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ABSTRACT

We propose a variational method for decomposing an image
into a geometry and a texture component. Our model involves
the sum of two functions promoting separately properties of
each component, and of a coupling function modeling the in-
teraction between the components. None of these functions
is required to be differentiable, which significantly broadens
the range of decompositions achievable through variational
approaches. The convergence of the proposed proximal algo-
rithm is guaranteed under suitable assumptions. Numerical
examples are provided that show an application of the algo-
rithm to image decomposition and restoration in the presence
of Poisson noise.

Index Terms— Convex optimization, denoising, image
decomposition, image restoration, proximity operator.

1. INTRODUCTION

An important problem in image processing is to decompose
an image in two elementary structures. In the context of de-
noising, this decomposition was achieved in [12] with a to-
tal variation potential. In [10], a different potential was used
to better penalize strongly oscillating components. The re-
sulting variational problem is not straightforward. Numerical
methods were proposed in [3, 13] and experiments were per-
formed for image denoising and analysis problems based on
a geometry-texture decomposition. Another interesting prob-
lem is to extract meaningful components from a blurred and
noise-corrupted image. In the presence of additive Gaussian
noise, a decomposition into geometry and texture components
is proposed in [2]. The method developed in the present pa-
per, will make it possible to consider general (not necessar-
ily additive and Gaussian) noise models and arbitrary linear
degradation operator. In addition, it lends itself to the incor-
poration of various additional convex constraints and parallel
computing.

In mathematical terms, our problem is to decompose an
image x ∈ R

N into the sum of a geometry and a texture com-
ponent, say

x = R1(x1) + R2(x2), (1)
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where R1 : R
N1 �→ R

N and R2 : R
N2 �→ R

N are known op-
erators. The vectors x1 ∈ R

N1 and x2 ∈ R
N2 to be estimated

parameterize, respectively, the geometry and the texture com-
ponents. They will be obtained via the following variational
formulation, which involves potentials f1 and f2 promoting
the properties of x1 and x2 separately, as well as a coupling
term ϕ modeling their interaction.

Problem 1.1 Let f1 : R
N1 → ]−∞, +∞], f2 : R

N2 →
]−∞, +∞], and ϕ : R

N1 × R
N2 → ]−∞, +∞] be proper

lower semicontinuous convex functions. The problem is to

minimize
x1∈RN1, x2∈RN2

f1(x1) + f2(x2) + ϕ(x1, x2). (2)

Instances of Problem 1.1 have already been studied in
[2, 3, 4, 5, 7, 9, 10, 13]. However, in each case, the coupling
function ϕ was differentiable, which excludes many impor-
tant problems. The objective of the present paper is to remove
this restriction and to propose a proximal splitting method for
solving (2).

In the next section, we provide some background on prox-
imity operators. In Section 3, we introduce the Parallel ProXi-
mal Algorithm (PPXA), which will be used to solve a decom-
posed version of Problem 1.1, more amenable to numerical
solution. Finally, in Section 4, we describe an application of
the proposed framework to image restoration and decomposi-
tion in the presence of Poisson noise.

2. PROXIMITY OPERATORS

Throughout this paper, we denote by R
K the usual K-

dimensional Euclidean space and by I the identity matrix.
Γ0(R

K) denotes the class of lower semicontinuous con-
vex functions f : R

K → ]−∞, +∞] which are proper in
the sense that dom f =

{
y ∈ R

K
∣∣ f(y) < +∞

}
�= ∅.

Let f ∈ Γ0(R
K). For every y ∈ R

K , the function z �→
f(z) + ‖y − z‖2/2 has a unique minimizer, which is denoted
by proxf y [11]. Thus, the proximity operator of f is

proxf : y �→ argmin
z∈RK

f(z) +
1

2
‖y − z‖2. (3)

Let C be a nonempty convex subset of R
K . Then ιC denotes

the indicator function of C (it takes on the value 0 in C and
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+∞ in R
K \ C), ri C the relative interior of C, and, if C is

closed, PC = proxιC
its projection operator. For a detailed

account of the theory of proximity operators, see [9] and the
pioneering work in [11]. Closed-form expressions of proxim-
ity operators can be found in [7, 8, 9, 11] and the references
therein.

The following fact will be used subsequently.

Lemma 2.1 Let χ > 0 and set

f : R
2 → R : (η1, η2) �→ χ

√
|η1|2 + |η2|2. (4)

Then, for every (η1, η2) ∈ R
2,

proxf (η1, η2) =⎧⎪⎨⎪⎩
(

1 −
χ√

|η1|2 + |η2|2

)
(η1, η2), if

√
|η1|2 + |η2|2 > χ;

(0, 0), otherwise.

3. DECOMPOSITION: PRODUCT SPACE PPXA

Problem 1.1 can be rewritten as

minimize
x1∈RN1, x2∈RN2

h(x1, x2) + ϕ(x1, x2), (5)

where h : (x1, x2) �→ f1(x1) + f2(x2). Since h is separa-
ble, proxh : (x1, x2) �→ (proxf1

x1, proxf2
x2). Hence, if

the proximity operators of f1 and f2 are easily computable,
so is proxh. In addition, if proxϕ were also easy to imple-
ment, then Douglas-Rachford splitting [8] could be used to
solve (5). However, in many cases, the proximity operator of
the coupling term ϕ will not be explicit. Our strategy is to
derive an equivalent decomposed variational formulation by
introducing auxiliary variables and functions. This decom-
posed problem assumes the following form.

Problem 3.1 Let (hj)1≤j≤p be proper lower semicontinuous
convex functions from R

K1 × · · · × R
Km to ]−∞, +∞] sat-

isfying
⋂p

j=1 ri domhj �= ∅. The problem is to

minimize
y1∈RK1 ,..., ym∈RKm

p∑
j=1

hj(y1, . . . , ym), (6)

under the assumption that a solution exists.

In practice, the objective is to choose functions (hj)1≤j≤p

for which the proximity operators (proxhj
)1≤j≤p are easily

implementable. In turn, this allows us to solve Problem 3.1
by applying [7, Theorem 3.4] in the Euclidean space R

K1 ×
· · · × R

Km as follows.

Theorem 3.1 Let (y1,n)n∈N, . . . , (ym,n)n∈N be the se-
quences generated by the following routine.

Initialization⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Set γ ∈ ]0, +∞[ and take {ωj}1≤j≤p ⊂ ]0, 1]

such that
p∑

j=1

ωj = 1

For i = 1, . . . , m⎢⎢⎢⎢⎢⎢⎣
For j = 1, . . . , p
	 si,j,0 ∈ R

Ki

yi,0 =

p∑
j=1

ωj si,j,0

For n = 0, 1, . . .⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

For j = 1, . . . , p
	 (qi,j,n)1≤i≤m = proxγhj/ωj

(si,j,n)1≤i≤m

For i = 1, . . . , m⎢⎢⎢⎢⎢⎢⎣
yi,n+1 =

p∑
j=1

ωj qi,j,n

For j = 1, . . . , p
	 si,j,n+1 = si,j,n + 2yi,n+1 − yi,n − qi,j,n.

(7)

Then, for every i ∈ {1, . . . , m}, the sequence (yi,n)n∈N con-
verges to a point yi ∈ R

Ki , and (y1, . . . , ym) is a solution to
Problem 3.1.

4. EXPERIMENTAL RESULTS

We illustrate the use of the proposed product space PPXA in
the context of a simple geometry-texture decomposition from
a degraded observation. In our scenario, the observed im-
age z ∈ R

N of Figure 2 (N = 512 × 512) is obtained by
blurring the original electron microscopy image x ∈ R

N of
Figure 1 with a matrix T ∈ R

N×N , which models a uniform
blur of size 5 × 5. Furthermore, x is contaminated by a Pois-
son noise with scaling parameter α = 0.6. We consider a
simple instance of (1) with a linear mixture model: N1 = N ,
R1 : x1 �→ x1, and R2 : x2 �→ F�x2, where F� ∈ R

N×N2

is a linear tight frame synthesis operator. In other words, the
information regarding the texture component pertains to the
coefficients x2 of its decomposition in the frame. The tight-
ness condition implies that

F�F = ν I , for some ν ∈ ]0, +∞[ . (8)

The original image is therefore decomposed as x = x1 +
F�x2. It is known a priori that x ∈ C1 ∩ C2, where C1 =
[0, 255]N models the constraint on the numerical range of the
pixels, and

C2 =

{
x ∈ R

N
∣∣ x̂ = (ηk)1≤k≤N ,

∑
k∈I

|ηk|
2 ≤ δ

}
(9)
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models an energy bound in the frequency domain (x̂ denotes
the 2D Discrete Fourier Transform (DFT) of the image x and
I corresponds to some set of discrete frequency indices). In
addition, to limit the total variation of the geometrical com-
ponent, we use the potential x �→ ψ(Hx, V x), with

ψ :
(
(ηk)1≤k≤N , (ζk)1≤k≤N

)
�→ χ

N∑
k=1

√
|ηk|2 + |ζk|2,

(10)
where χ ∈ ]0, +∞[, and where H ∈ R

N×N and V ∈ R
N×N

are matrix representations of the horizontal and vertical dis-
crete differentiations, respectively. Furthermore, to promote
the sparsity in the frame of the texture component of the im-
age, we introduce the potential

f2 : (ηk)1≤k≤N2
�→

N2∑
k=1

τk|ηk|, (11)

where {τk}1≤k≤N2
⊂ ]0, +∞[. Finally, as a data fidelity

term, we use the generalized Kullback-Leibler divergence D,
which is well adapted to Poisson noise. Altogether, we arrive
at the variational problem

min
x1∈R

N, x2∈R
N2

x1+F�x2∈C1

x1+F�x2∈C2

ψ(Hx1, V x1)+f2(x2)+D(z, Tx1+TF�x2),

(12)
which is a particular case of (2) with f1 : x �→ ψ(Hx, V x)
and

ϕ : (x1, x2) �→ D(z, Tx1 + TF�x2)+

ιC1
(x1 + F�x2) + ιC2

(x1 + F�x2). (13)

Since proxϕ and proxf1
are not easily computable, a strategy

is to decompose (12) into the equivalent problem

min
(y1,y2,y3,y4,y5,y6)

y3=y1+F�y2

y3∈C1, y3∈C2

y4=Ty3

y5=Hy1, y6=V y1

ψ(y5, y6) + f2(y2) + D(z, y4), (14)

where we have changed the variables (x1, x2) into (y1, y2)
and introduced the auxiliary variables (y3, y4, y5, y6). Prob-
lem (14) is a particular case of (6) with m = 6, p = 3,
K1 = K3 = K4 = K5 = K6 = N , K2 = N2, and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1 : (y1, . . . , y6) �→ f2(y2) + ιC1
(y3) + D(z, y4)

+ψ(y5, y6),

h2 : (y1, . . . , y6) �→ ιC2
(y3),

h3 : (y1, . . . , y6) �→ ι{0}(y1 + F�y2 − y3)

+ι{0}(Ty3 − y4) + ι{0}(Hy1 − y5)

+ι{0}(V y1 − y6).
(15)

In [1], a similar reformulation is considered with m = 2, and
solved by an alternating direction method of multipliers.

The proximity operators associated with f2 and D(z, ·)
can be obtained from [9]. On the other hand, proxψ is derived
from Lemma 2.1 and, as seen earlier, proxιC1

= PC1
and

proxιC2

= PC2
. Furthermore, if we set

L =

2
664

I F�
− I 0 0 0

0 0 T − I 0 0

H 0 0 0 − I 0

V 0 0 0 0 − I

3
775 , (16)

we deduce from (15) that h3 = ι{0}◦L. Lastly, since the ma-
trices T , H , and V are associated with periodic convolution
operators, they are diagonalized by the DFT. Hence, using
(8), proxh3

can be deduced from the well-known expression
of the projection onto the kernel of L.

The convergence of the algorithm is guaranteed under the
assumptions of Problem 3.1. Since int(C1 ∩ C2) �= ∅, these
assumptions are satisfied due to the fact that T has strictly
positive entries, and each of its lines is nonzero.

Figure 3 shows the results of the decomposition into ge-
ometry and texture components. The parameter χ of (10) and
the parameters (τk)1≤k≤N2

of (11) are selected so as to max-
imize the signal-to-noise ratio (SNR). The matrix F is a tight
frame version of the dual-tree transform proposed in [6] us-
ing symlets of length 6 over 3 resolution levels (ν = 2 and
N2 = 2N ). The same discrete gradient matrices H and V as
in [7, Section 4.2] are used.

Fig. 1. Original image x.
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reconstruction des amas de galaxies,” Traitement du Signal,
vol. 23, pp. 439–447, 2006.

2723



Fig. 2. Degraded image z: SNR = 15.7 dB – SSIM = 0.55.

[3] J.-F. Aujol, G. Aubert, L. Blanc-Féraud, and A. Chambolle,
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