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Context Forward problem Inverse problem Conclusions

Widefield fluorescence MACROscope

Central points

◮ Low magnification objective
lens is combined with
apochromatic zoom lens,

◮ permits large object fields
(up to 35mm) and large
working distances (up to
97mm),

◮ parallax-free and precise
imaging,

◮ multi-color fluorescence.
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Numerical aperture and resolution

NA = ni × sinα

= 1.00 × sinα

Numerical aperture decreases

Resolution decreases
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Numerical aperture and resolution

NA = ni × sinα

= 1.00 × sinα

Can we increase the resolution?
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Numerical aperture and resolution

NA = ni × sinα

= 1.00 × sinα

Yes, we can!
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Experimental impulse response

Figure 1: 2.5µm beads imaged using a Leica Widefield MacroFluoTMZ16 APO fit with
5× objective and the 1.6× zoom. c©Herbomel lab, Pasteur Institute.
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MACROscopes-Are they really the best of the two worlds?

Figure 2: Axial projection of the beads. c©Herbomel lab, Pasteur Institute.
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Forward problem: Characterizing the MACROscope
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Incoherent scalar PSF model

◮ If P(kx ,ky ,z) is the 2D complex pupil function and λ is the
wavelength, the amplitude PSF can be calculated by just 2Nz

number of 2D FFTs as

hA(x,y,z;λ) =

∫

kx

∫

ky

P(kx ,ky ,z)exp(j(kxx + kyy))dkydkx
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◮ If P(kx ,ky ,z) is the 2D complex pupil function and λ is the
wavelength, the amplitude PSF can be calculated by just 2Nz

number of 2D FFTs as

hA(x,y,z;λ) =

∫

kx

∫

ky

P(kx ,ky ,z)exp(j(kxx + kyy))dkydkx

◮ and the incoherent PSF is

hTh(x;λex,λem) = C |hA(x;λex)| × |hA(x;λem)|

◮ λex and λem are the excitation and emission peak wavelengths.
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Incoherent scalar PSF calculation

Figure 3: Defocus phase
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Incoherent scalar PSF calculation

Figure 3: Defocus phase Figure 4: Defocus PSF

Fourier transform
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Hypothesis

Figure 5: Lens viewed from the front.
(Photograph by Peter Boehmer.)
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Hypothesis

Figure 5: Lens viewed from the front.
(Photograph by Peter Boehmer.)

Figure 6: Lens viewed from the side.
(Photograph by Peter Boehmer.)
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Optical vignetting and aperture overlap

‘Cat’s eye effect!’
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◮ For a MICROscope, the pupil function is

Pm(kx ,ky,z;λ) =







ejk0φ(θi ,θs,z), if
√

k2
x + k2

y < 2π
λ

NAObj

0, otherwise.
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Macro PSF calculation by pupil vignetting

◮ For a MICROscope, the pupil function is

Pm(kx ,ky,z;λ) =







ejk0φ(θi ,θs,z), if
√

k2
x + k2

y < 2π
λ

NAObj

0, otherwise.

◮ Modification for a MACROscope

P(kx ,ky,z;λ) =







Pm, if
√

(kx − rx)2 + (ky − ry)2 < 2π
λ

NAZo

0, otherwise.

◮ NAObj and NAZo are the objective and zoom lens NA; (rx ,ry)
are the relative displacements.

P. Pankajakshan, et al. May 10, 2011 page 15 of 27



Context Forward problem Inverse problem Conclusions

Calculations in the lateral field

Figure 7: We can characterize the behavior at any position in the lateral field.
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Out-of-focus highlights (OOFH)

Figure 8: Theoretically calculated MACROscope PSF in log scale. NA= 0.5, lateral
sampling 178.33nm, axial sampling 1000nm.
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Out-of-focus highlights (OOFH)

Figure 8: Theoretically calculated MACROscope PSF in log scale. NA= 0.5, lateral
sampling 178.33nm, axial sampling 1000nm.

Cat’s eye in OOFH!
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◮ The PSF can vary experimentally,

◮ can be calculated from the pupil function,
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• the wavefront can be sensed by using a Shack-Hartmann
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Things so far ...

◮ The PSF can vary experimentally,

◮ can be calculated from the pupil function,

◮ the pupil function is not often available,
• the wavefront can be sensed by using a Shack-Hartmann

wavefront sensor,
• some information is available at the OOFH,

◮ Can the aberrations in the optics of the objective be
determined from the OOFH?

◮ Can the estimated wavefront be useful for correcting the
distortions?
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Wavefront sensing from intensity data

Figure 9: Defocus phase
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Wavefront sensing from intensity data

Figure 9: Defocus phase Figure 10: Defocus PSF

Inverse Fourier transform
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Inverse problem: Wavefront sensing from intensity data
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Wavefront sensing-a Bayesian interpretation

◮ For uncorrelated low photon count data the observation is:

i(x) = P{|hA(x)|2 + b(x)},∀x ∈ Ωs
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◮ For uncorrelated low photon count data the observation is:

i(x) = P{|hA(x)|2 + b(x)},∀x ∈ Ωs

◮ Considering Poissonian photon counting statistics, the
likelihood of obtaining image i(x) from a diffraction-limited
point source:

Pr(i|hA) =
∏

x∈Ωs

(hA + b)(x)i(x) exp(−(hA + b)(x)

i(x)!
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Wavefront sensing-a Bayesian interpretation

◮ For uncorrelated low photon count data the observation is:

i(x) = P{|hA(x)|2 + b(x)},∀x ∈ Ωs

◮ Considering Poissonian photon counting statistics, the
likelihood of obtaining image i(x) from a diffraction-limited
point source:

Pr(i|hA) =
∏

x∈Ωs

(hA + b)(x)i(x) exp(−(hA + b)(x)

i(x)!

◮ From the Bayes’ theorem, the a posteriori is

Pr(hA|i) =
Pr(i|hA)Pr(hA)

Pr(i)
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◮ Aberration invariance to defocus
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◮ Aberration invariance to defocus

P(kx ,ky,z) =







ejk0(ϕaberr+φdefocus(θi ,z)), if
√

k2
x + k2

y < 2π
λ

NA

0, otherwise.

P. Pankajakshan, et al. May 10, 2011 page 22 of 27



Context Forward problem Inverse problem Conclusions

Global idea for sensing

◮ Aberration invariance to defocus

P(kx ,ky,z) =







ejk0(ϕaberr+φdefocus(θi ,z)), if
√

k2
x + k2

y < 2π
λ

NA

0, otherwise.

◮ Estimate the near-focus amplitude distribution, ĥA, by
maximizing the a posteriori (MAP) or minimizing the
cologarithm of the a posteriori

ĥA(x;ϕaberr) = argmin
hA(x)

− log[Pr(hA|i)],s. t. kMAX <
2πNA

λex

kMAX is the pupil support,

◮ this can be solved by using a fixed-point iterative algorithm.
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Experiment on intensity data

Figure 11: Radially projected 2.5µm
observed intensity volume. c©Imaging
Center, IGBMC, France.
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Figure 11: Radially projected 2.5µm
observed intensity volume. c©Imaging
Center, IGBMC, France.

Figure 12: Axially projected 2.5µm
observed intensity volume. c©Imaging
Center, IGBMC, France.
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Experiment on intensity data

Figure 11: Radially projected 2.5µm
observed intensity volume. c©Imaging
Center, IGBMC, France.

Figure 12: Axially projected 2.5µm
observed intensity volume. c©Imaging
Center, IGBMC, France.

Defocus section
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Results: Wavefront sensed from intensity data

Figure 13: OOFH radial section of the
observed volume, z = −57µm. c©Imaging
Center, IGBMC, France.

Costantini, M. (1998). A novel phase unwrapping method based on network programming. IEEE Tran. on
Geoscience and Remote Sensing, 36, 813-821.
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Results: Wavefront sensed from intensity data

Figure 13: OOFH radial section of the
observed volume, z = −57µm. c©Imaging
Center, IGBMC, France.

Chopped defocus

Costantini, M. (1998). A novel phase unwrapping method based on network programming. IEEE Tran. on
Geoscience and Remote Sensing, 36, 813-821.
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Results: Wavefront sensed from intensity data

Figure 13: OOFH radial section of the
observed volume, z = −57µm. c©Imaging
Center, IGBMC, France.

Figure 14: Retrieved unwrapped pupil
phase from the intensity images τ = 0.9
and the maximum number of iteration is
40.Costantini, M. (1998). A novel phase unwrapping method based on network programming. IEEE Tran. on

Geoscience and Remote Sensing, 36, 813-821.
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Results: Wavefront sensed from intensity data

Figure 13: OOFH radial section of the
observed volume, z = −57µm. c©Imaging
Center, IGBMC, France.

Figure 14: Retrieved unwrapped pupil
phase from the intensity images τ = 0.9
and the maximum number of iteration is
40.

Chopped pupil

Costantini, M. (1998). A novel phase unwrapping method based on network programming. IEEE Tran. on
Geoscience and Remote Sensing, 36, 813-821.
P. Pankajakshan, et al. May 10, 2011 page 24 of 27
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Implications: define workable zoom
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Where to from here?

◮ Can we remove field distortions for lower zooms?
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Where to from here?

◮ Can we remove field distortions for lower zooms?

◮ Yes!

◮ Can we improve resolution for higher zooms?

Figure 15: MIP of original Figure 16: MIP of deconvolved.
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