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During the last five years, several convex optimization algorithms have been pro-
posed for solving inverse problems (e.g. [1,2]). Most of the time, they allow us to
minimize a criterion composed of two terms one of which permits to “stabilize” the
solution. Different choices are possible for the so-called regularization term, which
plays a prominent role for solving ill-posed problems.
Much interest has been gained in introducing a priori information about the target
image in a transformed domain. In this respect, redundant frames constitute more
flexible tools than orthonormal bases for building linear representations of images.
One of the drawbacks of the approaches based on wavelet representations is that
they may introduce visual artefacts. Alternative solutions based on the use of the
total variation can be employed but they often lead to so-called staircase effects. A
compromise can be envisaged by combining these regularization functions.
We are interested in image deconvolution in the presence of non necessarily additive
noise. We propose an algorithm based on [2,3] to achieve the minimization of the
associated (possibly constrained) convex optimization problem when the proximity
operator associated with the data fidelity term can not be explicitly expressed.
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