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ABSTRACT
We consider the problem of deconvolving an image with a
priori information on its representation in a frame. Our vari-
ational approach consists of minimizing the sum of a resid-
ual energy and a separable term penalizing each frame coeffi-
cient individually. This penalization term may model various
properties, in particular sparsity. A general iterative method
is proposed and its convergence is established. The novelty
of this work is to extend existing methods on two distinct
fronts. First, a broad class of convex functions are allowed
in the penalization term which, in turn, yields a new class of
soft thresholding schemes. Second, while existing results are
restricted to orthonormal bases, our algorithmic framework
is applicable to much more general overcomplete representa-
tions. Numerical simulations are provided.

1. INTRODUCTION
We consider the problem of recovering an image x in a real
Hilbert space H from the observation of an image

z = Tx+w, (1)

where T : H →H is a convolution operator and where w ∈
H stands for an additive noise perturbation.

A central concept in image processing is that of a linear
representation with respect to a sequence of images (ek)k∈N

in H . Under suitable assumptions, any image x ∈ H can
be expanded as x = ∑k∈N ξkek and, thereby, represented by
a sequence (ξk)k∈N in R. Various operations (coding, com-
pression, transmission, storage, denoising, etc) on x can then
be conveniently performed on the sequence of coefficients
(ξk)k∈N. In early work, the family (ek)k∈N was an orthonor-
mal basis, as in standard wavelet representations [15]. More
recently, attention has shifted towards more general, over-
complete representations. A convenient tool that captures
such representations is the notion of a frame. Recall that a
sequence of vectors (ek)k∈N in H is a frame if there exists
two constants µ and ν in ]0,+∞[ such that

(∀x ∈ H ) µ‖x‖2 ≤ ∑
k∈N

|〈x | ek〉|
2 ≤ ν‖x‖2. (2)

The associated frame operator is the injective bounded linear
operator

L : H → `2(N) : x 7→ (〈x | ek〉)k∈N, (3)

the adjoint of which is the surjective bounded linear operator

L∗ : `2(N) → H : (ξk)k∈N 7→ ∑
k∈N

ξkek. (4)

Gabor frames [10, 18] have been used for many years and
new frames have been constructed recently, e.g., [13]. When
µ = ν in (2), the frame is tight. A simple example of a tight
frame is the union of m orthonormal bases, in which case µ =
ν = m. For instance, in H = L2(R2), a dual-tree wavelet
decomposition is the union of two orthonormal wavelet bases
[5]. Curvelets [3] constitute an example of a tight frame of
L2(R2). Another common example of a frame is a Riesz
basis of H . This corresponds to the case when L is bijective.
Then there exists a (unique) biorthogonal basis (ẽk)k∈N such
that, for every x ∈ H and a = (ξk)k∈N ∈ `2(N),

x = L∗a ⇔ (∀k ∈ N) ξk = 〈x | ẽk〉. (5)

Examples of Riesz bases of L2(R2) include biorthogonal
bases of compactly supported dyadic wavelets having certain
symmetry properties [6]. When L−1 = L∗, an orthonormal
basis is obtained and (ẽk)k∈N = (ek)k∈N.

The objective of the present paper is to propose a vari-
ational framework to recover an original image x given the
observation model (1) and some a priori information about
the coefficients (ξ k)k∈N of x in a frame (ek)k∈N, with frame
operator L. We seek an image x = ∑k∈N ξkek, where a =
(ξk)k∈N ∈ `2(N) minimizes the sum of the residual energy
‖Tx− z‖2/2 = ‖TL∗a− z‖2/2 and a separable term of the
form ∑k∈N φk(ξk), where (φk)k∈N are convex functions from
R to ]−∞,+∞] modeling various a priori properties of the
ideal coefficients (ξ k)k∈N. More formally, our problem can
be stated as follows.

Problem 1 Let:
• T : H → H be a nonzero bounded linear operator;
• z ∈ H ;
• (ek)k∈N be a frame of H with frame operator L;
• (φk)k∈N be lower semicontinuous convex functions from

R to ]−∞,+∞] such that

(∀k ∈ N) φk ≥ 0 and φk(0) = 0. (6)

Set R = TL∗. The objective is to

minimize
a=(ξk)k∈N∈`2(N)

1
2‖Ra− z‖2 + ∑

k∈N

φk(ξk). (7)

When (ek)k∈N is an orthonormal basis and φk = ωk| · |
p

with p ∈ [1,2] and ωk > 0, Problem 1 has been treated in
[11] and then revisited in a more general algorithmic frame-
work in [9, Section 5.4]. Our analysis will further extend
this setting, allowing for more flexible functions such as
φk = τk| · |

pk + ωk| · |, where ωk ≥ 0, τk ≥ 0, ωk + τk > 0,



and pk ≥ 1. These results are new, even in the context of
orthonormal bases.

In Section 2 we provide a brief account of the theory of
proximity operators, which play a central rôle in our analysis.
In Section 3, we study the class of proximity operators which
are soft thresholders, an essential feature in applications with
sparsity constraints. Our algorithm is presented in Section 4,
along with convergence results. We conclude the paper in
Section 5 with numerical simulations.

2. PROXIMITY OPERATORS
Throughout, the underlying image space is a real Hilbert
space H with scalar product 〈· | ·〉, norm ‖ · ‖, and distance
d. The indicator function of a nonempty set C ⊂ H is

ιC : x 7→
{

0, if x ∈C;
+∞, if x /∈C (8)

and its distance function is dC : x 7→ inf‖C − x‖. Γ0(H )
is the class of all convex lower semicontinuous functions
from H to ]−∞,+∞] that are not identically +∞. Now let
f ∈ Γ0(H ) and γ ∈ ]0,+∞[. Then, for every x ∈ H , the
function y 7→ f (y) + ‖x− y‖2/2 achieves its minimum at a
unique point denoted by prox f x. The operator

prox f : H → H : x 7→ arg min
y∈H

f (y)+
1
2‖x− y‖2 (9)

is called the proximity operator of f . The reader is referred
to [9] for details on these operators.

Example 2 [9] Let C ⊂H be a nonempty closed convex set
and let PC be the projector onto C. Then proxιC = PC and
proxd2

C/2 = (Id +PC)/2.

A property of proximity operators which is central in the
convergence analysis of iterative methods [7], is that they are
(firmly) nonexpansive.

Proposition 3 Let f ∈ Γ0(H ), x ∈ H , and y ∈ H . Then

‖prox f x−prox f y‖2 +‖(x−prox f x)− (y−proxf y)‖2

≤ ‖x− y‖2. (10)

Hence, ‖prox f x−prox f y‖ ≤ ‖x− y‖.

The following example will be a key tool in the present
paper.

Example 4 [9] Let (ek)k∈N be an orthonormal basis of H ,
let (φk)k∈N be functions in Γ0(R) such that (6) holds and
let f : H → ]−∞,+∞] : x 7→ ∑k∈N φk(〈x | ek〉). Then f ∈
Γ0(H ) and

(∀x ∈ H ) prox f x = ∑
k∈N

(
proxφk 〈x | ek〉

)
ek. (11)

Example 4 underlines the importance of proximity oper-
ators on the Euclidean real line R. Here are a few examples
that will be used subsequently.

Example 5 [4] Let p ∈ [1,+∞[, let ω ∈ ]0,+∞[, let
φ : R → ]−∞,+∞] : η 7→ ω |η |p, (12)

and let ξ ∈ H . Then proxφ ξ is given by




sign(ξ )max{|ξ |−ω ,0}, if p = 1;

ξ +
4ω

3 ·21/3

(
(η −ξ )1/3− (η +ξ )1/3

)
,

where η =
√

ξ 2 +256ω3/729, if p =
4
3;

ξ +
9ω2 sign(ξ )

8

(
1−
√

1+
16|ξ |
9ω2

)
, if p =

3
2;

ξ/(1+2ω), if p = 2;

sign(ξ )

√
1+12ω |ξ |−1

6ω
, if p = 3;

(
η +ξ

8ω

)1/3
−

(
η −ξ

8ω

)1/3
,

where η =
√

ξ 2 +1/(27ω), if p = 4.

3. PROXIMAL SOFT THRESHOLDING
In many applications, the frame (ek)k∈N is chosen so that the
representation x = ∑k∈N ξ kek of the original image is sparse
in the sense that “most” of the terms in (ξ k)k∈N are zero.
Intuitively, sparsity can be imposed on a sequence (ξk)k∈N ∈
`2(N) by setting to zero each coefficient ξk such that |ξk| ≤
ωk, for some threshold ωk ∈ ]0,+∞[.

Definition 6 A continuous function p : R → R is a soft
thresholder at level ω ∈ ]0,+∞[ if (∀ξ ∈ R) p(ξ ) = 0 ⇔
|ξ | ≤ ω .

Since we are interested in iterative methods, we cannot
use arbitrary soft thresholder and need to restrict ourselves to
nonexpansive operators. Many of the soft thresholders em-
ployed in denoising, e.g., [2, 16, 17, 19], do not satisfy this
property. However, by Proposition 3, soft thresholders which
are proximity operators are nonexpansive. For example, for
p = 1, Example 5 shows that the standard soft thresholding
operation (see Fig. 1) [14] results from the proximity opera-
tor proxω|·|. For this reason, this particular soft thresholder
has been used in iterative methods, e.g., [9, 11, 12]. We now
characterize all proximal soft thresholders.

Proposition 7 [8] Take φ ∈ Γ0(R) such that φ(0) = 0. Then
proxφ is a soft thresholder at level ω ∈ ]0,+∞[ if and only if

φ = ψ +ω | · |, where






ψ ∈ Γ0(R),

ψ is differentiable at 0,

ψ ′(0) = 0.

(13)

Next, we characterize odd proximal soft thresholders and
provide a decomposition rule (see Fig. 1 for illustrations).

Proposition 8 [8] Let φ ∈ Γ0(R). Then proxφ is an odd soft
thresholder at level ω ∈ ]0,+∞[ if and only if (13) holds with
ψ even. In this case, we have proxφ = proxψ ◦proxω|·|.
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Figure 1: Graph of the proximal thresholder proxφ , where φ
is as in (13) with ω = 1. The dashed line represents the usual
soft thresholder obtained with ψ = 0. From top to bottom:
(a) ψ = 0.05| · |4; (b) ψ = 0.9| · |4/3; (c) ψ = d2

[−2,2]/2; (d)

ψ : ξ 7→

{
ξ 2/2, if |ξ | ≤ 1;
|ξ |−1/2, if |ξ | > 1.

4. DECONVOLUTION OVER A FRAME
Let us first address the case when (ek)k∈N is an orthonormal
basis in Problem 1.

Problem 9 In Problem 1, suppose that (ek)k∈N = (bk)k∈N is
an orthonormal basis, so that (7) reduces to

minimize
x∈H

1
2‖Tx− z‖2 + ∑

k∈N

φk(〈x | bk〉). (14)

Proposition 10 [9]
• Problem 9 possesses at least one solution if there exists

ρ ∈ ]0,+∞[ and a function c : [0,+∞[ → [0,+∞[ such
that c(0) = 0, limt→+∞ c(t) = +∞ and, for every (ξk)k∈N

in `2(N) such that ∑k∈N |ξk|
2 ≥ ρ ,

∑
k∈N

φk(ξk) ≥ c
(

∑
k∈N

|ξk|
2

)
. (15)

• Problem 9 possesses at most one solution if the functions
(φk)k∈N are strictly convex or if T is injective.

• Problem 9 possesses exactly one solution if
(∃κ ∈ ]0,+∞[)(∀x ∈ H ) ‖Tx‖ ≥ κ‖x‖.

• Let γ ∈ ]0,+∞[. Then x ∈ H solves Problem 9 if and
only if, for every k ∈ N,

〈x | bk〉 = proxγφk 〈x+ γT∗(z−Tx) | bk〉.

Theorem 11 [9] Suppose that Problem 9 has at least one
solution. Let (γn)n∈N be a sequence in ]0,+∞[ such that
0 < infn∈N γn ≤ supn∈N

γn < 2/‖T‖2 and let (λn)n∈N be a se-
quence in ]0,1] such that infn∈N λn > 0. For every n ∈ N, let
(αn,k)k∈N be a square-summable sequence and suppose that
∑n∈N

√
∑k∈N |αn,k|2 < +∞. Fix x0 ∈ H and set

(∀n ∈ N) xn+1 = xn +λn

(
∑
k∈N

(
πn,k +αn,k

)
bk − xn

)
, (16)

where πn,k = proxγnφk 〈xn + γn(T ∗(z−Txn)) | bk〉. Then
(xn)n∈N converges weakly to a solution to Problem 9.

In (16), αn,k stands for some tolerance in the computa-
tion of proxγnφk 〈xn + γn(T ∗(z−Txn)) | bk〉. In certain cases,
weak convergence can be improved to strong convergence.
Thus, the following theorem extends results of [9, 11].

Theorem 12 [8] Suppose that, for every k ∈ N,

φk = τk| · |
pk +ωk| · |, (17)

where τk ∈ [0,+∞[, ωk ∈ [0,+∞[, pk ∈ ]1,+∞[,
and pk ≤ 2 if ωk = 0. In addition, suppose that
inf
{

τk
∣∣ k ∈ N, ωk = 0

}
> 0, inf

{
ωk
∣∣ k ∈ N, ωk 6= 0

}
> 0,

and inf
{

pk
∣∣ k ∈ N, ωk = 0

}
> 1. Then Problem 9 has

at least one solution and the convergence is strong in
Theorem 11.

We now turn to the general setting of Problem 1. First,
let us observe that (7) can be rewritten as

minimize
a∈`2(N)

1
2‖Ra− z‖2 + ∑

k∈N

φk(〈a | bk〉), (18)



where (bk)k∈N is the canonical basis of `2(N). This formula-
tion now appears as a special case of Problem 9 in the Hilbert
space `2(N). Thus, we derive at once from Theorems 11
and 12 the following result.

Proposition 13 [9] Suppose that Problem 1 has at least one
solution. Let (γn)n∈N be a sequence in ]0,+∞[ such that
0 < infn∈N γn ≤ supn∈N

γn < 2/‖R‖2 and let (λn)n∈N be a se-
quence in ]0,1] such that infn∈N λn > 0. For every n ∈ N, let
(αn,k)k∈N be a square-summable sequence and suppose that
∑n∈N

√
∑k∈N |αn,k|2 < +∞. Fix a0 ∈ `2(N) and set

(∀n ∈ N) an+1 = an +λn
((

πn,k +αn,k
)

k∈N
−an

)
, (19)

where

πn,k = proxγnφk 〈an + γn(R∗(z−Ran)) | bk〉. (20)

Then (an)n∈N converges weakly to a solution to Problem 1;
the convergence is strong if the conditions of Theorem 12
hold.

5. NUMERICAL EXAMPLES
Frame-based deconvolution. Our goal is to restore the
256× 256 satellite SPOT5 image x shown in Fig. 2 (top)
using Proposition 13. The degraded image z displayed in
Fig. 2 (center) is the result of the convolution of x with a
7×7 uniform blur and addition of a zero-mean white Gaus-
sian noise w. The convolution operator T satisfies ‖T‖ = 1,
the blurred image-to-noise ratio is 30.28 dB, and the relative
error is 11.05 dB (the decibel value of the relative error be-
tween an image y and x is 20log10 (‖x‖/‖y− x‖)).
In this restoration example, we use a 2D dual-tree M-band

decomposition [5] using the 4-band filter bank of [1, Ta-
ble VI] over 2 resolution levels. This frame decomposition
leads to ‖R‖2 = 2 [4] and we take γn ≡ 0.995. In addition,
we use φk = ωk| · |

pk , where pk ∈ {1,4/3,3/2,2} (see Exam-
ple 5 for the explicit expression of the proximity operators).
For each subband, the parameters (ωk, pk) are chosen adap-
tively.

The restored image shown in Fig. 2 (bottom) has a rel-
ative error of 15.14 dB. This leads to a significant improve-
ment not only in terms of relative error (+0.40 dB) but also
in visual terms in comparison with deconvolution results ob-
tained with an orthonormal 4-band wavelet basis. Indeed,
directions are better preserved and we observe less artifacts.
Deconvolution using proximal soft thresholders. In this
second experiment, we employ proximity operators derived
from Proposition 8 to restore a 512× 512 SPOT5 satellite
image. The original image is represented in Fig. 3 (top) and
the degraded image z is shown in Fig. 3 (center). Here, T
models convolution with a 3×3 uniform blur, ‖T‖ = 1, and
w is a zero-mean white Gaussian noise. The blurred image-
to-noise ratio is 13.25 dB and the relative error is 12.85 dB.
We consider a decomposition onto a two-dimensional sepa-

rable orthonormal wavelet basis using the same filter bank as
in the previous simulation. In accordance with Theorem 11,
we take γn ≡ 1.99 and φk = τk| · |

pk +ωk| · |. For the approx-
imation coefficients, we set ωk ≡ 0 and an optimized value
of (τk, pk) is chosen with pk ∈ {4/3,3/2,2} whereas, for de-
tail coefficients, ωk ≡ ω > 0 and (τk, pk) is subband-adapted
with pk ∈ {4/3,3/2,2,3,4}.

Figure 2: Original image (top), degraded image (center), and
restored image (bottom).



Figure 3: Original image (top), degraded image (center), and
restored image (bottom).

The restored image displayed in Fig. 3 (bottom) has a
relative error of 18.59 dB. Comparatively, in the same condi-
tions, the proximity operators defined in Example 5 lead to a
relative error of 18.25 dB.
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Birkhäuser, Boston, MA, 1998.

[19] B. Vidakovic, “Nonlinear wavelet shrinkage with Bayes rules
and Bayes factors,” J. Amer. Statist. Assoc., vol. 93, pp. 173–
179, 1998.


