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Leica Wide-Field MacroFluo
P. Sendrowski et al., “Arrangement for analyzing microscopic and 
macroscopic preparations,” WO 2009/04711, Apr. 2009, PCT/
EP2008/062749.
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Best of two worlds
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Some numbers
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Objective NA FOV Working 
Distance Resolution

PL APO
1x 0,12 16mm 97mm 1.65um

PL APO
2x 0,24 8mm 39mm 830nm

PL APO
5x 0,50 3.2mm 19.5mm 390nm

• Minimum resolution: 390nm
• Maximum working distance: 97mm
• Maximum FOV: 16mm
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Bridging Optics and Image 
Processing
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MacroscopeSample 3-D Image
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Investigation: Grid slides
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Haemocytometer with known grid dimensions
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Characterization: Beads 
as ‘guide stars’

12

Imaging 2.5um and 4um fluorescent beads

xy

z

Wednesday, November 30, 2011



Characterization: Beads 
as ‘guide stars’

12

Imaging 2.5um and 4um fluorescent beads

xy

z

Wednesday, November 30, 2011



Characterization: Beads 
as ‘guide stars’

12

Imaging 2.5um and 4um fluorescent beads

xy

z

Wednesday, November 30, 2011



Space-invariance
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Pupil function model
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Aperture shape dependence on lateral positions
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
  

 
 

Fig. 5. Lateral maximum intensity projection 4µm fluorescent bead images (left) and a 
theoretically calculated point-spread function for a MACROscope fit with an objective 

5X/0.5. 
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P. Pankajakshan, et al., “Point-spread function model for fluorescence 
macroscopy imaging,” in Proc. of Asilomar Conference on Signals, 
Systems and Computers, Nov. 2010.
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Forward model: PSF
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P. Pankajakshan, et al., “Point-spread function model for fluorescence 
macroscopy imaging,” in Proc. of Asilomar Conference on Signals, 
Systems and Computers, Nov. 2010.
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Forward model: PSF
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Thats all folks!
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Forward PSF model
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P. A. Stokseth, “Properties of a defocused 
optical system,” J. Opt. Soc. Am. A, vol. 59, 
pp. 1314–1321, Oct. 1969.
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Modification for Large 
Fields

• When the acquisition parameters are 
known, theoretically PSF can be 
calculated.

•  The amplitude PSF can be calculated 
by just        number of 2D FFTs.
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P(kx,ky,z) =




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


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Pobj(kx,ky,z), if
(

(kx − rx)2 + (ky − ry)2
)

1

2

ki
<
NAz
ni

,

0, otherwise .

(6)

Fig. 8. Chopped pupil amplitude as a result of two aperture with
25% overlap. The overlap region shows the permitted light.

Fig. 9. Evidence of the resemblance between the OOFHs and the
aperture shape for a MACROscope. Left: The far side out-of-focus
lateral slice of the theoretically modeled PSF on a log scale, obtained
from a 75% chopped pupil of Fig. 8. Right: Position of the out-of-
focus slice along the optical axis.

cropped from the periphery of the field. Our observation is that the
model is able to mimic very well the condition of lateral variance
of the PSF within the field. However, the lateral full width at half
maximum (FWHM) of the model is smaller than the experimentally
obtained image’s lateral FWHM. This difference can be explained
by the fact that the size of the microsphere used is significantly large
to be considered as a point source.

Our future work is aimed at enhancing this initial PSFmodel fur-
ther with newer acquisitions on different systems. Following in this
direction, the eventual goal is to correct this field aberration in the
observed specimen images. Given the fact that the MACROscope
works under a variable zoom, in the absence of microsphere images,
the effective NA of the optical mount is unknown, and this probably
has to be estimated during restoration.
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Hypothesis: Off-axis 
vignetting
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Aperture shape for two different lateral positions

R. Kingslake, Optics in Photography, SPIE Publications, June 
1992.
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Fig. 5. Lateral maximum intensity projection 4µm fluorescent bead images (left) and a 
theoretically calculated point-spread function for a MACROscope fit with an objective 

5X/0.5. 
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Forward model 
comparison
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Cat’s eye effect
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Cat’s eye effect as seen in the out-of-focus highlights 
(OOFH). 

(Photograph by Peter Boehmer.)
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Fig. 8. Chopped pupil amplitude as a result of two aperture with
25% overlap. The overlap region shows the permitted light.

Fig. 9. Evidence of the resemblance between the OOFHs and the
aperture shape for a MACROscope. Left: The far side out-of-focus
lateral slice of the theoretically modeled PSF on a log scale, obtained
from a 75% chopped pupil of Fig. 8. Right: Position of the out-of-
focus slice along the optical axis.

cropped from the periphery of the field. Our observation is that the
model is able to mimic very well the condition of lateral variance
of the PSF within the field. However, the lateral full width at half
maximum (FWHM) of the model is smaller than the experimentally
obtained image’s lateral FWHM. This difference can be explained
by the fact that the size of the microsphere used is significantly large
to be considered as a point source.

Our future work is aimed at enhancing this initial PSFmodel fur-
ther with newer acquisitions on different systems. Following in this
direction, the eventual goal is to correct this field aberration in the
observed specimen images. Given the fact that the MACROscope
works under a variable zoom, in the absence of microsphere images,
the effective NA of the optical mount is unknown, and this probably
has to be estimated during restoration.
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