t - s) = 3(t — 5)°,

3) E(C(t — s)(W(t) = W(s))) = 5(t — 5)".

Therefore, we can use the following representation to generate the random
variable ((6):

1 1
§) =&MW+ — <2>> 52, 16
0(6) = 5 (6 + =¢ (16)
Here £1),¢@) are independent identically distributed by N(0, 1) random vari-
ables. Using again (14) and the above discretization of the time interval (0, t)
we obtain an approximation process Z(n) called the Strong Taylor approxi-
mation:

Zi(n+1) = Zi(n) + a;(Z(n),0) 6, + 3a:(Z(n),0) ai(Z(n),0) 62+  (17)

+307(Z(n),0) 0?67 + ai(Z(n),0) 0 G;(0n) + 0&i(0n)-

Here &,(0,) = 51(1)\/&, random variables (;(4) ” fi(l) are defined in (16), and
fz-(l),@@), i = 1,...,m, are independent identically distributed by N(0,1)
random variables.

The iteration formula (17) is not convenient for computer simulations
since the computation of high order derivatives of the energy function may
lead to numerical instabilities. The following modification of the formula (17)
serves to avoid the computation of high order derivatives. The corresponding
two-step iteration scheme is called the Fxplicit Strong Taylor approximation:



and .

with independent identically distributed by N(0, 1) random variables £, £).

4.3 «-approximation

We consider an equidistant discretization of the interval (0,%) by a time step

0:
T(6) = {né, n=0,1,2,...,nt=[§]}.

The a-approximation process
U,={Ui(n),i=1,....m, n=0,1,...,n4}
is defined as follows:
(19)
Ui(n+1) = Ui(n) + a:(U(n),0) 6 + 77,

where X (0) is the initial state of X (¢), and n®, i = 1,..., m are independent
identically distributed random variables with a mean 0 and a variance Dny* =
do?, defined by the probability distribution:

Dy (U) = ka(8)e =@y e R 0<a<2. (20)

The constants k,(d) and b,(d) are determined by the above conditions:

/pna (u)du =1, /u2pna (u)du = 6o, (21)

which imply

ka(0) = C;Ej‘g) bo(6) = %

The constants cy(«) and ¢; («) depend only on «:

o= (f) o0 =t ()

12




5 Convergence of the approximation schemes

We will state in this section results on the convergence of the approximation
processes under constant ¢. We assume that
1) a;(X,0) € C(S*™) is a continuous function on X and # for any i =
1,...,m;
2) a;(X, 6) depends only on the configurations X and 6 in a neighborhood
of the site 1:
ai(X,0) = a;(X;,0;), j:li—jl <co

with some cy.
We note, that under our definitions of a;(X, ) and H(X,#), where

0
0X;

CL,’(X,Q):— H(X,Q),
both assumptions 1) and 2) above are valid. These assumptions imply the

following bounds
max max |a;(X, )| < K, (22)

max |a,(X; 0) — a;(X, 0)] < K | [X; = X + > 1X =X (23)
j:li—il=1

with some constants Ki, K;. We denote by 7,,, the nearest discretization

point to s:

[T, — 8| < On,.

Then the following theorem about the strong convergence holds.
Theorem 1. Let

then under assumptions (22), (23) approzimation processes (15), (17), (18)
converge strongly to X(t) as § — 0 with order %, % and 1 respectively: for
any t

max E (1X;(t) — Yi(n)|) < C6'72, (24)

C' being a positive constant which does not depend on 6 (but depends on t).
The analogous estimates are true for processes (17), (18).

The proof of theorem 1 see in [16]. It follows the standard reasoning
from [15] modified for the case of a finite system of interacting stochastic

13



processes and in so doing makes use of inequality (22), (23) to estimate the
difference between the diffusion process and its approximations on each in-
terval of the time discretization.

Since processes (13) and (19) are defined on different probability spaces we
state a result on a uniform weak convergence of the processes U,, and X (t).
Theorem 2. For each continuous function f € C(S™) on S™ and any

t>0
max max |E,f(U(ns)) —E.f(Xs)| =0 a4~ d—0, (25)

zeS™ 0<s<t
where B 15 a conditional mean under the condition that x s the initial state.
The proof of theorem 2 see in [17]. The main idea of the proof is to
establish convergence of the generators of the processes U,, and X () as § —
0. The generator L of the diffusion process (13) is given by (11), and the
generator of the process (19) — (20) has the following form

L) = ( [ o]l (Zexp {=ba(8) s + 25 — .qma}) f()dz - f(y)) ,

nez
(26)
with
@izyi—ai(y)é, 1= 1,...,7’)’),. (27)
Using the Taylor expansion of the function f(y) in a neighborhood of g; one
can see that for each f € C*(S™) f(y)

Lf(y) = Lf(y) + g°(y),
with max |g°(y)| — 0 as § — 0. This formula together with the approxima-
Y

tion technique (see [18]) imply weak convergence (25) of the corresponding
processes in the uniform norm of the Banach space of continuous functions
on S™.

6 Ergodic properties of approximations

In this section, we will study ergodic properties of the Euler approximation
scheme Y (n) (15) as the parameters ¢ and § are decreased to zero. This
discrete time scheme is corresponding to the Euler approximation of a non-
stationary diffusion process (12) under a certain cooling schedule, when o =
o(t) — 0.

14



Consider an inhomogeneous Markov chain which is analogous to (15):
Yi(n+ 1) = Y;(n) +ai(Y(n)ae) On + On&n- (28)

Here 0, — 0, d,, — 0 are sequences of vanishing positive numbers, and the
random variables &, are distributed on [—s, s] by

Zexp mr @2’ g [, s) (29)

p
27?0

Denote by Bgi)(:n, A), n=1,2,..., transition functions of the Markov chain
(28), and let P,&)L(:E, A) be a probability to jump from the position z € S at
time k& to the set A at time n. The Markov chain (28) is said to be ergodic,
if for any k, 7, 21,29 € S

sup lim ‘P,gf%(xl, A) - P,Si) (zq, A)| = 0.

,n
A n—oo

Theorem 3. If 0,1/5, — 0 in such a way that

1 _ 2
208en = 00, 30
D v > (30)

then the Markov chain (28) is ergodic.
The proof of theorem 3 is based on Dobrushin’s ergodic criterion, see [19].
The results of [19] imply that the following condition

o)
E o, = 00,
n=1

is necessary and sufficient for the ergodicity of the inhomogeneous Markov
chain with transition functions P,(z, A). Here a,, = a(P,) is the ergodic
coefficient for the transition function P,, which is given by the following way
(see [19, 9]):

1
Q(P) =1- isupHP(‘T’)_P(ya ')HVar:

2y
with the norm of total variation || - ||var-
It follows from (28), (29) that for any s = 1, ..., m the density o )( z) of

the transition function P (x, A) is bounded away from zero uniformly over

1 and z: ,
() — inf p® 25 e
mn, =my) =infp) (x,z) > ———=e 2non.
z o\ 270,

15



Consequently, for any ¢ and any x, y we have

[P (@, ) = PO(y, )| |var = / P (2, 2) — pl(y, 2)|dv(z) <
S

< / (169 (@, 2) = ma]| + [0 (y, 2) — mal)d(2) = 2 — 2ma,
S

that results in the following bound on a(Pf,gi)):

. 2 s
a(PD) > m, > — 22 ¢ ke, (31)
on\/ 270,

Thus under assumption (30) estimate (31) implies that for any ¢

>l =ox
n=1

which guarantees the ergodicity of the Markov chain (28).
Remark. Obviously, condition (30) should be met, if
op—0, 9,—0

in such a way that

c s
On\ On > , with ¢> —. 32
Inn V2 (32)

Thus, the Markov chain (28) is ergodic if a cooling schedule and an approx-
imation step decay are chosen by estimate (32).

7

7 Results of computer simulations

In this section, we present results of computer simulations for image denois-
ing performed by X. Descombes. Let us describe algorithms being used for
the simulations. We consider two discrete approximations of the continuous
process, namely the Euler and the Taylor schemes. Each approximation leads
to two different iterative algorithms based on two optimization criteria: sim-
ulated annealing or the expectation criterion. In the annealing algorithms

16



the required configuration is constructed as a result of the corresponding ap-
proximation schemes (Euler or Taylor) where the parameters of the model
are decreased during iterations: o,, d, — 0. The expectation algorithms
on the first stage of iterations run in the same way as the corresponding
annealing algorithms (Euler or Taylor). The parameters o and ¢ are fixed,
attaining some small values, and the required configuration is constructed as
the average of the subsequent iterated configurations under given values o
and 4.

Computer experiments have been conducted both on synthetic and real
images. The results of simulations are presented in figures 1-7. Figures 2-4
and 6-7 demonstrate images provided by four proposed above denoising algo-
rithms. Besides, we compare two approximation schemes (Euler and Taylor)
with the Metropolis — Hastings algorithm widely used in the Markov Random
Field approaches. Each figure contains an information about a number of
iterations, a range of the parameters o, and ¢, in the annealing algorithms
(no 4, in the Metropolis — Hastings algorithm), fixed values of o and ¢ in the
expectation algorithms. Although theoretical results require a logarithmic
decay of the parameters of the model during the annealing procedure but in
practice, we use an exponential decreasing scheme for both o,,, d,,: 0, = "0y
with a constant o < 1 close to 1, and the same for d,,. Furthermore, to esti-
mate results not only visually we calculate the value of the energy H of the
final configuration for each algorithm under consideration. The parameters
of the energy function H(X,0) here are the same for all schemes, namely,
6 =20, A =0,0001, d =10. All images have 256 x 256 pixels, and the
interval [0, 256] is the grey level space.

In figures 2-4, we compare two proposed criteria using two different ap-
proximations (Euler and Taylor). On can see that the result derived by
the Taylor schemes has a better quality, but it requires more computational
time. Comparing tests on the synthetic image using simulations by different
stochastic schemes — the MH algorithm and the diffusion dynamics algo-
rithms (Euler and Taylor), one can see that the convergence of the latter
schemes is faster than for the MH scheme, especially when using a small
number of iterations. Moreover, the final images obtained by the diffusion
schemes (Euler and Taylor) and by the MH schemes have different properties.
The result of the realization of the diffusion schemes appears to be globally
similar to the synthetic image without noise, except that the image still has
pixelwise noise. This phenomenon is less appreciable with the expectation
algorithms. To remove the residual noise, we propose to apply the median

17



filtering on the final stage of the simulations, see figures 4,6,7. Using the MH
scheme we do not get this pixelwise noise but numerous areas which are not
as smooth as the optimum, see figures 3,4. In this case, the median filtering
doesn’t improve the quality of the result.

Table 1: test image (left); noisy image o = 50 (right)
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The annealing algorithm: Euler
o:10— 0,001; ¢ : 1000 — 0,1
Hy = —245404

The expectation algorithm: Euler
oc=1,0;6=10
H; = —244928

The annealing algorithm: Taylor
o:10 — 0,001; ¢ : 1000 = 0,1
H; = —245385

The expectation algorithm: Taylor
c=1,0;0=10
H; = —244954

The annealing algorithm: Metropolis

o:10 — 0,001
Hy = -245018

The expectation algorithm: Metropolis
o=20,5
H; = —-241139

Table 2: Results for the different algorithms and criteria using a high number

of iterations (10000)
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The annealing algorithm: Euler
0:10—0,01; 6 :1000 — 5
Hy = —242820

The expectation algorithm: Euler
oc=1,0; 6 =20
H; = —-237813

The annealing algorithm: Taylor
0:10—0,01; 6 :1000 — 5
Hy = —-241719

The expectation algorithm: Taylor
c=1,0; =20
H; = —238169

. et

The annealing algorithm: Metropolis

o:10— 0,01
Hy = -221939

The expectation algorithm: Metropolis
o=20,5
H; = —229612

Table 3: Results for the different algorithms and criteria using a small number

of iterations (1000)
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The annealing algorithm: Euler
0:10—0,01; 6 :1000 — 5
Hy = —243499

The expectation algorithm: Euler
oc=1,0; 6 =20
H; = —-241021

The annealing algorithm: Taylor
0:10—0,01; 6 :1000 — 5
H; = —243147

The expectation algorithm: Taylor
c=1,0; =20
H; = —241233

The annealing algorithm: Metropolis
o:10— 0,01
H; = —219963

The expectation algorithm: Metropolis
o=20,5
H; = —230552

Table 4: Results for the different algorithms and criteria using a small number
of iterations (1000) followed by a 3 x 3 median filter
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Table 5: Lenna picture (left); noisy Lenna picture o = 50 (right)
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Euler plus a 3 x 3 median filter
H; = —94703 H; = —92759

Metropolis plus a 3 x 3 median filter
H; = —88504 H; = —-90226

Table 6: Results on image for 50 iterations with the annealing algorithms
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Euler plus a 3 x 3 median filter
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Table 7: Results on image for 50 iterations with the expectation algorithms
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