

P. Pankajakshan, *et al.*

Wavefront sensing for aberration modeling in fluorescence MACROscopy

Praveen Pankajakshan¹, Alain Dieterlen², Zvi Kam³, Gilbert Engler⁴, Laure Blanc-Féraud⁵, Josiane Zerubia⁵, Jean-Christophe Olivo-Marin¹

ISBI 2011 March 31, 2011, praveen@pasteur.fr

מכוז ויצמז למדע

Road map

Wavefront sensing in MACROscopy

P. Pankajakshan, *et al.*

Road map

Context

Forward problem

Inverse problem

Conclusions

I Fluorescence MACROscopy

2 Forward problem: Characterizing the aberration

Inverse problem: Wavefront sensing from intensity data

4 Take home message and ongoing work

Widefield fluorescence MACROscope

Wavefront sensing in MACROscopy	
Context	
nverse problem	

Widefield fluorescence MACROscope

Wavefront sensing in MACROscopy	Central points
Context	
Inverse problem	

Widefield fluorescence MACROscope

Ν

Co

Widefield fluorescence MACROscope

Wavefront sensing in ACROscopy	
itext	
	•
erse problem	

Central points

- Low magnification objective lens is combined with apochromatic zoom lens,
- permits large object fields (up to 35mm) and large working distances (up to 97mm),

Co

Widefield fluorescence MACROscope

Wavefront sensing in ACROscopy		
ntext		
	•	
erse problem	E.	

Central points

- Low magnification objective lens is combined with apochromatic zoom lens,
- permits large object fields (up to 35mm) and large working distances (up to 97mm),
- parallax-free and precise imaging,

Co

Widefield fluorescence MACROscope

Wavefront sensing in ACROscopy	
ntext	
	-

Central points

- Low magnification objective lens is combined with apochromatic zoom lens,
- permits large object fields (up to 35mm) and large working distances (up to 97mm),
- parallax-free and precise imaging,
- multi-color fluorescence.

Wavefront sensing in MACROscopy	$NA = n_i \times \sin \alpha$
Context	

P. Pankajakshan, et al.

March 31, 2011

Numerical aperture and working distance

Numerical aperture and working distance

Numerical aperture increases

Numerical aperture and working distance

March 31, 2011

Best of two worlds

Wavefront sensing in
P. Pankajakshan,
Context

Best of two worlds

Max	Maximum z	Maximum zoom po	Maximum zoom position
Max	Maximum z	Maximum zoom po	Maximum zoom position

Experimental impulse response

Experimental impulse response

Figure 1: 2.5μ m beads imaged using a Leica Widefield MacroFluoTMZ16 APO fit with $5\times$ objective and the $1.6\times$ zoom. ©Herbomel lab, Pasteur Institute.

March 31, 2011

MACROscopes-Are they really the best of the two worlds?

Figure 2: Axial projection of the beads. ©Herbomel lab, Pasteur Institute.

P. Pankajakshan, et al.

March 31, 2011

P. Pankajakshan, *et al.*

Road map

Context

Forward problem

Inverse problem

Conclusions

Forward problem: Characterizing the aberration

Incoherent scalar PSF model

Wavefront sensing in MACROscopy

P. Pankajakshan, *et al.*

Road map

Context

Forward problem

Inverse problem

Conclusions

 If P(k_x, k_y, z) is the 2D complex pupil function and λ is the wavelength, the amplitude PSF can be calculated by just 2N_z number of 2D FFTs as

$$h_A(x, y, z; \lambda) = \int_{k_x} \int_{k_y} P(k_x, k_y, z) \exp(j(k_x x + k_y y)) dk_y dk_x$$

Incoherent scalar PSF model

Wavefront sensing in MACROscopy

P. Pankajakshan, *et al.*

Road map

Context

Forward problem

Inverse problem

Conclusions

 If P(k_x, k_y, z) is the 2D complex pupil function and λ is the wavelength, the amplitude PSF can be calculated by just 2N_z number of 2D FFTs as

$$h_A(x, y, z; \lambda) = \int_{k_x} \int_{k_y} P(k_x, k_y, z) \exp(j(k_x x + k_y y)) dk_y dk_x$$

► and the incoherent PSF is

$$h_{Th}(\mathbf{x}; \lambda_{\mathsf{ex}}, \lambda_{\mathsf{em}}) = C |h_A(\mathbf{x}; \lambda_{\mathsf{ex}})| \times |h_A(\mathbf{x}; \lambda_{\mathsf{em}})|$$

 \blacktriangleright $\lambda_{\rm ex}$ and $\lambda_{\rm em}$ are the excitation and emission peak wavelengths.

Limiting apertures overlapping

Limiting apertures overlapping

Optical vignetting

Wavefront sensing in MACROscopy

P. Pankajakshan, *et al.*

Road map

Context

Forward problem

Inverse problem

Conclusions

Figure 3: Lens viewed from the front. (Photograph by Peter Boehmer.)

Optical vignetting

Wavefront sensing in MACROscopy

P. Pankajakshan, *et al.*

Road map

Context

Forward problem

Inverse problem

Conclusions

Figure 3: Lens viewed from the front. (Photograph by Peter Boehmer.)

Figure 4: Lens viewed from the side. (Photograph by Peter Boehmer.)

Wavefront sensing in MACROscopy

P. Pankajakshan, *et al.*

Road map

Context

Forward problem

Inverse problem

Conclusions

► For a MICROscope, the pupil function is

Wavefront sensing in MACROscopy

P. Pankajakshan, *et al.*

Road map

Context

Forward problem

Inverse problem

Conclusions

► For a MICROscope, the pupil function is

$$P_m(k_x, k_y, z; \lambda) = \begin{cases} e^{jk_0\phi(\theta_i, \theta_s, z)}, & \text{ if } \sqrt{k_x^2 + k_y^2} < \frac{2\pi}{\lambda} \mathsf{NA}_{\mathsf{Obj}} \\ 0, & \text{ otherwise.} \end{cases}$$

Wavefront sensing in MACROscopy

P. Pankajakshan, *et al.*

Road map

Context

Forward problem

Inverse problem

Conclusions

► For a MICROscope, the pupil function is

$$P_m(k_x, k_y, z; \lambda) = \begin{cases} e^{jk_0\phi(\theta_i, \theta_s, z)}, & \text{ if } \sqrt{k_x^2 + k_y^2} < \frac{2\pi}{\lambda} \mathsf{NA}_{\mathsf{Obj}} \\ 0, & \text{ otherwise.} \end{cases}$$

Modification for a MACROscope

$$P(k_x, k_y, z; \lambda) = \begin{cases} P_m, & \text{if } \sqrt{(k_x - r_x)^2 + (k_y - r_y)^2} < \frac{2\pi}{\lambda} \mathsf{NA}_{\mathsf{Zo}} \\ 0, & \text{otherwise.} \end{cases}$$

Wavefront sensing in MACROscopy

P. Pankajakshan, *et al.*

Road map

Context

Forward problem

Inverse problem

Conclusions

► For a MICROscope, the pupil function is

$$P_m(k_x, k_y, z; \lambda) = \begin{cases} e^{jk_0\phi(\theta_i, \theta_s, z)}, & \text{ if } \sqrt{k_x^2 + k_y^2} < \frac{2\pi}{\lambda} \mathsf{NA}_{\mathsf{Obj}} \\ 0, & \text{ otherwise.} \end{cases}$$

Modification for a MACROscope

$$P(k_x, k_y, z; \lambda) = \begin{cases} P_m, & \text{if } \sqrt{(k_x - r_x)^2 + (k_y - r_y)^2} < \frac{2\pi}{\lambda} NA_{Zo} \\ 0, & \text{otherwise.} \end{cases}$$

► NA_{Obj} and NA_{Zo} are the objective and zoom lens NA; (r_x, r_y) are the relative displacements.

ł

Characterization in the lateral field

Wavefront sensing in MACROscopy

P. Pankajakshan, *et al.*

Road map

Context

Forward problem

Inverse problem

Conclusions

Figure 5: We can characterize the behavior at any position in the lateral field.

March 31, 2011

Out-of-focus highlights (OOFH)

Figure 6: Theoretically calculated MACROscope PSF in log scale. NA=0.5, lateral sampling 178.33nm, axial sampling 1000nm.

March 31, 2011

Out-of-focus highlights (OOFH)

Figure 6: Theoretically calculated MACROscope PSF in log scale. NA=0.5, lateral sampling 178.33nm, axial sampling 1000nm.

P. Pankajakshan, *et al.*

Road map

Context

Forward problem

Inverse problem

Conclusions

Inverse problem: Wavefront sensing from intensity data

Wavefront sensing in MACROscopy

P. Pankajakshan, *et al.*

Road map

Context

Forward problem

Inverse problem

Conclusions

Summary

► The PSF of an imaging system can vary experimentally,

P. Pankajakshan, *et al.*

Road map

Context

Forward problem

Inverse problem

Conclusions

- The PSF of an imaging system can vary experimentally,
- theoretically it can be calculated from the pupil function by a simple Fourier transform,

P. Pankajakshan, *et al.*

Road map

Context

Forward problem

Inverse problem

Conclusions

- The PSF of an imaging system can vary experimentally,
- theoretically it can be calculated from the pupil function by a simple Fourier transform,
- the pupil function is not often available,

P. Pankajakshan, *et al.*

Road map

Context

Forward problem

Inverse problem

Conclusions

- The PSF of an imaging system can vary experimentally,
- theoretically it can be calculated from the pupil function by a simple Fourier transform,
- the pupil function is not often available,
 - the wavefront can be sensed by using a Shack-Hartmann wavefront sensor,

P. Pankajakshan, *et al.*

Road map

Context

Forward problem

Inverse problem

Conclusions

- The PSF of an imaging system can vary experimentally,
- theoretically it can be calculated from the pupil function by a simple Fourier transform,
- the pupil function is not often available,
 - the wavefront can be sensed by using a Shack-Hartmann wavefront sensor,
 - it can be also retrieved from the observed intensities,

P. Pankajakshan, *et al.*

Road map

Context

Forward problem

Inverse problem

Conclusions

- The PSF of an imaging system can vary experimentally,
- theoretically it can be calculated from the pupil function by a simple Fourier transform,
- the pupil function is not often available,
 - the wavefront can be sensed by using a Shack-Hartmann wavefront sensor,
 - it can be also retrieved from the observed intensities,
- the aberrations in the optics of the objective can be determined by studying this phase,

P. Pankajakshan, *et al.*

Road map

Context

Forward problem

Inverse problem

Conclusions

- The PSF of an imaging system can vary experimentally,
- theoretically it can be calculated from the pupil function by a simple Fourier transform,
- the pupil function is not often available,
 - the wavefront can be sensed by using a Shack-Hartmann wavefront sensor,
 - it can be also retrieved from the observed intensities,
- the aberrations in the optics of the objective can be determined by studying this phase,
- the estimated wavefront can be used to correct the aberrated optical path.

Wavefront sensing-a Bayesian interpretation

Wavefront sensing in MACROscopy

P. Pankajakshan, *et al.*

Road map

Context

Forward problem

Inverse problem

Conclusions

For uncorrelated low photon count data the observation is:

$$i(\mathbf{x}) = \mathcal{P}\{|h_{\mathsf{A}}(\mathbf{x})|^2 + b(\mathbf{x})\}, \forall \mathbf{x} \in \Omega_s$$

Wavefront sensing-a Bayesian interpretation

Wavefront sensing in MACROscopy

P. Pankajakshan, *et al.*

Road map

Context

Forward problem

Inverse problem

Conclusions

For uncorrelated low photon count data the observation is:

$$i(\mathbf{x}) = \mathcal{P}\{|h_{\mathsf{A}}(\mathbf{x})|^2 + b(\mathbf{x})\}, \forall \mathbf{x} \in \Omega_s$$

 Considering Poissonian photon counting statistics, the likelihood of obtaining image i(x) from a diffraction-limited point source:

$$\Pr(i|h_{\mathsf{A}}) = \prod_{\mathbf{x}\in\Omega_s} \frac{(h_{\mathsf{A}}+b)(\mathbf{x})^{i(\mathbf{x})}\exp(-(h_{\mathsf{A}}+b)(\mathbf{x})}{i(\mathbf{x})!}$$

Wavefront sensing-a Bayesian interpretation

Wavefront sensing in MACROscopy

P. Pankajakshan, *et al.*

Road map

Context

Forward problem

Inverse problem

Conclusions

For uncorrelated low photon count data the observation is:

$$i(\mathbf{x}) = \mathcal{P}\{|h_{\mathsf{A}}(\mathbf{x})|^2 + b(\mathbf{x})\}, \forall \mathbf{x} \in \Omega_s$$

 Considering Poissonian photon counting statistics, the likelihood of obtaining image i(x) from a diffraction-limited point source:

$$\Pr(i|h_{\mathsf{A}}) = \prod_{\mathbf{x}\in\Omega_s} \frac{(h_{\mathsf{A}}+b)(\mathbf{x})^{i(\mathbf{x})}\exp(-(h_{\mathsf{A}}+b)(\mathbf{x})}{i(\mathbf{x})!}$$

From the Bayes' theorem, the a posteriori is

$$\Pr(h_{\mathsf{A}}|i) = \frac{\Pr(i|h_{\mathsf{A}})\Pr(h_{\mathsf{A}})}{\Pr(i)}$$

Global idea for sensing

Wavefront sensing in MACROscopy

P. Pankajakshan, *et al.*

Road map

Context

Forward problem

Inverse problem

Conclusions

Invariant to defocus

Global idea for sensing

Wavefront sensing in MACROscopy

P. Pankajakshan, *et al.*

Road map

Context

Forward problem

Inverse problem

Conclusions

Invariant to defocus

$$P(k_x, k_y, z) = \begin{cases} e^{jk_0(\varphi_{\mathsf{aberr}} + \phi_{\mathsf{defocus}}(\theta_i, z))}, & \text{ if } \sqrt{k_x^2 + k_y^2} < \frac{2\pi}{\lambda}\mathsf{N}\mathsf{A} \\ 0, & \text{ otherwise.} \end{cases}$$

Global idea for sensing

Wavefront sensing in MACROscopy

P. Pankajakshan, *et al.*

Road map

Context

Forward problem

Inverse problem

Conclusions

Invariant to defocus

$$P(k_x, k_y, z) = \begin{cases} e^{jk_0(\varphi_{\mathsf{aberr}} + \phi_{\mathsf{defocus}}(\theta_i, z))}, & \text{ if } \sqrt{k_x^2 + k_y^2} < \frac{2\pi}{\lambda}\mathsf{N}\mathsf{A} \\ 0, & \text{ otherwise.} \end{cases}$$

• Estimate the near-focus amplitude distribution, \hat{h}_A , by maximizing the *a posteriori* (MAP) or minimizing the cologarithm of the *a posteriori*

$$\hat{h}_{\mathsf{A}}(\mathbf{x};\varphi_{\mathsf{aberr}}) = \underset{h_{\mathsf{A}}(\mathbf{x})}{\operatorname{arg\,min}} - \log[\Pr(h_{\mathsf{A}}|i)], \mathsf{s. t. } k_{\mathsf{MAX}} < \frac{2\pi\mathsf{NA}}{\lambda_{\mathsf{ex}}}$$

 k_{MAX} is the pupil support,

this can be solved by using a fixed-point iterative algorithm.

Experiment on intensity data

Wavefront sensing in MACROscopy

P. Pankajakshan, *et al.*

Road map

Context

Forward problem

Inverse problem

Conclusions

Figure 7: Radially projected 2.5μ m observed intensity volume. ©Imaging Center, IGBMC, France.

Experiment on intensity data

Wavefront sensing in MACROscopy

P. Pankajakshan, *et al.*

Road map

Context

Forward problem

Inverse problem

Conclusions

Figure 7: Radially projected $2.5\mu m$ observed intensity volume. ©Imaging Center, IGBMC, France.

Figure 8: Axially projected 2.5μ m observed intensity volume. ©Imaging Center, IGBMC, France.

Experiment on intensity data

Wavefront sensing in MACROscopy

P. Pankajakshan, *et al.*

Road map

Context

Forward problem

Inverse problem

Conclusions

Figure 7: Radially projected 2.5μ m observed intensity volume. ©Imaging Center, IGBMC, France.

Figure 8: Axially projected 2.5μ m observed intensity volume. ©Imaging Center, IGBMC, France.

Wavefront sensing in MACROscopy

P. Pankajakshan, *et al.*

Road map

Context

Forward problem

Inverse problem

Conclusions

Figure 9: OOFH radial section of the observed volume, $z = -57 \mu m$. ©Imaging Center, IGBMC, France.

Chopped defocus

Figure 9: OOFH radial section of the observed volume, $z = -57 \mu m$. ©Imaging Center, IGBMC, France.

Wavefront sensing in MACROscopy

P. Pankajakshan, *et al.*

Road map

Context

Forward problem

Inverse problem

Conclusions

Figure 9: OOFH radial section of the observed volume, $z = -57 \mu m$. ©Imaging Center, IGBMC, France.

Figure 10: Retrieved unwrapped pupil phase from the intensity images $\tau = 0.9$ and the maximum number of iteration is 40.

Chopped pupil

P. Pankajakshan, *et al*

Wavefront

sensing in MACROscopy

Road map

Context

Forward problem

Inverse problem

Conclusions

Figure 9: OOFH radial section of the observed volume, $z = -57 \mu m$. ©Imaging Center, IGBMC, France.

Figure 10: Retrieved unwrapped pupil phase from the intensity images $\tau = 0.9$ and the maximum number of iteration is 40.

Take home message

P. Pankajakshan, *et al.*

Road map

Context

Forward problem

Inverse problem

Conclusions

 The MACROscope PSF varies as a function of the lateral field position,

Take home message

P. Pankajakshan, *et al.*

Road map

Context

Forward problem

Inverse problem

- The MACROscope PSF varies as a function of the lateral field position,
- vignetting was observable only for smaller zooms (large FOV) and is negligible for larger zooms,

Take home message

Wavefront sensing in MACROscopy

P. Pankajakshan, *et al.*

Road map

Context

Forward problem

Inverse problem

- The MACROscope PSF varies as a function of the lateral field position,
- vignetting was observable only for smaller zooms (large FOV) and is negligible for larger zooms,
- exploit defocus sections phase aberration invariancy to estimate the back focal plane pupil phase,

P. Pankajakshan, *et al.*

Road map

Context

Forward problem

Inverse problem

- The MACROscope PSF varies as a function of the lateral field position,
- vignetting was observable only for smaller zooms (large FOV) and is negligible for larger zooms,
- exploit defocus sections phase aberration invariancy to estimate the back focal plane pupil phase,
- the wavefront estimated from the experimental bead intensity data validates the vignetting hypothesis,

P. Pankajakshan, *et al.*

Road map

Context

Forward problem

Inverse problem

- The MACROscope PSF varies as a function of the lateral field position,
- vignetting was observable only for smaller zooms (large FOV) and is negligible for larger zooms,
- exploit defocus sections phase aberration invariancy to estimate the back focal plane pupil phase,
- the wavefront estimated from the experimental bead intensity data validates the vignetting hypothesis,
- the sensed wavefront can be used to define the effective working zoom,

P. Pankajakshan, *et al.*

Road map

Context

Forward problem

Inverse problem

- The MACROscope PSF varies as a function of the lateral field position,
- vignetting was observable only for smaller zooms (large FOV) and is negligible for larger zooms,
- exploit defocus sections phase aberration invariancy to estimate the back focal plane pupil phase,
- the wavefront estimated from the experimental bead intensity data validates the vignetting hypothesis,
- the sensed wavefront can be used to define the effective working zoom,
- ongoing work: restore the images by correcting for the field aberration and also the diffraction effects.

Acknowledgements

Wavefront sensing in MACROscopy

P. Pankajakshan, *et al.*

Road map

Context

Forward problem

Inverse problem

Conclusions

 The first author wish to thank ANR DIAMOND for funding the postdoctoral research fellowship,

- P. Pankajakshan, *et al.*
- Road map
- Context
- Forward problem
- Inverse problem
- Conclusions

- The first author wish to thank ANR DIAMOND for funding the postdoctoral research fellowship,
- the authors are grateful to Dr. Philippe Herbomel from the Institut Pasteur, France and Dr. Didier Hentsch from IGBMC, France for the images and the discussions,

- P. Pankajakshan, *et al.*
- Road map
- Context
- Forward problem
- Inverse problem
- Conclusions

- The first author wish to thank ANR DIAMOND for funding the postdoctoral research fellowship,
- the authors are grateful to Dr. Philippe Herbomel from the Institut Pasteur, France and Dr. Didier Hentsch from IGBMC, France for the images and the discussions,
- some of the bead samples were prepared by Dr. Mickael Lelek from Institut Pasteur, France, a big thanks to him,

- P. Pankajakshan, *et al.*
- Road map
- Context
- Forward problem
- Inverse problem
- Conclusions

- The first author wish to thank ANR DIAMOND for funding the postdoctoral research fellowship,
- the authors are grateful to Dr. Philippe Herbomel from the Institut Pasteur, France and Dr. Didier Hentsch from IGBMC, France for the images and the discussions,
- some of the bead samples were prepared by Dr. Mickael Lelek from Institut Pasteur, France, a big thanks to him,
- we acknowledge our colleagues for their support.

P. Pankajakshan, *et al.*

Road map

Context

Forward problem

Inverse problem

Conclusions

- The first author wish to thank ANR DIAMOND for funding the postdoctoral research fellowship,
- the authors are grateful to Dr. Philippe Herbomel from the Institut Pasteur, France and Dr. Didier Hentsch from IGBMC, France for the images and the discussions,
- some of the bead samples were prepared by Dr. Mickael Lelek from Institut Pasteur, France, a big thanks to him,
- we acknowledge our colleagues for their support.

For more information see:

http://www-syscom.univ-mlv.fr/ANRDIAMOND/

P. Pankajakshan, *et al.*

Road map

Context

Forward problem

Inverse problem

Conclusions

- The first author wish to thank ANR DIAMOND for funding the postdoctoral research fellowship,
- the authors are grateful to Dr. Philippe Herbomel from the Institut Pasteur, France and Dr. Didier Hentsch from IGBMC, France for the images and the discussions,
- some of the bead samples were prepared by Dr. Mickael Lelek from Institut Pasteur, France, a big thanks to him,
- we acknowledge our colleagues for their support.

For more information see:

http://www-syscom.univ-mlv.fr/ANRDIAMOND/

Thank you!