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ABSTRACT

We propose a new estimator for image denoising using a 2D dual-
tree M -band wavelet transform. Our work extends existing block-
based wavelet thresholding methods by exploiting simultaneously
coefficients in the two M -band wavelet trees. The contributions
of this paper are two-fold. Firstly, we perform a statistical analy-
sis of the noise in the considered redundant decomposition. Sec-
ondly, we propose an efficient method to remove the noise. Our
approach relies on an extension of Stein’s formula which allows
us to take into account the specific correlations of the noise com-
ponents. Simulation results are then presented to validate the pro-
posed method.

1. INTRODUCTION

Wavelet shrinkage has become an efficient method for image de-
noising. It consists in projecting discrete data onto a basis (usu-
ally an orthonormal one) and applying a nonlinear operator to the
transformed coefficients. A simple thresholding rule is often used
as a nonlinear estimator. The denoised signal is then recovered by
the inverse transform. Discrete wavelet transforms (DWT) pos-
sess good decorrelation properties and provide sparse representa-
tions for a variety of regular images. For the Visushrink and the
SUREshrink methods, Donoho et al. have derived optimal scalar
thresholds [1]. Many improvements on scalar thresholding have
been investigated subsequently, such as block-thresholding which
accounts for local dependence between neighboring wavelet co-
efficients [2]. From the transform choice viewpoint, the DWT
is maximally decimated, which hampers its robustness to signal
shifts. Undecimated wavelets or more general overcomplete ex-
pansions have thus been proposed to alleviate some of the wavelet
decomposition shortcomings. However, frame decompositions in-
troduce correlations between the signal/noise components which
have to be taken into account in the design of the regression rule.
The dual-tree discrete wavelet transform [3, 4] is one of the most
promising frame decompositions due to its reasonable computa-
tional cost, limited redundancy and improved selectivity features
for image applications. This decomposition is based on two classi-
cal DWT operating in parallel, employing an Hilbert pair of mother
wavelets. In our recent work [5], we have proposedM -band exten-
sions to the dual-tree transform (DTT) and investigated their prop-
erties. The objective of this paper is to build a reliable estimator in
the M -band DTT domain. The novelty of our approach consists
in both analyzing the statistical properties of the noise coefficients

and proposing an appropriate block thresholding method for re-
moving the noise. The derivation of this new estimator is based
on an extension of Stein’s principle. This paper is organized as
follows. The main properties ofM -band DTTs are briefly recalled
in Section 2. In Section 3, explicit expressions for the statistics
of the coefficients of a white noise are provided, thus generalizing
the results given in [6] for the 1D case. In Section 4, the spe-
cific correlation structure of the noise coefficients in an M -band
dual-tree wavelet decomposition is exploited in order to build a
new adaptive block thresholding estimator. In Section 5, some
simulation examples are presented to evaluate the benefits of the
proposed denoising method and, finally some concluding remarks
are given in Section 6. Throughout the paper, the following nota-
tions will be used: let M be an integer greater than or equal to 2,
NM = {0, . . . ,M − 1} and N

?
M = {1, . . . ,M − 1}. Besides,

ba denotes the Fourier transform of a function a, (δm)m∈Z is the
Kronecker sequence (equal to 1 if m = 0 and 0 otherwise) and
(f)+ = f if f > 0 and 0 otherwise.

2. M -BAND DUAL-TREE WAVELET ANALYSIS

AnM -band multiresolution analysis of L2(R) is defined using one
scaling function ψ0 ∈ L2(R) and (M −1) mother wavelets ψm ∈
L2(R), m ∈ N

?
M . In the frequency domain, the so-called scaling

equations are expressed as:

∀m ∈ NM ,
√
M bψm(Mω) = Hm(ω) bψ0(ω). (1)

The following para-unitarity conditions must hold: for all
(m,m′) ∈ N

2
M ,

M−1X

p=0

Hm(ω + p
2π

M
)H∗

m′(ω + p
2π

M
) = Mδm−m′ (2)

in order to generate an orthonormalM -band wavelet basis of L2(R).
The filter with frequency response H0 is low-pass whereas the fil-
ters with frequency response Hm, m ∈ N

?
M , are band-pass or

high-pass. In this case, cascading M -band para-unitary analysis
and synthesis filter banks allows us to decompose and to perfectly
reconstruct any 1D signal. A “dual”M -band multiresolution anal-
ysis is built by defining another M -band wavelet orthonormal ba-
sis associated with a scaling function ψH

0 and mother wavelets ψH
m,

m ∈ N
?
M . More precisely, the mother wavelets are the Hilbert

transforms of the “primal” ones ψm, m ∈ N
?
M :

∀m ∈ N
?
M , bψH

m(ω) = −ı sign(ω) bψm(ω) (3)



where sign(·) is the signum function. Conditions for designing the
involved frequency responses Gm, m ∈ NM , of the correspond-
ing synthesis para-unitary Hilbert filter bank have been recently
provided in [7]. For all (m,m′) ∈ N

2
M , we recall that the deter-

ministic cross-correlation function of the primal and dual wavelets
in L2(R) is defined as:

∀τ ∈ R, γm,m′ (τ ) =

Z ∞

−∞
ψm(x)ψH

m′(x− τ ) dx. (4)

3. NOISE STATISTICAL PROPERTIES

We now aim at analyzing the statistics of the transform coefficients
of a real-valued, zero-mean 2D white noise n with spectrum den-
sity σ2. We denote by (n.(k))k∈Z2 the coefficients resulting from
a 2D separable M -band wavelet decomposition [8] of the noise,
in a given subband (j,m) ∈ Z × N

2
M . To simplify the nota-

tions, the indices (j,m) have been dropped. The wavelet coeffi-
cients at the output of the dual tree are denoted by (nH

. (k))k∈Z2 .
We obtain the following expressions of the covariance fields: for
all j ∈ Z, m = (m1,m2) ∈ N

2
M , m

′ = (m′
1,m

′
2) ∈ N

2
M ,

k = (k1, k2) ∈ Z
2 and k

′ = (k′1, k
′
2) ∈ Z

2,

E{nj,m(k)nj,m′ (k′)}
E{nH

j,m(k)nH
j,m′ (k′)}

)
= σ

2
δm1−m′

1
δm2−m′

2
δk1−k′

1
δk2−k′

2

E{nj,m(k)nH
j,m′(k′)} = σ

2
γm1,m′

1
(k′1 − k1)γm2,m′

2
(k′2 − k2) .

As a consequence of Eq. (3), we note that, for m 6= 0 and k = k
′,

the vector [n.(k) nH
. (k)]T has uncorrelated components with

equal variance.
The above relations impact on the 2 × 2 linear combination of the
primal and dual wavelet coefficients which is usually implemented
at the last stage of a dual-tree decomposition. As explained in [7],
the main advantage of such a postprocessing is to better capture
the directional features in the analyzed image. More precisely, the
postprocessing consists of the following unitary transform of the
detail coefficients: for all m ∈ N

?2
M ,

∀k ∈ Z
2
, w.(k) =

1√
2
(n.(k) + n

H
. (k)) (5)

w
H
. (k) =

1√
2
(n.(k) − n

H
. (k)). (6)

Thus, it is straightforward to compute the covariances of the trans-
formed fields (w.(k))k∈Z2 and (wH

. (k))k∈Z2 of noise coefficients:
for all m ∈ N

?2
M and (k,k′) ∈ Z

2 × Z
2,

E{w.(k)w.(k
′)} =E{n.(k)n.(k

′)} + E{n.(k)nH
. (k′)} (7)

E{wH
. (k)wH

. (k′)} =E{n.(k)n.(k
′)} − E{n.(k)nH

. (k′)} (8)

E{w.(k)wH
. (k′)} =0. (9)

It is worth noticing that the post-transform not only improves the
directional analysis of the image of interest but it plays an impor-
tant role w.r.t. the noise statistics. Indeed, it allows to completely
decorrelate the two noise coefficient fields obtained for any value
of (j,m) such that m ∈ N

?2
M .

4. DUAL-TREE BASED ESTIMATOR

4.1. Stein’s formula
Noise statistics will be exploited to derive an adaptive estimator.
To this purpose, we firstly state an extended form of Stein’s princi-
ple [9] which will be useful in the next subsection. Hereafter, the
considered random vectors are assumed to be real-valued.

Proposition 1 Let B ∈ N, B > 1, and

r̄ = s̄ + n̄ (10)

where n̄ is a B-dimensional zero-mean Gaussian random vector
and s̄ is a B-dimensional random vector which is independent of
n̄. These vectors are decomposed as

r̄ =

»
r
r̃

–
, s̄ =

»
s
s̃

–
, n̄ =

»
n
ñ

–
(11)

where r, s and n are scalar random variables. Let T : R
B → R

be a continuous, almost everywhere differentiable function satisfy-
ing some technical requirements [9]. Then,

E[T (r̄)s] = E[T (r̄)r] − E[n2]E
h
∂T (r̄)

∂r

i
− E

h
∂T (r̄)

∂r̃>

i
E[ñn].

4.2. Proposed adaptive estimator
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Fig. 1. Considered model.

As illustrated in Fig. 1, we consider the following additive
noise model in the DTT domain:

r.(k) = s.(k) + n.(k) (12)

where r.(k) is the wavelet coefficient of the observed noisy image
at a given level j, in a given subband m, at a spatial position k,
similar notations being used for the original image and the noise.
Inspired by previous works on block thresholding [2, 10], we are
interested in applying the following shrinkage function:

η(‖r.(k)‖) =

„‖r.(k)‖β. − λ.

‖r.(k)‖β.

«

+

(13)

where λ. and β. are positive parameters, r.(k) is a vector con-
taining the wavelet coefficients to be estimated and some possible
neighbors. These neighboring values can be taken from the pri-
mal tree in the same subband as in [2], or from the dual subband
as well. It is important to point out that η includes well known
shrinkage rules as particular cases, for specific values of λ and β.
We have already applied such a kind of shrinkage to denoise mul-
ticomponent images in the conventional DWT domain [11].
As two sets of coefficients are generated by a dual-tree transform,



we aim at designing accurate estimators ŝ. of s. and ŝH. of sH. hav-
ing a common structure:

ŝ.(k) = η(‖r̄.(k)‖) r.(k), ŝ
H
. (k) = η

H(‖r̄H
. (k)‖) rH. (k)

where, for the dual tree, r̄
H
. (k) plays a role symmetric to r̄.(k).

The shrinkage function ηH has the same form as the η one, mak-
ing use of parameters λH

. and βH
. instead of λ. and β.. Here, the

parameters λ. and λH
. can be respectively considered as thresh-

old values in the soft-thresholding of ‖r.(k)‖β. and ‖rH
. (k)‖βH

. .
Since the primal and the dual tree play analogous roles, we only
develop the theoretical results for the primal tree. Indeed, expres-
sions concerning the dual tree are easily obtained by replacing any
variable g (scalar, vector or matrix) by its dual counterpart gH. Our
next objective is to find the threshold λ. and the exponent β. that
minimize the quadratic risk R(λ., β.) = E[|s.(k) − ŝ.(k)|2]. The
risk reads

R(λ., β.) =E[s2. (k)] + E[
`
η(‖r̄.(k)‖) r.(k)

´2
] (14)

− 2E[η(‖r̄.(k)‖)r.(k) s.(k)].

Unfortunately, as the wavelet coefficients s.(k) are unknown, it
may appear impossible to calculate explicitly the last term in the
expression of R(λ., β.). However, for an additive Gaussian noise,
Prop. 1 applied to our estimator yields

E[η(‖r̄.(k)‖)r.(k) s.(k)] = E[η(‖r̄.(k)‖) r2. (k)]

−σ2
E

h∂
`
η(‖r̄.(k)‖)r.(k)

´

∂r.(k)

i
−E

h∂
`
η(‖r̄.(k)‖)r.(k)

´

∂r̃>. (k)

i
Γ

(ñ.,n.)

where the vector r̄.(k) is decomposed as [r.(k) r̃
>
. (k)]> and, us-

ing similar notations for the noise components, Γ
(ñ.,n.) =

E[ñ.(k)n.(k)]. From (13), we deduce after some calculations that:

∂(η(‖r̄.(k)‖)r.(k))

∂r.(k)
= η(‖r̄.(k)‖) + λ. ρ.(k)r.(k) (15)

and
∂(η(‖r̄.(k)‖)r.(k))

∂r̃.(k)
= λ. ρ.(k) r̃.(k) (16)

where

ρ.(k) = 1{‖ r.(k) ‖β.> λ.} β.

‖ r.(k) ‖β.+2
r.(k). (17)

4.3. Closed form expression of the risk
From the above calculations, the risk R(λ., β.) can be expressed
as the expected value of

R(λ., β.,k) = a.(k)λ2
. + b.(k)λ. + c.(k) (18)

where

a.(k) = 1{‖ r.(k) ‖β.> λ.} r2. (k)

‖r̄.(k)‖2β.

b.(k) = 2σ2
“
β. r.(k)

r.(k) + κ.(k)

‖r̄.(k)‖β.+2
− ‖r̄.(k)‖−β.

”

1{‖ r.(k) ‖β.> λ.}
c.(k) = r

2
. (k) − σ

2 + 1{‖ r.(k) ‖β.> λ.}
`
2σ2 − r

2
. (k)

´

κ.(k) = σ
−2

r̃
>
. (k)Γ(ñ.,n.).

4.4. Computation of the parameters λ. and β.

Under mild conditions, R(λ., β.) is estimated by an empirical av-
erage R̂(λ., β.) computed over the Kj observations in a given
subband at resolution j. The optimal values of λ. and β. are
found according to a similar procedure to the one used to derive
the SUREshrink estimator. To this purpose, the observed variables
‖ r.(k) ‖ are sorted in descending order, so that ‖ r.(k1) ‖≥
‖ r.(k2) ‖≥ . . . ≥‖ r.(kKj

) ‖.
For i0 ∈ {2, . . . , Kj}, if ‖ r.(ki0−1) ‖β.> λ. ≥‖ r.(ki0) ‖β. ,
the risk estimate can be expressed as

R̂(λ., β.) =
1

Kj

“ i0−1X

i=1

R(λ., β.,ki) +

KjX

i=i0

R(λ., β.,ki)
”
,

or equivalently as

Kj R̂(λ., β.) = λ
2
.

i0−1X

i=1

r2. (ki)

‖r̄.(ki)‖2β.

+ 2σ2
λ.

i0−1X

i=1

“
β. r.(ki)

r.(ki) + κ.(ki)

‖r̄.(ki)‖β.+2
− ‖r̄.(ki)‖−β.

”

+

KX

i=i0

r
2
. (ki) − (K − 2i0 + 2)σ2

.

For a given value of β., an optimal value λ∗
. of λ. is obtained by

minimizing the so-defined piecewise second-order binomial func-
tion. Then, a search on the optimal value of β. is carried out to
minimize R̂(λ∗

. , β.).

4.5. Different cases

The above expressions are valid for the primal tree but quite sim-
ilar results are obtained for the dual one. In the expressions of
the risk, the correlation of the noise, which is related to the redun-
dancy of the dual-tree wavelet decomposition, is summarized by
κ.(k) and its dual counterpart κH

. (k) = σ−2(r̃H
. (k))>Γ

(ñ.,n.).
Let us write r̃.(k) = [(r.(k + `))`∈D. , (r

H
. (k + `))`∈V. ] and

choose a symmetric neighborhood form in the dual tree: r̃
H
. (k) =

[(r.(k + `))`∈V. , (r
H
. (k + `))`∈D. ]. From the results in Section

3, the noise correlation terms take the following expressions, for
m = (m1,m2) and k = (k1, k2),

κ.(k) =
X

(`1,`2)∈V.

r
H
. (k1 + `1, k2 + `2)γm1,m′

1
(`1) γm2,m′

2
(`2)

κ
H
. (k) =

X

(`1,`2)∈V.

r.(k1 + `1, k2 + `2)γm1,m′
1
(`1) γm2,m′

2
(`2).

Due to the symmetries of the correlation functions of the wavelets,
it can be futher noticed that the indices such that `1 = 0 (resp.
`2 = 0) can be omitted in the above summations when m1 6= 0
(resp. m2 6= 0). Besides, after the postprocessing of a subband
(j,m) with m ∈ N

?2
M , the additive noise model (12) becomes

v.(k) = u.(k) + w.(k), where v.(k) (resp. u.(k)) is a post-
transformed coefficient of the noisy (resp. clean) signal. Section 3
indicates that the second-order properties of the noise are modified
so that, after transformation, the following expressions of the noise



correlation terms hold:

ζ.(k) =
X

(`1,`2)∈D.
`1 6=0 , `2 6=0

v.(k1 + `1, k2 + `2)γm1,m′
1
(`1) γm2,m′

2
(`2)

ζ
H
. (k) =−

X

(`1,`2)∈D.
`1 6=0 , `2 6=0

v
H
. (k1 + `1, k2 + `2)γm1,m′

1
(`1) γm2,m′

2
(`2)

with ζ.(k) = σ−2
ṽ
>
. (k)Γ(w̃,w), ζH

. (k) = σ−2 (ṽH
. (k))>Γ

(w̃H,wH)

and where straightforward extensions of our notations have been
used. This shows that, in spite of the whiteness of the noise, spatial
correlations must be taken into account in this case.

5. SIMULATION RESULTS

Test images s (Barbara and Boat) of size 512×512 coded at 8 bpp
are corrupted by a zero-mean additive white Gaussian noise which
is independent of s. We are interested in evaluating the impact of
choosing different decompositions and neighborhoods on the per-
formances of our estimator. More precisely, we consider M -band
Meyer wavelets with M = 2 or M = 4 and two possible neigh-
borhoods called PN1 and PN2. PN1 is a purely “inter-tree” neigh-
borhood since it does not include any spatial information. With
the notations used in Section 4.5, PN1 corresponds to D. = ∅
and V. = ∅ (resp. V. = {(0, 0)}) for the subbands where the
post-transform is (resp. is not) applied. The neighborhood PN2
combines both spatial and “inter-tree” information. We choose
D. = {−2, . . . , 2}2 \ {(0, 0)} and V. = ∅ (resp. V. = {(0, 0)})
for the subbands where the post-transform is (resp. is not) ap-
plied. The denoising performance is evaluated in terms of Sig-
nal to Noise Ratio (SNR). The achieved results are compared with
those provided by the Neighblock [2] and SUREshrink [12] esti-
mators. The wavelet decomposition is performed over 4 resolution
levels when M = 2 and 2 levels when M = 4, in order to gen-
erate the same size for the approximation subband at the coarsest
resolution. The resulting SNRs are listed in Table 1. It can be
noted that our estimator achieves the best results when M = 2 or
M = 4. On the one hand, the comparison of the two first columns
shows that the addition of the information brought by the dual tree
(resp. primal tree) is useful in the estimation of the coefficients in
the primal tree (resp. dual tree). On the other hand, the compari-
son of the two last columns demonstrates the effectiveness of our
adaptive threshold versus a fixed one as in the Neighblock method.
A visual inspection of the denoised images leads to the same con-
clusions. Fig. 2 shows cropped denoised versions of Barbara: the
left image is obtained by the Neighblock, the right one is provided
by our estimator. Neighblock introduces more artefacts especially
in the black right upper corner and on Barbara’s left cheek. Be-
sides, granular noise in the uniform areas is more important in the
Neighblock estimated image.

6. CONCLUSION

In this paper, we have proposed a new DTT denoising method
which was derived from a generalized Stein’s formula. This method
is applicable to images corrupted by a white Gaussian noise. The
redundancy of the DTT introduces noise correlations which have
been exploited in our approach. Experiments show that the pro-
posed method leads to improved results compared with state-of-
the-art methods. Several extensions of this work can be envisaged.

In particular, the case of neighborhoods exploiting interscale de-
pendencies is under investigation.
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SURE PN1 NB PN2
Barb. DTT M = 2 12.94 13.53 14.00 14.39

DTT M = 4 13.43 14.02 14.33 14.72
Boat DTT M = 2 13.49 13.65 13.78 14.09

DTT M = 4 13.34 13.54 13.69 13.91

Table 1. Denoising results for Barbara image (initial SNR of 6.17
dB) and for Boat image (initial SNR of 6.03 dB). The considered
estimators are SUREshrink (SURE), the proposed estimator using
PN1 neighborhood, Neighblock (NB) and the proposed estimator
using PN2 neighborhood.

Fig. 2. Cropped versions of Barbara denoised using 4-bands
wavelets: Neighblock estimator (left), proposed one using PN2
neighborhood (right).


