Characterizing the aberrations in a fluorescence MACROscope

Praveen Pankajakshan¹, Zvi Kam², Alain Dieterlen³, Gilbert Engler⁴, Laure Blanc-Féraud⁵, Josiane Zerubia⁵, Jean-Christophe Olivo-Marin¹

> ¹Quantitative Image Analysis Unit, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris, France

²Department of Molecular Biology, Weizmann Institute of Science Rehovot, Israel ³Laboratoire MIPS-LAB.EL, Université de Haute-Alsace, 68093 Mulhouse, France

⁴ IBSV Unit, INRA, 06903 Sophia Antipolis, France. ⁵ARIANA Project-team, IN-RIA/CNRS/UNS, 06902 Sophia Antipolis, France.

YRLS 2011 May 10, 2011, praveen@pasteur.fr

P. Pankajakshan, et al.

May 10, 2011

page 1 of 27

P. Pankajakshan, et al.

May 10, 2011

Central points

P. Pankajakshan, et al.

Central points

Low magnification objective lens is combined with apochromatic zoom lens,

P. Pankajakshan, et al.

Central points

Low magnification objective lens is combined with apochromatic zoom lens,

- permits large object fields (up to 35mm) and large working distances (up to 97mm),
- parallax-free and precise imaging,
- multi-color fluorescence.

Best of two worlds: Convallaria sample

P. Pankajakshan, et al.

May 10, 2011

Best of two worlds: Convallaria sample

P. Pankajakshan, et al.

May 10, 2011

Best of two worlds

May 10, 2011

INSTITUT PASTEUR

 $NA = n_i \times \sin \alpha$

P. Pankajakshan, et al.

May 10, 2011

 $\mathsf{NA} = \overline{n_i \times \sin \alpha}$

 $= 1.00 \times \sin \alpha$

Numerical aperture decreases

P. Pankajakshan, et al.

May 10, 2011

 $NA = n_i \times \sin \alpha$

 $= 1.00 \times \sin \alpha$

P. Pankajakshan, et al.

May 10, 2011

 $\mathsf{NA} = n_i \times \sin \alpha$

 $= 1.00 \times \sin \alpha$

Can we increase the resolution?

P. Pankajakshan, et al.

 $\mathsf{NA} = n_i \times \sin \alpha$

 $= 1.00 \times \sin \alpha$

Yes, we can!

P. Pankajakshan, et al.

Experimental impulse response

INSTITUT PASTEUR

Experimental impulse response

Figure 1: 2.5μ m beads imaged using a Leica Widefield MacroFluoTMZ16 APO fit with 95× objective and the 1.6× zoom. ©Herbornel lab, Pasteur Institute.

P. Pankajakshan, et al.

May 10, 2011

page 7 of 27

MACROscopes-Are they really the best of the two worlds?

ху

Figure 2: Axial projection of the beads. ©Herbomel lab, Pasteur Institute.

P. Pankajakshan, et al.

May 10, 2011

page 8 of 27

φ

Forward problem: Characterizing the MACROscope

P. Pankajakshan, et al.

May 10, 2011

page 9 of 27

P. Pankajakshan, et al.

May 10, 2011

page 10 of 27

S INSTITUT PASTEUR

P. Pankajakshan, et al.

May 10, 2011

page 10 of 27

Incoherent scalar PSF model

 If P(k_x, k_y, z) is the 2D complex pupil function and λ is the wavelength, the amplitude PSF can be calculated by just 2N_z number of 2D FFTs as

$$h_A(x, y, z; \lambda) = \int_{k_x} \int_{k_y} P(k_x, k_y, z) \exp(j(k_x x + k_y y)) dk_y dk_x$$

Incoherent scalar PSF model

If P(k_x, k_y, z) is the 2D complex pupil function and λ is the wavelength, the amplitude PSF can be calculated by just 2N_z number of 2D FFTs as

$$h_A(x, y, z; \lambda) = \int_{k_x} \int_{k_y} P(k_x, k_y, z) \exp(j(k_x x + k_y y)) dk_y dk_x$$

and the incoherent PSF is

 $h_{Th}(\mathbf{x}; \lambda_{\mathsf{ex}}, \lambda_{\mathsf{em}}) = C|h_A(\mathbf{x}; \lambda_{\mathsf{ex}})| \times |h_A(\mathbf{x}; \lambda_{\mathsf{em}})|$

> λ_{ex} and λ_{em} are the excitation and emission peak wavelengths.

INSTITUT PASTEUR

Incoherent scalar PSF calculation

Figure 3: Defocus phase

P. Pankajakshan, et al.

May 10, 2011

page 12 of 27

Incoherent scalar PSF calculation

Figure 3: Defocus phase

Figure 4: Defocus PSF

P. Pankajakshan, et al.

May 10, 2011

page 12 of 27

Incoherent scalar PSF calculation

Figure 3: Defocus phase

Figure 4: Defocus PSF

P. Pankajakshan, et al.

May 10, 2011

page 12 of 27

Hypothesis

Figure 5: Lens viewed from the front. (Photograph by Peter Boehmer.)

P. Pankajakshan, et al.

May 10, 2011

page 13 of 27

Hypothesis

Figure 5: Lens viewed from the front. (Photograph by Peter Boehmer.)

Figure 6: Lens viewed from the side. (Photograph by Peter Boehmer.)

Optical vignetting and aperture overlap

INSTITUT PASTEUR

Optical vignetting and aperture overlap

May 10, 2011

INSTITUT PASTEUR

Macro PSF calculation by pupil vignetting

► For a MICROscope, the pupil function is

P. Pankajakshan, et al.

May 10, 2011

page 15 of 27

Macro PSF calculation by pupil vignetting

► For a MICROscope, the pupil function is

$$P_m(k_x, k_y, z; \lambda) = \begin{cases} e^{jk_0\phi(\theta_i, \theta_s, z)}, & \text{ if } \sqrt{k_x^2 + k_y^2} < \frac{2\pi}{\lambda} \mathsf{NA}_{\mathsf{Obj}} \\ 0, & \text{ otherwise.} \end{cases}$$

Macro PSF calculation by pupil vignetting

► For a MICROscope, the pupil function is

$$P_m(k_x,k_y,z;\lambda) = \begin{cases} e^{jk_0\phi(\theta_i,\theta_s,z)}, & \text{ if } \sqrt{k_x^2 + k_y^2} < \frac{2\pi}{\lambda}\mathsf{NA}_{\mathsf{Obj}} \\ 0, & \text{ otherwise.} \end{cases}$$

Modification for a MACROscope

$$P(k_x, k_y, z; \lambda) = \begin{cases} P_m, & \text{if } \sqrt{(k_x - r_x)^2 + (k_y - r_y)^2} < \frac{2\pi}{\lambda} \mathsf{NA}_{\mathsf{Zo}} \\ 0, & \text{otherwise.} \end{cases}$$

▶ NA_{Obj} and NA_{Zo} are the objective and zoom lens NA; (r_x, r_y) are the relative displacements.

P. Pankajakshan, et al.

May 10, 2011

page 15 of 27

INSTITUT PASTEUR

Calculations in the lateral field

Figure 7: We can characterize the behavior at any position in the lateral field.

P. Pankajakshan, et al.

May 10, 2011

page 16 of 27

INSTITUT PASTEUR

Out-of-focus highlights (OOFH)

Figure 8: Theoretically calculated MACROscope PSF in log scale. NA= 0.5, lateral sampling 178.33nm, axial sampling 1000nm.

P. Pankajakshan, et al.

May 10, 2011

page 17 of 27

Out-of-focus highlights (OOFH) / ^{Cat's eye in OOFH!}

Slice XY

Slice XZ

Figure 8: Theoretically calculated MACROscope PSF in log scale. NA= 0.5, lateral sampling 178.33nm, axial sampling 1000nm.

P. Pankajakshan, et al.

May 10, 2011

page 17 of 27

Things so far ...

P. Pankajakshan, et al.

May 10, 2011

page 18 of 27

Things so far ...

- The PSF can vary experimentally,
- can be calculated from the pupil function,
- the pupil function is not often available,
 - the wavefront can be sensed by using a Shack-Hartmann wavefront sensor,
 - some information is available at the OOFH,

Things so far ...

- The PSF can vary experimentally,
- can be calculated from the pupil function,
- the pupil function is not often available,
 - the wavefront can be sensed by using a Shack-Hartmann wavefront sensor,
 - some information is available at the OOFH,
- Can the aberrations in the optics of the objective be determined from the OOFH?
- Can the estimated wavefront be useful for correcting the distortions?

Wavefront sensing from intensity data

Figure 9: Defocus phase

P. Pankajakshan, et al.

May 10, 2011

page 19 of 27

Wavefront sensing from intensity data

Figure 10: Defocus PSF

Figure 9: Defocus phase

P. Pankajakshan, et al.

May 10, 2011

page 19 of 27

Wavefront sensing from intensity data

Figure 9: Defocus phase

Figure 10: Defocus PSF

P. Pankajakshan, et al.

May 10, 2011

page 19 of 27

Inverse problem: Wavefront sensing from intensity data

P. Pankajakshan, et al.

May 10, 2011

page 20 of 27

Wavefront sensing-a Bayesian interpretation

► For uncorrelated low photon count data the observation is:

 $i(\mathbf{x}) = \mathcal{P}\{|h_{\mathsf{A}}(\mathbf{x})|^2 + b(\mathbf{x})\}, \forall \mathbf{x} \in \Omega_s$

P. Pankajakshan, et al.

Wavefront sensing-a Bayesian interpretation

► For uncorrelated low photon count data the observation is:

 $i(\mathbf{x}) = \mathcal{P}\{|h_{\mathsf{A}}(\mathbf{x})|^2 + b(\mathbf{x})\}, \forall \mathbf{x} \in \Omega_s$

Considering Poissonian photon counting statistics, the likelihood of obtaining image i(x) from a diffraction-limited point source:

$$\Pr(i|h_{\mathsf{A}}) = \prod_{\mathbf{x}\in\Omega_s} \frac{(h_{\mathsf{A}}+b)(\mathbf{x})^{i(\mathbf{x})}\exp(-(h_{\mathsf{A}}+b)(\mathbf{x})}{i(\mathbf{x})!}$$

Wavefront sensing-a Bayesian interpretation

► For uncorrelated low photon count data the observation is:

 $i(\mathbf{x}) = \mathcal{P}\{|h_{\mathsf{A}}(\mathbf{x})|^2 + b(\mathbf{x})\}, \forall \mathbf{x} \in \Omega_s$

Considering Poissonian photon counting statistics, the likelihood of obtaining image i(x) from a diffraction-limited point source:

$$\Pr(i|h_{\mathsf{A}}) = \prod_{\mathbf{x}\in\Omega_s} \frac{(h_{\mathsf{A}}+b)(\mathbf{x})^{i(\mathbf{x})}\exp(-(h_{\mathsf{A}}+b)(\mathbf{x})}{i(\mathbf{x})!}$$

From the Bayes' theorem, the a posteriori is

$$\Pr(h_{\mathsf{A}}|i) = \frac{\Pr(i|h_{\mathsf{A}})\Pr(h_{\mathsf{A}})}{\Pr(i)}$$

P. Pankajakshan, et al.

page 21 of 27

Global idea for sensing

Aberration invariance to defocus

P. Pankajakshan, et al.

page 22 of 27

Global idea for sensing

Aberration invariance to defocus

$$P(k_x, k_y, z) = \begin{cases} e^{jk_0(\varphi_{\mathsf{aberr}} + \phi_{\mathsf{defocus}}(\theta_i, z))}, & \text{ if } \sqrt{k_x^2 + k_y^2} < \frac{2\pi}{\lambda}\mathsf{N}\mathsf{A} \\ 0, & \text{ otherwise.} \end{cases}$$

Global idea for sensing

Aberration invariance to defocus

$$P(k_x,k_y,z) = \begin{cases} e^{jk_0(\varphi_{\texttt{aberr}} + \phi_{\texttt{defocus}}(\theta_i,z))}, & \text{ if } \sqrt{k_x^2 + k_y^2} < \frac{2\pi}{\lambda}\mathsf{N}\mathsf{A} \\ 0, & \text{ otherwise.} \end{cases}$$

Estimate the near-focus amplitude distribution, h_A, by maximizing the *a posteriori* (MAP) or minimizing the cologarithm of the *a posteriori*

$$\hat{h}_{\mathsf{A}}(\mathbf{x};\varphi_{\mathsf{aberr}}) = \underset{h_{\mathsf{A}}(\mathbf{x})}{\operatorname{arg\,min}} - \log[\Pr(h_{\mathsf{A}}|i)], \mathsf{s. t. } k_{\mathsf{MAX}} < \frac{2\pi\mathsf{NA}}{\lambda_{\mathsf{ex}}}$$

k_{MAX} is the pupil support,

this can be solved by using a fixed-point iterative algorithm.

P. Pankajakshan, et al.

May 10, 2011

page 22 of 27

Experiment on intensity data

Figure 11: Radially projected 2.5μ m observed intensity volume. ©Imaging Center, IGBMC, France.

P. Pankajakshan, et al.

May 10, 2011

page 23 of 27

Experiment on intensity data

Figure 11: Radially projected 2.5μ m observed intensity volume. ©Imaging Center, IGBMC, France.

Figure 12: Axially projected 2.5μm observed intensity volume. ©Imaging Center, IGBMC, France.

P. Pankajakshan, et al.

page 23 of 27

Experiment on intensity data

Figure 11: Radially projected 2.5μ m observed intensity volume. ©Imaging Center, IGBMC, France.

Figure 12: Axially projected 2.5µm observed intensity volume. ©Imaging Center, IGBMC, France.

P. Pankajakshan, et al.

page 23 of 27

Figure 13: OOFH radial section of the observed volume, $z = -57 \mu m$. ©Imaging Center, IGBMC, France.

Costantini, M. (1998). A novel phase unwrapping method based on network programming. IEEE Tran. on Geoscience and Remote Sensing, 36, 813-821. P. Pankajakshan, *et al.* May 10, 2011 NSTITUT PASTEUR

Chopped defocus

Figure 13: OOFH radial section of the observed volume, $z = -57 \mu m$. ©Imaging Center, IGBMC, France.

Costantini, M. (1998). A novel phase unwrapping method based on network programming. IEEE Tran. on Geoscience and Remote Sensing, 36, 813-821. P. Pankajakshan, *et al.* May 10, 2011 INSTITUT PASTEUR

Figure 13: OOFH radial section of the observed volume, $z = -57 \mu m$. ©Imaging Center, IGBMC, France.

Figure 14: Retrieved unwrapped pupil phase from the intensity images $\tau = 0.9$ and the maximum number of iteration is \bullet

Costantini, M. (1998). A novel phase unwrapping method based on network programming. IEEE Tran. on Geoscience and Remote Sensing, 36, 813-821. P. Pankajakshan, *et al.* May 10, 2011

Chopped pupil

Figure 13: OOFH radial section of the observed volume, $z = -57 \mu m$. ©Imaging Center, IGBMC, France.

Figure 14: Retrieved unwrapped pupil phase from the intensity images $\tau = 0.9$ and the maximum number of iteration is \bullet

Costantini, M. (1998). A novel phase unwrapping method based on network programming. IEEE Tran. on Geoscience and Remote Sensing, 36, 813-821. P. Pankajakshan, *et al.* May 10, 2011

Implications: define workable zoom

Can we remove field distortions for lower zooms?

P. Pankajakshan, et al.

May 10, 2011

- Can we remove field distortions for lower zooms?
- Yes!

P. Pankajakshan, et al.

- Can we remove field distortions for lower zooms?
- Yes!
- Can we improve resolution for higher zooms?

- Can we remove field distortions for lower zooms?
- Yes!
- Can we improve resolution for higher zooms?

Figure 15: MIP of original

P. Pankajakshan, et al.

May 10, 2011

Acknowledgements

- We thank ANR DIAMOND for funding this project,
- we are grateful to the scientific contribution from Dr. Philippe Herbomel, Institut Pasteur, and Dr. Didier Hentsch, IGBMC,
- we acknowledge our colleagues for their support.

Visit: http://www-syscom.univ-mlv.fr/ANRDIAMOND/

Acknowledgements

- We thank ANR DIAMOND for funding this project,
- we are grateful to the scientific contribution from Dr. Philippe Herbomel, Institut Pasteur, and Dr. Didier Hentsch, IGBMC,
- we acknowledge our colleagues for their support.

Visit: http://www-syscom.univ-mlv.fr/ANRDIAMOND/

Thank you!

