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Widefield fluorescence MACROscope

Central points

I Low magnification
objective lens is combined
with apochromatic zoom
lens,

I permits large object fields
(up to 35mm) and large
working distances (up to
97mm),

I parallax-free and precise
imaging,

I multi-color fluorescence.
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Numerical aperture and resolution

NA = ni × sinα

= 1.00× sinα

Numerical aperture decreases

Resolution decreases
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Numerical aperture and working distance

Numerical aperture increases

Working distance & Field-of-view decreases
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Best of two worlds

Minimum zoom position
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Experimental impulse response

Figure 1: 2.5µm beads imaged using a Leica Widefield MacroFluoTMZ16 APO
fit with 5× objective and the 1.6× zoom. c©Herbomel lab, Pasteur Institute.
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MACROscopes-Are they really the best of the
two worlds?

Figure 2: Axial projection of the beads. c©Herbomel lab, Pasteur Institute.
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Forward problem: Characterizing the aberration
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Incoherent scalar PSF model

I If P(kx ,ky,z) is the 2D complex pupil function and λ is
the wavelength, the amplitude PSF can be calculated by
just 2Nz number of 2D FFTs as

hA(x,y,z;λ) =
∫
kx

∫
ky

P(kx ,ky,z)exp(j(kxx + kyy))dkydkx

I and the incoherent PSF is

hTh(x;λex,λem) = C |hA(x;λex)|× |hA(x;λem)|

I λex and λem are the excitation and emission peak
wavelengths.
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Limiting apertures overlapping

‘Cat’s eye effect!’
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Optical vignetting

Figure 3: Lens viewed from the front.
(Photograph by Peter Boehmer.)

Figure 4: Lens viewed from the side.
(Photograph by Peter Boehmer.)
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PSF modeling by using scalar diffraction theory

I For a MICROscope, the pupil function is

Pm(kx ,ky,z;λ) =

ejk0φ(θi ,θs,z), if
√

k2
x + k2

y <
2π
λ NAObj

0, otherwise.

I Modification for a MACROscope

P(kx ,ky,z;λ) =

Pm , if
√

(kx − rx)2 + (ky− ry)2 < 2π
λ NAZo

0, otherwise.

I NAObj and NAZo are the objective and zoom lens NA;
(rx ,ry) are the relative displacements.
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Characterization in the lateral field

Figure 5: We can characterize the behavior at any position in the lateral field.
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Out-of-focus highlights (OOFH)

Figure 6: Theoretically calculated MACROscope PSF in log scale. NA= 0.5,
lateral sampling 178.33nm, axial sampling 1000nm.

Cat’s eye in OOFH!
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Inverse problem: Wavefront sensing from intensity data
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Wavefront sensing from intensity data

Summary

I The PSF of an imaging system can vary experimentally,
I theoretically it can be calculated from the pupil function

by a simple Fourier transform,
I the pupil function is not often available,

• the wavefront can be sensed by using a Shack-Hartmann
wavefront sensor,

• it can be also retrieved from the observed intensities,

I the aberrations in the optics of the objective can be
determined by studying this phase,

I the estimated wavefront can be used to correct the
aberrated optical path.
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Wavefront sensing-a Bayesian interpretation

I For uncorrelated low photon count data the observation
is:

i(x) = P{|hA(x)|2 + b(x)},∀x ∈ Ωs

I Considering Poissonian photon counting statistics, the
likelihood of obtaining image i(x) from a
diffraction-limited point source:

Pr(i|hA) =
∏

x∈Ωs

(hA + b)(x)i(x) exp(−(hA + b)(x)
i(x)!

I From the Bayes’ theorem, the a posteriori is

Pr(hA|i) = Pr(i|hA)Pr(hA)
Pr(i)

P. Pankajakshan, et al. March 31, 2011 page 18 of 23
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Global idea for sensing

I Invariant to defocus

P(kx ,ky,z) =

ejk0(ϕaberr+φdefocus(θi ,z)), if
√

k2
x + k2

y <
2π
λ NA

0, otherwise.

I Estimate the near-focus amplitude distribution, ĥA, by
maximizing the a posteriori (MAP) or minimizing the
cologarithm of the a posteriori

ĥA(x;ϕaberr) = argmin
hA(x)

− log[Pr(hA|i)],s. t. kMAX <
2πNA
λex

kMAX is the pupil support,
I this can be solved by using a fixed-point iterative

algorithm.
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cologarithm of the a posteriori

ĥA(x;ϕaberr) = argmin
hA(x)

− log[Pr(hA|i)],s. t. kMAX <
2πNA
λex

kMAX is the pupil support,
I this can be solved by using a fixed-point iterative

algorithm.
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Wavefront sensed from intensity data

Figure 9: OOFH radial section of the
observed volume, z = −57µm.
c©Imaging Center, IGBMC, France.

Figure 10: Retrieved unwrapped pupil
phase from the intensity images τ = 0.9
and the maximum number of iteration
is 40.

Chopped defocusChopped pupil

Costantini, M. (1998). A novel phase unwrapping method based on network programming. IEEE Tran. on
Geoscience and Remote Sensing, 36, 813-821.
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Take home message

I The MACROscope PSF varies as a function of the lateral
field position,

I vignetting was observable only for smaller zooms (large
FOV) and is negligible for larger zooms,

I exploit defocus sections phase aberration invariancy to
estimate the back focal plane pupil phase,

I the wavefront estimated from the experimental bead
intensity data validates the vignetting hypothesis,

I the sensed wavefront can be used to define the effective
working zoom,

I ongoing work: restore the images by correcting for the
field aberration and also the diffraction effects.
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