Characterization and Correction of Field Distortions

> Praveen Pankajakshan AIQ, Pasteur Institute, Paris, France. 29 November 2011

Characterization and Correction of Field Distortions

Praveen Pankajakshan AIQ, Pasteur Institute, Paris, France. 29 November 2011

1

Part 1: Outline

Need a larger working distance?

Need a larger working distance?

Fluorescence MACROscopes

Leica Wide-Field MacroFluo

4

P. Sendrowski et al., "Arrangement for analyzing microscopic and macroscopic preparations," WO 2009/04711, Apr. 2009, PCT/ EP2008/062749.

Fluorescence MACROscopes

Leica Wide-Field MacroFluo

4

P. Sendrowski et al., "Arrangement for analyzing microscopic and macroscopic preparations," WO 2009/04711, Apr. 2009, PCT/ EP2008/062749.

Fluorescence MACROscopes

Leica Wide-Field MacroFluo

4

P. Sendrowski et al., "Arrangement for analyzing microscopic and macroscopic preparations," WO 2009/04711, Apr. 2009, PCT/ EP2008/062749.

MACROscopic samples

MACROscopic samples

Best of two worlds

Convallaria sample

Best of two worlds

Convallaria sample

Best of two worlds

Convallaria sample

Some numbers

Objective	NA	FOV	Working Distance	Resolution
PL APO lx	0,12	16mm	97mm	1.65um
PL APO 2x	0,24	8mm	39mm	830nm
PL APO 5x	0,50	3.2mm	19.5mm	390nm

- Minimum resolution: 390nm
- Maximum working distance: 97mm
- Maximum FOV: 16mm

Zoom vs NA/FOV

Planapo 2.0x objective Z16APO

8

Zoom vs NA/FOV

Planapo 2.0x objective Z16APO

8

9

• Improvement in resolution by deconvolution.

- Improvement in resolution by deconvolution.
 - Aberration correction and noise reduction

9

- Improvement in resolution by deconvolution.
 - Aberration correction and noise reduction
- Right model of imaging.

9

- Improvement in resolution by deconvolution.
 - Aberration correction and noise reduction
- Right model of imaging.

Investigation: Grid slides

Haemocytometer with known grid dimensions

Grid slides in transmission mode

Space-invariance

Laterally varying impulse response

13

Large Field is great but...

Large Field is great but...

Field Distortions?

14

Large Field is great but ...

Field Distortions?

14

Pupil function model

Aperture shape depen

P. Pankajakshan, et al., "Point-spread function model for fluorescence macroscopy imaging," in Proc. of Asilomar Conference on Signals, Systems and Computers, Nov. 2010.

P. Pankajakshan, et al., "Point-spread function model for fluorescence 16 macroscopy imaging," in Proc. of Asilomar Conference on Signals, Systems and Computers, Nov. 2010.

P. Pankajakshan, et al., "Point-spread function model for fluorescence 16 macroscopy imaging," in Proc. of Asilomar Conference on Signals, Systems and Computers, Nov. 2010.

P. Pankajakshan, et al., "Point-spread function model for fluorescence 16 macroscopy imaging," in Proc. of Asilomar Conference on Signals, Systems and Computers, Nov. 2010.

P. Pankajakshan, et al., "Point-spread function model for fluorescence
macroscopy imaging," in Proc. of Asilomar Conference on Signals,
Systems and Computers, Nov. 2010.

Thats all folks!

Space-invariance

Laterally varying impulse response

$$h_A(x, y, z; \lambda) = \int_{k_x} \int_{k_y} P(k_x, k_y, z) \exp(j(k_x x + k_y y)) dk_y dk_x$$

P. A. Stokseth, "Properties of a defocused optical system," J. Opt. Soc. Am. A, vol. 59, pp. 1314–1321, Oct. 1969.

$$h_A(x, y, z; \lambda) = \int_{k_x} \int_{k_y} P(k_x, k_y, z) \exp(j(k_x x + k_y y)) dk_y dk_x$$

P. A. Stokseth, "Properties of a defocused optical system," J. Opt. Soc. Am. A, vol. 59, pp. 1314-1321, Oct. 1969.

?

 $h_A(x, y, z; \lambda) = \int_{k_x} \int_{k_y} P(k_x, k_y, z) \exp(j(k_x x + k_y y)) dk_y dk_x$

P. A. Stokseth, "Properties of a defocused optical system," J. Opt. Soc. Am. A, vol. 59, pp. 1314-1321, Oct. 1969.

?

 $h_A(x, y, z; \lambda) = \int_{k_x} \int_{k_y} P(k_x, k_y, z) \exp(j(k_x x + k_y y)) dk_y dk_x$

P. A. Stokseth, "Properties of a defocused optical system," J. Opt. Soc. Am. A, vol. 59, pp. 1314-1321, Oct. 1969.

Modification for Large Fields

- When the acquisition parameters are known, theoretically PSF can be calculated.
- The amplitude PSF can be calculated by just $2N_z$ number of 2D FFTs.

P. A. Stokseth, "Properties of a defocused optical system," J. Opt. Soc. Am. A, vol. 59, pp. 1314–1321, Oct. 1969.

Hypothesis: Off-axis vignetting

Aperture shape for two different lateral positions

22

Modeling Hypothesis

Aperture shape depen

P. Pankajakshan, et al., "Point-spread function model for fluorescence macroscopy imaging," in Proc. of Asilomar Conference on Signals, Systems and Computers, Nov. 2010.

Forward model comparison

Experimental image of point source. (C) Imaging Center IGBMC, France. Computationally generated image of point source assuming effective NA of 0.5

P. Pankajakshan et al. 2010

Phase ? Retrieval

Cat's eye effect

Cat's eye effect as seen in the out-of-focus highlights (OOFH).(Photograph by Peter Boehmer.)

27

Validation: Phase Retrieval

Empirical PSF

Estimated phase

2

0

-2

Part 2: Details