
IOP PUBLISHING INVERSE PROBLEMS

Inverse Problems 23 (2007) 1495–1518 doi:10.1088/0266-5611/23/4/008

A variational formulation for frame-based inverse
problems

Caroline Chaux1, Patrick L Combettes2, Jean-Christophe Pesquet1

and Valérie R Wajs2

1 Institut Gaspard Monge and UMR CNRS 8049, Université de Marne la Vallée,
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Abstract
A convex variational framework is proposed for solving inverse problems
in Hilbert spaces with a priori information on the representation of the
target solution in a frame. The objective function to be minimized consists
of a separable term penalizing each frame coefficient individually, and a
smooth term modelling the data formation model as well as other constraints.
Sparsity-constrained and Bayesian formulations are examined as special
cases. A splitting algorithm is presented to solve this problem and its
convergence is established in infinite-dimensional spaces under mild conditions
on the penalization functions, which need not be differentiable. Numerical
simulations demonstrate applications to frame-based image restoration.

1. Introduction

In inverse problems, certain physical properties of the target solution x are most suitably
expressed in terms of the coefficients (ξ k)k∈K⊂N of its representation x = ∑

k∈K
ξkek with

respect to a family of vectors (ek)k∈K in a Hilbert space (H, ‖·‖). Traditionally, such linear
representations have been mostly centred on orthonormal bases such as, for instance, in
Fourier, wavelet or bandlet decompositions [8, 25, 26]. Recently, attention has shifted towards
more general, overcomplete representations known as frames (see [6, 7, 16, 20, 33] for specific
examples). Recall that a family of vectors (ek)k∈K in H constitutes a frame if there exist two
constants µ and ν in ]0, +∞[ such that

(∀x ∈ H) µ‖x‖2 �
∑
k∈K

|〈x | ek〉|2 � ν‖x‖2. (1.1)
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The associated frame operator is the injective bounded linear operator

F : H → �2(K) : x 	→ (〈x | ek〉)k∈K, (1.2)

the adjoint of which is the surjective bounded linear operator

F ∗ : �2(K) → H : (ξk)k∈K 	→
∑
k∈K

ξkek. (1.3)

When µ = ν in (1.1), (ek)k∈K is said to be a tight frame. A simple example of a tight frame is
the union of m orthonormal bases, in which case µ = ν = m. For instance, in H = L2(R2),
a real dual-tree wavelet decomposition is the union of two orthonormal wavelet bases
[7, 30]. Curvelets [6] constitute another example of a tight frame of L2(R2). Historically,
Gabor frames [16, 33] have played an important role in many inverse problems. Another
common example of a frame is a Riesz basis, which corresponds to the case when (ek)k∈K

is linearly independent or, equivalently, when F is bijective. In such instances, there exists a
unique Riesz basis (ĕk)k∈K such that (ek)k∈K and (ĕk)k∈K are biorthogonal. Furthermore, for
every x ∈ H and (ξk)k∈K ∈ �2(K),

x = F ∗(ξk)k∈K ⇔ (∀k ∈ K) ξk = 〈x | ĕk〉. (1.4)

When F−1 = F ∗, (ek)k∈K is an orthonormal basis and (ĕk)k∈K = (ek)k∈K. Examples of Riesz
bases of L2(R2) include biorthogonal bases of compactly supported dyadic wavelets having
certain symmetry properties [9]. Further constructions as well as a detailed account of frame
theory in Hilbert spaces can be found in [23].

The goal of the present paper is to propose a flexible convex variational framework for
solving inverse problems in which a priori information (e.g., sparsity, distribution, statistical
properties) is available about the representation of the target solution in a frame. Our analysis
and our numerical algorithm will rely heavily on proximity operators. Section 2 is devoted to
these operators. Our main variational formulation is presented and analysed in section 3. It
consists (see problem 3.1) of minimizing the sum of a separable, possibly nondifferentiable
function penalizing each coefficient of the frame decomposition individually, and a smooth
function which combines other information on the problem and the data formation model.
Connections with sparsity-constrained and Bayesian formulations are also established. In
connection with the latter, we derive in section 4 closed-form expressions for the proximity
operators associated with a variety of univariate log-concave distributions. A proximal
algorithm for solving problem 3.1 is presented in section 5 and its convergence is established
in infinite-dimensional spaces under mild assumptions on the penalization functions. An
attractive feature of this algorithm is that it is fully split in that, at each iteration, all the
functions appearing in the problem are activated individually. Finally, applications to image
recovery are demonstrated in section 6.

2. Basic tool: proximity operator

2.1. Notation

Throughout,X is a separable real Hilbert space with scalar product 〈· | ·〉, norm ‖·‖ and distance
d. �0(X ) is the class of lower semicontinuous convex functions from X to ]−∞, +∞] which
are not identically equal to +∞. The indicator function of a subset S of X is

ιS : x 	→
{

0, if x ∈ S;
+∞, if x /∈ S,

(2.1)

its support function is σS : X → [−∞, +∞] : u 	→ supx∈S 〈x | u〉 and its distance function
is dS : X → [0, +∞] : x 	→ inf ‖S − x‖. If S is nonempty, closed and convex then,



A variational formulation for frame-based inverse problems 1497

for every x ∈ X , there exists a unique point PSx in S, called the projection of x onto
S, such that ‖x − PSx‖ = dS(x) (further background on convex analysis will be found
in [36]).

2.2. Background

Let ϕ ∈ �0(X ). The subdifferential of ϕ at x ∈ X is the set

∂ϕ(x) = {u ∈ X | (∀y ∈ X ) 〈y − x | u〉 + ϕ(x) � ϕ(y)}. (2.2)

If ϕ is Gâteaux differentiable at x with gradient ∇ϕ(x), then ∂ϕ(x) = {∇ϕ(x)}. The conjugate
of ϕ is the function ϕ∗ ∈ �0(X ) defined by

(∀u ∈ X ) ϕ∗(u) = sup
x∈X

〈x | u〉 − ϕ(x). (2.3)

The continuous convex function

γϕ : X → R : x 	→ inf
y∈X

ϕ(y) +
1

2γ
‖x − y‖2 (2.4)

is the Moreau envelope of index γ ∈ ]0, +∞[ of ϕ.

Definition 2.1. [28] Let ϕ ∈ �0(X ). Then, for every x ∈ X , the function y 	→ ϕ(y)+‖x−y‖2/2
achieves its infimum at a unique point denoted by proxϕ x. The operator proxϕ : X → X thus
defined is the proximity operator of ϕ. Moreover,

(∀x ∈ X )(∀p ∈ X ) p = proxϕ x ⇔ x − p ∈ ∂ϕ(p) (2.5)

⇔ (∀y ∈ X ) 〈y − p | x − p〉 + ϕ(p) � ϕ(y). (2.6)

Example 2.2. Let γ ∈ ]0, +∞[, let S be a nonempty convex subset of X and set ϕ = ιS . Then
it follows at once from (2.1), (2.4) and definition 2.1 that γϕ = d2

S

/
(2γ ) and proxγ ϕ = PS .

Here are basic properties of the proximity operator.

Lemma 2.3. [15, section 2] Let ϕ ∈ �0(X ). Then the following hold.

(i) (∀x ∈ X ) x ∈ Argmin ϕ ⇔ 0 ∈ ∂ϕ(x) ⇔ proxϕ x = x.
(ii) (∀x ∈ X ) (∀y ∈ X )‖proxϕ x − proxϕ y‖ � ‖x − y‖.

(iii) (∀x ∈ X ) (∀γ ∈ ]0, +∞[) x = proxγ ϕ x + γ proxϕ∗/γ (x/γ ).

In lemma 2.3, (i) states that the minimizers of ϕ are characterized as the zeros of the
subdifferential of ϕ (Fermat’s rule) or, equivalently, as the fixed points of proxϕ ; (ii) states
that proxϕ is nonexpansive, which turns out to be an essential property in the convergence of
iterative methods [13]; finally, (iii) is Moreau’s decomposition principle [27], which provides
a powerful nonlinear decomposition rule parametrized by ϕ and extends in particular the
standard orthogonal decomposition rule [15, remark 2.11].

Lemma 2.4. Let ϕ ∈ �0(X ), let γ ∈ ]0, +∞[, and set ψ = γ ϕ. Then the following hold.

(i) ψ is Fréchet-differentiable on X .
(ii) ∇ψ = (Id − proxγ ϕ)/γ = proxϕ∗/γ (·/γ ).

(iii) ∇ψ is (1/γ )-Lipschitz continuous.
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Proof. (i) and (ii): a routine extension of [28, proposition 7.d], where γ = 1. (iii): since
ϕ∗/γ ∈ �0(X ) and (ii) asserts that ∇ψ = proxϕ∗/γ (·/γ ), this is a direct consequence of
lemma 2.3(ii). �

Next, we record some proximal calculus rules that will allow us to derive new proximity
operators from existing ones.

Lemma 2.5. [15, lemma 2.6] Let ϕ ∈ �0(X ) and let x ∈ X . Then the following hold.

(i) Let ψ = ϕ + α‖·‖2/2 + 〈· | u〉 + β, where u ∈ X , α ∈ [0, +∞[ and β ∈ R. Then
proxψ x = proxϕ/(α+1)((x − u)/(α + 1)).

(ii) Let ψ = ϕ(· − z), where z ∈ X . Then proxψ x = z + proxϕ(x − z).
(iii) Let ψ = ϕ(·/ρ), where ρ ∈ R � {0}. Then proxψ x = ρ proxϕ/ρ2(x/ρ).
(iv) Let ψ : y 	→ ϕ(−y). Then proxψ x = −proxϕ(−x).

We conclude this section with some properties of proximity operators on the real line.

Lemma 2.6. Let φ ∈ �0(R). Then the following hold.

(i) [14, proposition 2.4] proxφ : R → R is increasing.
(ii) [14, corollary 2.5] Suppose that φ admits 0 as a minimizer. Then

(∀ξ ∈ R)




0 � proxφ ξ � ξ, if ξ > 0;
proxφ ξ = 0, if ξ = 0;
ξ � proxφ ξ � 0, if ξ < 0.

(2.7)

This is true in particular when φ is even.
(iii) [14, proposition 3.6] Suppose that φ = ψ + σ�, where ψ ∈ �0(R) is differentiable at 0

with ψ ′(0) = 0, and where � ⊂ R is a nonempty closed interval. Then proxφ =
proxψ ◦ soft�, where

soft� = proxσ�
: R → R : ξ 	→




ξ − ω, if ξ < ω;
0, if ξ ∈ �;
ξ − ω, if ξ > ω,

with

{
ω = inf �,

ω = sup �,

(2.8)

is the soft thresholder on �. In particular, if � = [−ω,ω] for some ω ∈ ]0, +∞[, we
obtain

soft[−ω,ω] = proxω|·| : R → R : ξ 	→ sign(ξ) max{|ξ | − ω, 0}. (2.9)

The soft-thresholding operation described in lemma 2.6(iii) is illustrated in figure 1.

2.3. Forward–backward splitting

In this section, we consider the following abstract variational framework, which will cover
our main problem (problem 3.1).

Problem 2.7. Let f1 and f2 be functions in �0(X ) such that f2 is differentiable on X with a
β-Lipschitz continuous gradient for some β ∈ ]0, +∞[. The objective is to

minimize
x∈X

f1(x) + f2(x). (2.10)
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Figure 1. � = [−1, 1]. Graphs of soft� (dashed line) and proxφ (solid line) in lemma 2.6(iii)
with ψ = 0.1|·|3.

A key consequence of Fermat’s rule (lemma 2.3(i)) and (2.5) is the following
characterization of the solutions to problem 2.7 which, in itself, attests the central role played
by proximity operators.

Proposition 2.8. [15, proposition 3.1(iii)] Let x ∈ X and let γ ∈ ]0, +∞[. Then x is a solution
to problem 2.7 if and only if x = proxγf1

(x − γ∇f2(x)).

Let γ ∈ ]0, +∞[ and set T = proxγf1
◦ (Id − γ∇f2). Proposition 2.8 asserts that a point

x ∈ X solves problem 2.7 if and only if x = T x. This fixed-point characterization suggests
solving problem 2.7 via the successive approximation method xn+1 = T xn, for suitable values
of the ‘step size’ parameter γ . The next result describes an algorithm in this vein, which
is based on the forward–backward splitting method for monotone operators [13]. It allows
for inexact evaluations of the operators proxf1

and ∇f2 via the incorporation of the error
sequences (an)n∈N and (bn)n∈N, respectively, as well as for iteration-dependent relaxation
parameters (λn)n∈N and step sizes (γn)n∈N.

Theorem 2.9. [15, theorem 3.4(i)] Suppose that Argmin(f1 + f2) �= ∅. Let (γn)n∈N be a
sequence in ]0, +∞[ such that 0 < infn∈N γn � supn∈N γn < 2/β, let (λn)n∈N be a sequence
in ]0, 1] such that infn∈N λn > 0, and let (an)n∈N and (bn)n∈N be sequences in X such that∑

n∈N
‖an‖ < +∞ and

∑
n∈N

‖bn‖ < +∞. Fix x0 ∈ X and, for every n ∈ N, set

xn+1 = xn + λn

(
proxγnf1

(xn − γn(∇f2(xn) + bn)) + an − xn

)
. (2.11)

Then (xn)n∈N converges weakly to a solution to problem 2.7.

2.4. Decomposition formula

The following decomposition property, which extends [15, example 2.19], will be instrumental
in our analysis.
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Proposition 2.10. Set ϒ : X → ]−∞, +∞] : x 	→ ∑
i∈I

ψi(〈x | oi〉), where:

(i) ∅ �= I ⊂ N;
(ii) (oi )i∈I is an orthonormal basis of X ;

(iii) (ψi)i∈I are functions in �0(R);
(iv) Either I is finite, or there exists a subset J of I such that:

(a) I � J is finite;
(b) (∀i ∈ J) ψi � 0;
(c) there exists a sequence (ζi)i∈J in R such that

∑
i∈J

|ζi |2 < +∞,
∑

i∈J

∣∣proxψi
ζi

∣∣2
<

+∞, and
∑

i∈J
ψi(ζi) < +∞.

Then ϒ ∈ �0(X ) and (∀x ∈ X ) proxϒx = ∑
i∈I

(
proxψi

〈x | oi〉
)
oi .

Proof. We treat only the case when I is infinite as the case when I is finite will follow trivially
the arguments presented below. Fix, for every i ∈ I � J, ζi ∈ R such that ψi(ζi) < +∞ and
set z = ∑

i∈I
ζioi . Then (iv) implies that

∑
i∈I

ζ 2
i < +∞ and, in view of (ii), that z ∈ X .

Moreover, ϒ(z) = ∑
i∈J

ψi(ζi) +
∑

i∈I�J
ψi(ζi) < +∞.

Let us show that ϒ ∈ �0(X ). As just seen, ϒ(z) < +∞ and, therefore, ϒ �≡ +∞. Next,
we observe that, by virtue of (iii), the functions (ψi(〈· | oi〉))i∈I are lower semicontinuous and
convex. As a result,

∑
i∈I�J

ψi(〈· | oi〉) is lower semicontinuous and convex, as a finite sum of
such functions. Thus, to show that ϒ ∈ �0(X ), it remains to show that ϒJ = ∑

i∈J
ψi(〈· | oi〉)

is lower semicontinuous and convex. It follows from (iv)(b) that

ϒJ = sup
J

′⊂J

J
′ finite

∑
i∈J

′
ψi(〈· | oi〉). (2.12)

However, as above, each finite sum
∑

i∈J
′ ψi(〈· | oi〉) is lower semicontinuous and convex.

Therefore, ϒJ is likewise as the supremum of a family of lower semicontinuous convex
functions.

Now fix x ∈ X and set

(∀i ∈ I) ξi = 〈x | oi〉 and πi = proxψi
ξi . (2.13)

It follows from (iv)(a) and (iv)(c) that∑
i∈I

∣∣proxψi
ζi

∣∣2 =
∑
i∈J

∣∣proxψi
ζi

∣∣2
+

∑
i∈I�J

∣∣proxψi
ζi

∣∣2
< +∞. (2.14)

Hence, we derive from lemma 2.3(ii) and (ii) that

1

2

∑
i∈I

|πi |2 �
∑
i∈I

∣∣πi − proxψi
ζi

∣∣2
+

∑
i∈I

∣∣proxψi
ζi

∣∣2

=
∑
i∈I

∣∣proxψi
ξi − proxψi

ζi

∣∣2
+

∑
i∈I

∣∣proxψi
ζi

∣∣2

�
∑
i∈I

|ξi − ζi |2 +
∑
i∈I

∣∣proxψi
ζi

∣∣2

= ‖x − z‖2 +
∑
i∈I

∣∣proxψi
ζi

∣∣2

< +∞. (2.15)

Let us set p = ∑
i∈I

πioi . Then it follows from (2.15) and (ii) that p ∈ X . On the other hand,
we derive from (2.13) and (2.6) that

(∀i ∈ I)(∀η ∈ R) (η − πi)(ξi − πi) + ψi(πi) � ψi(η). (2.16)
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Hence, by Parseval and (ii),

(∀y ∈ X ) 〈y − p | x − p〉 + ϒ(p) =
∑
i∈I

〈y − p | oi〉〈x − p | oi〉 +
∑
i∈I

ψi(πi)

=
∑
i∈I

(〈y | oi〉 − πi)(ξi − πi) + ψi(πi)

�
∑
i∈I

ψi(〈y | oi〉)

= ϒ(y). (2.17)

Invoking (2.6) once again, we conclude that p = proxϒx. �

3. Problem formulation

3.1. Assumptions and problem statement

Throughout, H is a separable real Hilbert space with scalar product 〈· | ·〉, norm ‖ · ‖ and
distance d. The index set K is either {1, . . . , K} (K ∈ N) or N, according as H is finite or
infinite dimensional. Moreover, (ek)k∈K is a frame in H with constants µ and ν (see (1.1))
and frame operator F (see (1.2)). Finally, the sequence of frame coefficients of a generic point
x ∈ H will be denoted by x, i.e., x = (ξk)k∈K, where x = ∑

k∈K
ξkek .

Let x ∈ H be the target solution of the underlying inverse problem. Our basic premise is
that a priori information is available about the coefficients (ξ k)k∈K of the decomposition

x =
∑
k∈K

ξkek (3.1)

of x in (ek)k∈K. To recover x, it is therefore natural to formulate a variational problem in
the space �2(K) of frame coefficients, where a priori information on (ξ k)k∈K can be easily
incorporated. More precisely, a solution will assume the form x̃ = ∑

k∈K
ξ̃kek , where (ξ̃k)k∈K

is a solution to the following problem.

Problem 3.1. Let (φk)k∈K be functions in �0(R) such that either K = {1, . . . , K} with K ∈ N,
or K = N and there exists a subset L of K such that

(i) K � L is finite;
(ii) (∀k ∈ L) φk � 0;

(iii) there exists a sequence (ζk)k∈L in R such that
∑

k∈L
|ζk|2 < +∞,

∑
k∈L

∣∣proxφk
ζk

∣∣2
< +∞

and
∑

k∈L
φk(ζk) < +∞.

In addition, let � ∈ �0(H) be differentiable on H with a τ -Lipschitz continuous gradient for
some τ ∈ ]0, +∞[. The objective is to

minimize
(ξk)k∈K∈�2(K)

∑
k∈K

φk(ξk) + �

( ∑
k∈K

ξkek

)
. (3.2)

Remark 3.2.

(i) The functions (φk)k∈K in problem 3.1 need not be differentiable. As will be seen in
section 3.3.1, this feature is essential in sparsity-constrained problems.

(ii) Suppose that K = N. Then conditions (ii) and (iii) in problem 3.1 hold when, for every
k ∈ L, φk admits a minimizer ζk such that φk(ζk) = 0 and

∑
k∈L

|ζk|2 < +∞. Indeed,

lemma 2.3(i) yields
∑

k∈L

∣∣proxφk
ζk

∣∣2 = ∑
k∈L

|ζk|2 < +∞ and
∑

k∈L
φk(ζk) = 0. In

particular, conditions (ii) and (iii) in problem 3.1 hold when (∀k ∈ L) φk � φk(0) = 0,
which amounts to setting ζk ≡ 0.
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3.2. Existence and characterization of solutions

We first address the issue of the existence of solutions to problem 3.1. Recall that a function
ϕ : H → ]−∞, +∞] is said to be coercive if lim‖x‖→+∞ ϕ(x) = +∞.

Proposition 3.3. Suppose that one of the following holds.

(i) The function (ξk)k∈K 	→ ∑
k∈K

φk(ξk) + �(F ∗(ξk)k∈K) is coercive.
(ii) infk∈K inf φk(R) > −∞, � is coercive, and (ek)k∈K is a Riesz basis.

(iii) inf �(H) > −∞ and one of the following properties is satisfied.

(a) The function (ξk)k∈K 	→ ∑
k∈K

φk(ξk) is coercive.
(b) There exist ω ∈ ]0, +∞[ and p ∈ [1, 2] such that (∀k ∈ K) φk � ω|·|p.
(c) K is finite and the functions (φk)k∈K are coercive.

Then problem 3.1 admits a solution.

Proof. We denote by x = (ξk)k∈K a generic element in �2(K) and by ‖x‖ = √∑
k∈K

|ξk|2 its
norm. Set

f1 : x 	→
∑
k∈K

φk(ξk) and f2 = � ◦ F ∗. (3.3)

First, suppose that (i) holds. Then it follows from the assumptions on (φk)k∈K in problem
3.1 and proposition 2.10 that f1 ∈ �0(�

2(K)). On the other hand, since � is a finite function
in �0(H) and F ∗ : �2(K) → H is linear and bounded, f2 is a finite function in �0(�

2(K)).
Altogether, f1 + f2 ∈ �0(�

2(K)) and the claim follows from [36, theorem 2.5.1(ii)].
Next, suppose that (ii) holds. In view of (i), since f1 is bounded below, it is enough to

show that f2 is coercive. Since (ek)k∈K is a Riesz basis, we have [26]

(∀x ∈ �2(K)) ‖F ∗x‖ � √
µ‖x‖. (3.4)

In turn, the coercivity of � implies that lim‖x‖→+∞ ‖�(F ∗x)‖ = +∞.
Now, suppose that (iii) holds. In case (iii)(a), since � is bounded below, f2 is likewise.

In turn, the coercivity of f1 implies that of f1 + f2, hence the result by (i). Now suppose that
(iii)(b) is satisfied and let x ∈ �2(K). Then

f1(x) =
∑
k∈K

φk(ξk) � ω
∑
k∈K

|ξk|p � ω‖x‖p. (3.5)

Therefore f1 is coercive and the claim follows from (iii)(a). Finally, suppose that (iii)(c)
is satisfied. In view of (iii)(a), it is enough to show that f1 is coercive. To this end, fix
ρ ∈ ]0, +∞[ and recall that K = {1, . . . , K}. Let us set λ = mink∈K inf φk(R). Since the
functions (φk)k∈K are coercive and in �0(R), it follows from [36, theorem 2.5.1(ii)] that λ ∈ R.
Coercivity also implies that we can find δ ∈ ]0, +∞[ such that

(∀ξ ∈ R) |ξ | � δ/
√

K ⇒ min
k∈K

φk(ξ) � ρ + (1 − K)λ. (3.6)

Now take x ∈ �2(K) such that ‖x‖ � δ and fix � ∈ K such that |ξ�| = maxk∈K |ξk|. Then
|ξ�| � δ/

√
K and therefore (3.6) yields

f1(x) =
∑
k∈K

φk(ξk) � ρ + (1 − K)λ +
∑

k∈K�{�}
φk(ξk) � ρ + (1 − K)λ + (K − 1)λ = ρ,

(3.7)

which shows that f1 is coercive. �

Next, we turn our attention to the characterization of the solutions to problem 3.1.
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Proposition 3.4. Let (ξk)k∈K ∈ �2(K), let (ηk)k∈K = (F ◦ ∇� ◦ F ∗)(ξk)k∈K and let
γ ∈ ]0, +∞[. Then (ξk)k∈K solves problem 3.1 if and only if (∀k ∈ K) ξk = proxγφk

(ξk −γ ηk).

Proof. Set X = �2(K) and let (ok)k∈K denote the canonical orthonormal basis of �2(K). Then
(3.2) can be written as

minimize
x∈X

∑
k∈K

φk(〈x | ok〉) + �(F ∗x). (3.8)

Now set

f1 =
∑
k∈K

φk(〈· | ok〉) and f2 = � ◦ F ∗. (3.9)

Then, in the light of the assumptions on (φk)k∈K in problem 3.1, proposition 2.10 yields
f1 ∈ �0(X ). On the other hand, since � is a finite function in �0(H) and F ∗ : X → H is
linear and bounded, we have f2 ∈ �0(X ). In addition, since ∇� is Lipschitz continuous, so
is ∇f2 = F ◦ ∇� ◦ F ∗. Altogether, (3.8) conforms to the format of problem 2.7. Now set
x = (ξk)k∈K. Then it follows from proposition 2.8, (3.9) and proposition 2.10 that

(ξk)k∈K solves problem 3.1 ⇔ x = proxγf1
(x − γ∇f2(x))

⇔ x = proxγf1
(x − γ (F ◦ ∇� ◦ F ∗)(x))

⇔ (ξk)k∈K = proxγf1
(ξk − γ ηk)k∈K

⇔ (ξk)k∈K = (
proxγφk

(ξk − γ ηk)
)
k∈K

, (3.10)

which provides the desired characterization. �

3.3. Specific frameworks

In problem 3.1, the functions (φk)k∈K penalize the frame coefficients (ξk)k∈K, while the
function � penalizes x = F ∗(ξk)k∈K = ∑

k∈K
ξkek , thereby modelling direct constraints on

x. This flexible framework makes it possible to model a wide range of inverse problems. Two
important instances are presented below.

3.3.1. Inverse problems with sparsity constraints. A common objective in selecting the
frame (ek)k∈K is to obtain a sparse representation of the target solution x in the sense that
most of the coefficients (ξ k)k∈K in (3.1) are zero. By choosing φk = ωk|·| with ωk > 0 in
problem 3.1, one aims at setting to zero the kth coefficient if it falls into the interval [−ωk, ωk],
hence promoting sparsity (see [17, 22, 34] for special cases). Note that in this case, it follows
from proposition 3.4 and (2.9) that a solution (ξk)k∈K to problem 3.1 is characterized by the
soft thresholding identities (see also figure 1)

(∀k ∈ K) ξk = proxωk |·|(ξk − ηk) = soft[−ωk,ωk](ξk − ηk), (3.11)

where (ηk)k∈K = (F ◦ ∇� ◦ F ∗)(ξk)k∈K. More generally, to aim at zeroing a coefficient
falling into a closed interval �k ⊂ R, one can use the function φk = ψk + σ�k

, where ψk

satisfies 0 = ψk(0) � ψk ∈ �0(R) and is differentiable at 0 [14, proposition 3.2]. This
construct actually characterizes all thresholders on �k that have properties suitable for their
use in iterative methods [14, theorem 3.3]. A decomposition rule for computing the resulting
thresholders is supplied in lemma 2.6(iii).

Let us now discuss possible choices for the smooth function �. Suppose that the problem
under consideration is to recover x ∈ H from q observations

zi = Tix + vi, 1 � i � q, (3.12)
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where Ti is a bounded linear operator from H to a real Hilbert space Gi , zi ∈ Gi , and vi ∈ Gi

is the realization of a noise process. A standard data fidelity criterion in such instances is
the function x 	→ ∑q

i=1 αi‖Tix − zi‖2, where (αi)1�i�q are strictly positive reals, see e.g.,
[12, 21]. In addition, assume that a priori information is available that constrains x to lie
in some closed convex subsets (Si)1�i�m of H (see [10, 31] and the references therein for
example). These constraints can be aggregated via the cost function x 	→ ∑m

i=1 ϑid
2
Si
(x),

where (ϑi)1�i�m are strictly positive reals [5, 11]. These two objectives can be combined by
using the function

� : x 	→ 1

2

q∑
i=1

αi‖Tix − zi‖2 +
1

2

m∑
i=1

ϑid
2
Si
(x) (3.13)

in problem 3.1. This function is indeed differentiable and its gradient

∇� : x 	→
q∑

i=1

αiT
∗
i (Tix − zi) +

m∑
i=1

ϑi

(
x − PSi

x
)

(3.14)

has Lipschitz constant [14, section 5.1]

τ =
∥∥∥∥∥

q∑
i=1

αiT
∗
i Ti

∥∥∥∥∥ +
m∑

i=1

ϑi. (3.15)

In instances when
∥∥∑q

i=1 αiT
∗
i Ti

∥∥ cannot be evaluated directly, it can be majorized by∑q

i=1 αi‖Ti‖2. It should be noted that, more generally, lemma 2.4(iii) implies that � remains
Lipschitz continuous if the term

∑m
i=1 ϑid

2
Si
(x) in (3.13) is replaced by a sum of Moreau

envelopes (see [13, section 6.3] and [15, section 4.1] for related frameworks).

3.3.2. Bayesian statistical framework. A standard linear inverse problem is to recover x ∈ H
from an observation

z = T x + v, (3.16)

in a real Hilbert space G, where T : H → G is a bounded linear operator and where v ∈ G is
the realization of an additive noise perturbation. If x = (ξ k)k∈K denotes the coefficients of x

in (ek)k∈K, (3.16) can be written as

z = T F ∗x + v. (3.17)

For the sake of simplicity, the following assumptions regarding (3.17) are made in this section
(with the usual convention ln 0 = −∞).

Assumption 3.5.

(i) H = R
N,G = R

M and K = {1, . . . , K}, where K � N .
(ii) The vectors x, z and v are, respectively, realizations of real-valued random vectors X, Z

and V defined on the same probability space.
(iii) The random vectors X and V are mutually independent and have probability density

functions fX and fV , respectively.
(iv) The components of X are independent with upper-semicontinuous log-concave densities.
(v) The function ln fV is concave and differentiable with a Lipschitz continuous gradient.

Under assumption 3.5, a common Bayesian approach for estimating x from z consists in
applying a maximum a posteriori (MAP) rule [3, 4, 32], which amounts to maximizing the
posterior probability density fX|Z=z. Thus, x̃ is a MAP estimate of x if

(∀x ∈ R
K) fX|Z=z(x̃) � fX|Z=z(x). (3.18)
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Using Bayes’ formula, this amounts to solving

minimize
x∈R

K
− ln fX(x) − ln fZ|X=x(z). (3.19)

In view of (3.17), this is also equivalent to solving

minimize
x∈R

K
− ln fX(x) − ln fV (z − T F ∗x). (3.20)

Under assumption 3.5, this convex optimization problem is a special case of problem 3.1.
Indeed, assumption 3.5(iv) allows us to write, without loss of generality, the prior density as

(∀(ξk)k∈K ∈ R
K) fX((ξk)k∈K) ∝

K∏
k=1

exp(−φk(ξk)), (3.21)

where (φk)k∈K are the so-called potential functions of the marginal probability density
functions of X. It also follows from assumption 3.5(iv) that the functions (φk)k∈K are in
�0(R). Now set

(∀x ∈ H) �(x) = − ln fV (z − T x). (3.22)

Then assumption 3.5(v) asserts that � ∈ �0(H) is differentiable with a Lipschitz continuous
gradient. Altogether, (3.20) reduces to problem 3.1.

Remark 3.6. In the simple case when V is a zero-mean Gaussian vector with an invertible
covariance matrix �, the function � reduces (up to an additive constant) to the residual energy
function x 	→ 〈�−1(z − T x) | z − T x〉/2. When X is further assumed to be Gaussian, the
solution to problem 3.1 is a linear function of z. Recall that the MAP estimate coincides
with the minimum mean-square error estimate under such Gaussian models for both V and X
[35, section 2.4].

Remark 3.7. An alternative Bayesian strategy would be to determine a MAP estimate of x.
This would lead to

minimize
x∈H

− ln fX(x) − ln fV (z − T x), (3.23)

where fX can be deduced from (3.21) through the change of variable X = F ∗X. In the case
of an orthonormal basis decomposition, it is easy to check that (3.23) is equivalent to problem
(3.20). By contrast, when F corresponds to an overcomplete frame, the expression of fX

becomes involved and (3.23) is usually much less tractable than problem 3.1. As will be seen
in section 5, the latter can be solved via a simple splitting algorithm.

Remark 3.8. Let us decompose the observation vector as z = [
z�

1 , . . . , z�
q

]�
and the matrix

representing T as
[
T �

1 , . . . , T �
q

]�
where, for every i ∈ {1, . . . , q}, zi ∈ R

Mi and Ti ∈ R
Mi×N

with
∑q

i=1 Mi = M . Furthermore, assume that V is a zero-mean Gaussian vector with the
diagonal covariance matrix

� =




α−1
1 IM1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 α−1

q IMq


 , (3.24)

where (αi)1�i�q are strictly positive reals and IMi
, 1 � i � q, is the identity matrix of

size Mi × Mi . Then � reduces to the first term in (3.13) where Gi = R
Mi and the MAP

estimation problem under assumption 3.5 becomes a special case of the problem addressed in
section 3.3.1 with m = 0.
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4. Proximity operators associated with log-concave densities

As discussed in section 3.3.2, the functions (φk)k∈K in (3.2) act as the potential functions of
log-concave univariate probability densities modelling the frame coefficients individually in
Bayesian formulations. On the other hand, the proximity operators of such functions will, via
proposition 2.10, play a central role in section 5. Hereafter, we derive closed-form expressions
for these proximity operators in the case of some classical log-concave univariate probability
densities [19, chapters VII and IX].

Let us start with a few observations.

Remark 4.1. Let φ ∈ �0(R).

(i) It follows from definition 2.1 that (∀ξ ∈ R) φ(proxφ ξ) < +∞.
(ii) If φ is even, then it follows from lemma 2.5(iv) that proxφ is odd. Therefore, in such

instances, it will be enough to determine proxφ ξ for ξ � 0 and to extend the result to
ξ < 0 by antisymmetry.

(iii) Let ξ ∈ R. If φ is differentiable at proxφ ξ , then (2.5) yields

(∀π ∈ R) π = proxφ ξ ⇔ π + φ′(π) = ξ. (4.1)

We now examine some concrete examples.

Example 4.2 (Laplace distribution). Let ω ∈ ]0, +∞[ and set

φ : R → ]−∞, +∞] : ξ 	→ ω|ξ |. (4.2)

Then, for every ξ ∈ R, proxφ ξ = soft[−ω,ω]ξ = sign(ξ) max{|ξ | − ω, 0}.

Proof. Apply lemma 2.6(iii) with ψ = 0 and � = [−ω,ω]. �

Example 4.3 (Gaussian distribution). Let τ ∈ ]0, +∞[ and set

φ : R → ]−∞, +∞] : ξ 	→ τ |ξ |2. (4.3)

Then, for every ξ ∈ R, proxφ ξ = ξ/(2τ + 1).

Proof. Apply lemma 2.5(i) with X = R, ϕ = 0, α = 2τ and u = 0. �

Example 4.4 (generalized Gaussian distribution). Let p ∈ ]1, +∞[, κ ∈ ]0, +∞[ and set

φ : R → ]−∞, +∞] : ξ 	→ κ|ξ |p. (4.4)

Then, for every ξ ∈ R, proxφ ξ = sign(ξ)� where � is the unique solution in [0, +∞[ to

� + pκ�p−1 = |ξ |. (4.5)

In particular, the following hold:

(i) proxφ ξ = ξ + 4κ
3×21/3 ((χ − ξ)1/3 − (χ + ξ)1/3), where χ =

√
ξ 2 + 256κ3/729, if p = 4/3;

(ii) proxφ ξ = ξ + 9κ2 sign(ξ)(1 −
√

1 + 16|ξ |/(9κ2))/8, if p = 3/2;

(iii) proxφ ξ = sign(ξ)(
√

1 + 12κ|ξ | − 1)/(6κ), if p = 3;

(iv) proxφ ξ = (
χ+ξ

8κ

)1/3 − (
χ−ξ

8κ

)1/3
, where χ =

√
ξ 2 + 1/(27κ), if p = 4.
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Proof. Let ξ ∈ R and set π = proxφ ξ . As seen in remark 4.1(ii), because φ is even, it is
enough to assume that ξ � 0. Since φ is differentiable, it follows from (2.7) and (4.1) that π

is the unique solution in [0, +∞[ to

π + pκπp−1 = ξ, (4.6)

which provides (4.5). For p = 3, π is the solution in [0, +∞[ to the equation π +3κπ2−ξ = 0,
i.e., π = (

√
1 + 12κξ − 1)/(6κ) and we obtain (iv) by antisymmetry. In turn, since

(2|·|3/2/3)∗ = |·|3/3, lemma 2.3(iii) with γ = 3κ/2 yields π = proxγ (2|·|3/2/3)ξ =
ξ − γ prox(3γ )−1|·|3(ξ/γ ) = ξ + 9κ2 sign(ξ)(1 −

√
1 + 16|ξ |/(9κ2))/8, which proves (ii). Now,

let p = 4. Then (4.6) asserts that π is the unique solution in [0, +∞[ to the third degree
equation 4κπ3 + π − ξ = 0, namely π = (

√
α2 + β3 − α)1/3 − (

√
α2 + β3 + α)1/3, where

α = −ξ/(8κ) and β = 1/(12κ). Since this expression is an odd function of ξ , we obtain (iv).
Finally, we deduce (i) from (iv) by observing that, since (3|·|4/3/4)∗ = |·|4/4, lemma 2.3(iii)
with γ = 4κ/3 yields π = proxγ (3|·|4/3/4)ξ = ξ − γ prox(4γ )−1|·|4(ξ/γ ), hence the result after
simple algebra. �

Example 4.5 (Huber distribution). Let ω ∈ ]0, +∞[, τ ∈ ]0, +∞[, and set

φ : R → ]−∞, +∞] : ξ 	→
{

τξ 2, if |ξ | � ω/
√

2τ ;
ω

√
2τ |ξ | − ω2/2, otherwise.

(4.7)

Then, for every ξ ∈ R,

proxφ ξ =



ξ

2τ + 1
, if |ξ | � ω(2τ + 1)/

√
2τ ;

ξ − ω
√

2τ sign(ξ), if |ξ | > ω(2τ + 1)/
√

2τ .

(4.8)

Proof. Let ξ ∈ R and set π = proxφ ξ . Since φ is even, we assume that ξ � 0 (see
remark 4.1(ii)). In addition, since φ is differentiable, it follows from (2.7) and (4.1) that
π is the unique solution in [0, ξ ] to π + φ′(π) = ξ . First, suppose that π = ω/

√
2τ .

Then φ′(π) = ω
√

2τ and, therefore, ξ = π + φ′(π) = ω(2τ + 1)/
√

2τ . Now, suppose
that ξ � ω(2τ + 1)/

√
2τ . Then it follows from lemma 2.6(i) that π � proxφ(ω(2τ +

1)/
√

2τ) = ω/
√

2τ . In turn, (4.7) yields φ′(π) = 2τπ and the identity ξ = π + φ′(π)

yields π = ξ/(2τ + 1). Finally, if ξ > ω(2τ + 1)/
√

2τ , then lemma 2.6(i) yields
π � proxφ(ω(2τ + 1)/

√
2τ) = ω/

√
2τ and, in turn, φ′(π) = ω

√
2τ , which allows us

to conclude that π = ξ − ω
√

2τ . �

Example 4.6 (maximum entropy distribution). This density is obtained by maximizing the
entropy subject to the knowledge of the first, second and pth order absolute moments, where
2 �= p ∈ ]1, +∞[ [24]. Let ω ∈ ]0, +∞[, τ ∈ [0, +∞[, κ ∈ ]0, +∞[, and set

φ : R → ]−∞, +∞] : ξ 	→ ω|ξ | + τ |ξ |2 + κ|ξ |p. (4.9)

Then, for every ξ ∈ R,

proxφ ξ = sign(ξ)proxκ|·|p/(2τ+1)

(
1

2τ + 1
max{|ξ | − ω, 0}

)
(4.10)

where the expression for proxκ|·|p/(2τ+1) is supplied by example 4.4.

Proof. The function φ is a quadratic perturbation of the function ϕ = ω|·| + κ|·|p.
Applying lemma 2.6(iii) with ψ = κ|·|p and � = [−ω,ω], we get (∀ξ ∈ R) proxϕ ξ =
proxκ|·|p (soft[−ω,ω]ξ) = sign(ξ)proxκ|·|p (max{|ξ | − ω, 0}). Hence, the result follows from
lemma 2.5(i) where X = R, α = 2τ and u = 0. �
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Example 4.7 (smoothed Laplace distribution). Let ω ∈ ]0, +∞[ and set

φ : R → ]−∞, +∞] : ξ 	→ ω|ξ | − ln(1 + ω|ξ |). (4.11)

This potential function is sometimes used as a differentiable approximation to (4.2), e.g., [29].
We have, for every ξ ∈ R,

proxφ ξ = sign(ξ)
ω|ξ | − ω2 − 1 +

√
|ω|ξ | − ω2 − 1|2 + 4ω|ξ |

2ω
. (4.12)

Proof. According to remark 4.1(ii), since φ is even, we can focus on the case when ξ � 0.
As φ achieves its infimum at 0, lemma 2.6(ii) yields π = proxφ ξ � 0. We deduce from (4.1)
that π is the unique solution in [0, +∞[ to the equation

ωπ2 + (ω2 + 1 − ωξ)π − ξ = 0, (4.13)

which leads to (4.12). �

Example 4.8 (exponential distribution). Let ω ∈ ]0, +∞[ and set

φ : R → ]−∞, +∞] : ξ 	→
{

ωξ, if ξ � 0;
+∞, if ξ < 0.

(4.14)

Then, for every ξ ∈ R,

proxφ ξ =
{

ξ − ω if ξ � ω;
0 if ξ < ω.

(4.15)

Proof. Set ϕ = ι[0,+∞[. Then example 2.2 yields proxϕ = P[0,+∞[. In turn, since φ is a linear
perturbation of ϕ, the claim results from lemma 2.5(i), where X = R, α = 0 and u = ω.

�

Example 4.9 (gamma distribution). Let ω ∈ ]0, +∞[, κ ∈ ]0, +∞[, and set

φ : R → ]−∞, +∞] : ξ 	→
{

−κ ln(ξ) + ωξ, if ξ > 0;
+∞, if ξ � 0.

(4.16)

Then, for every ξ ∈ R,

proxφ ξ = ξ − ω +
√

|ξ − ω|2 + 4κ

2
. (4.17)

Proof. Set

ϕ : R → ]−∞, +∞] : ξ 	→
{

−κ ln(ξ), if ξ > 0;
+∞, if ξ � 0.

(4.18)

We easily get from remark 4.1(i) and (iii) that

(∀ξ ∈ R) proxϕ ξ = ξ +
√

ξ 2 + 4κ

2
. (4.19)

In turn, since φ is a linear perturbation of ϕ, the claim results from lemma 2.5(i), where
X = R, α = 0 and u = ω. �

Example 4.10 (chi distribution). Let κ ∈ ]0, +∞[ and let

φ : R → ]−∞, +∞] : ξ 	→
{

−κ ln(ξ) + ξ 2/2, if ξ > 0;
+∞, if ξ � 0.

(4.20)
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Then, for every ξ ∈ R,

proxφ ξ = ξ +
√

ξ 2 + 8κ

4
. (4.21)

Proof. Since φ is a quadratic perturbation of the function ϕ defined in (4.18), the claim results
from lemma 2.5(i), where X = R, α = 1 and u = 0. �

Example 4.11 (uniform distribution). Let ω ∈ ]0, +∞[ and set φ = ι[−ω,ω]. Then it follows
at once from example 2.2 that, for every ξ ∈ R,

proxφ ξ = P[−ω,ω]ξ =




−ω, if ξ < −ω;
ξ, if |ξ | � ω;
ω, if ξ > ω.

(4.22)

Example 4.12 (triangular distribution). Let ω ∈ ]−∞, 0[, let ω ∈ ]0, +∞[ and set

φ : R → ]−∞, +∞] : ξ 	→




− ln(ξ − ω) + ln(−ω), if ξ ∈ ]ω, 0];
− ln(ω − ξ) + ln(ω), if ξ ∈ ]0, ω[;
+∞, otherwise.

(4.23)

Then, for every ξ ∈ R,

proxφ ξ =




ξ + ω +
√|ξ − ω|2 + 4

2
, if ξ < 1/ω;

ξ + ω −
√

|ξ − ω|2 + 4

2
, if ξ > 1/ω;

0 otherwise.

(4.24)

Proof. Let ξ ∈ R and set π = proxφ ξ . Let us first note that ∂φ(0) = [1/ω, 1/ω]. Therefore,
(2.5) yields

π = 0 ⇔ ξ ∈ [1/ω, 1/ω]. (4.25)

Now consider the case when ξ > 1/ω. Since φ admits 0 as a minimizer, it follows from
lemma 2.6(ii) and (4.25) that π ∈ ]0, ξ ]. Hence, we derive from (4.1) that π is the only
solution in ]0, ξ ] to π + 1/(ω − π) = ξ , i.e., π = (ξ + ω −

√
|ξ − ω|2 + 4)/2. Likewise, if

ξ < 1/ω, it follows from lemma 2.6(ii), (4.25) and (4.1) that π is the only solution in [ξ, 0[
to π − 1/(π − ω) = ξ , which yields π = (ξ + ω +

√|ξ − ω|2 + 4)/2. �

The next example is an extension of example 4.10.

Example 4.13 (Weibull distribution). Let ω ∈ ]0, +∞[, κ ∈ ]0, +∞[ and p ∈ ]1, +∞[, and
set

φ : R → ]−∞, +∞] : ξ 	→
{

−κ ln(ξ) + ωξp, if ξ > 0;
+∞, if ξ � 0.

(4.26)

Then, for every ξ ∈ R, π = proxφ ξ is the unique strictly positive solution to

pωπp + π2 − ξπ = κ. (4.27)

Proof. Since φ is differentiable on ]0, +∞[, it follows from remark 4.1(i) and (iii) that π is
the unique solution in ]0, +∞[ to π + φ′(π) = ξ or, equivalently, to (4.27). �
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A similar proof can be used in the following two examples.

Example 4.14 (generalized inverse Gaussian distribution). Let ω ∈ ]0, +∞[, κ ∈ [0, +∞[
and ρ ∈ ]0, +∞[, and set

φ : R → ]−∞, +∞] : ξ 	→
{

−κ ln(ξ) + ωξ + ρ/ξ, if ξ > 0;
+∞, if ξ � 0.

(4.28)

Then, for every ξ ∈ R, π = proxφ ξ is the unique strictly positive solution to

π3 + (ω − ξ)π2 − κπ = ρ. (4.29)

Example 4.15 (Pearson type I). Let κ and κ be in ]0, +∞[, let ω and ω be reals such that
ω < ω, and set

φ : R → ]−∞, +∞] : ξ 	→
{

−κ ln(ξ − ω) − κ ln(ω − ξ), if ξ ∈ ]ω,ω[;
+∞, otherwise.

(4.30)

Then, for every ξ ∈ R, π = proxφ ξ is the unique solution in ]ω,ω[ to

π3 − (ω + ω + ξ)π2 + (ωω − κ − κ + (ω + ω)ξ)π = ωωξ − ωκ − ωκ. (4.31)

Remark 4.16.

(i) The chi-square distribution with n > 2 degrees of freedom is a special case of the gamma
distribution (example 4.9) with (ω, κ) = (1/2, n/2 − 1).

(ii) The normalized Rayleigh distribution is a special case of the chi distribution
(example 4.10) with κ = 1.

(iii) The beta distribution and the Wigner distribution are special cases of the Pearson type
I distribution (example 4.15) with (ω, ω) = (0, 1), and −ω = ω and κ = κ = 1/2,
respectively.

(iv) The proximity operator associated with translated and/or scaled versions of the above
densities can be obtained via lemma 2.5(ii)–(iii).

(v) For log-concave densities for which the proximity operator of the potential function is
difficult to express in closed form (e.g., Kumaraswamy or logarithmic distributions), one
can turn to simple procedures to solve (2.5) or (4.1) numerically.

5. Algorithm

We propose the following algorithm to solve problem 3.1.

Algorithm 5.1. Fix x0 ∈ �2(K) and construct a sequence (xn)n∈N = ((ξn,k)k∈K)n∈N by setting,
for every n ∈ N,

(∀k ∈ K) ξn+1,k = ξn,k + λn

(
proxγnφk

(ξn,k − γn(ηn,k + βn,k)) + αn,k − ξn,k

)
, (5.1)

where λn ∈ ]0, 1], γn ∈ ]0, +∞[, {αn,k}k∈K ⊂ R, (ηn,k)k∈K = F(∇�(F ∗xn)), and (βn,k)k∈K =
Fbn, where bn ∈ H.

The chief advantage of this algorithm is to be fully split in the sense that the functions
(φk)k∈K and � appearing in (3.2) are used separately. First, the current iterate xn is transformed
into a point in F ∗xn in H, and the gradient of � is evaluated at this point to within some
tolerance bn. Next, we obtain the sequence (ηn,k)k∈K = F(∇�(F ∗xn)) to within some
tolerance (βn,k)k∈K = Fbn. Then one chooses γn > 0, and, for every k ∈ K, applies the
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operator proxγnφk
to ξn,k − γn(ηn,k + βn,k). An error αn,k is tolerated in this computation.

Finally, the kth component ξn+1,k of xn+1 is obtained by applying a relaxation of parameter λn

to this inexact proximal step. Let us note that the computation of the proximal steps can be
performed in parallel.

To study the asymptotic behaviour of the sequences generated by algorithm 5.1, we require
the following set of assumptions.

Assumption 5.2. In addition to the standing assumptions of problem 3.1, the following hold.

(i) Problem 3.1 admits a solution.
(ii) infn∈N λn > 0.

(iii) infn∈N γn > 0 and supn∈N γn < 2/β, where β is a Lipschitz constant of F ◦ ∇� ◦ F ∗.
(iv)

∑
n∈N

√∑
k∈K

|αn,k|2 < +∞ and
∑

n∈N
‖bn‖ < +∞.

Remark 5.3. As regards assumption 5.2(i), sufficient conditions can be found in
proposition 3.3. Let us now turn to the parameter β in assumption 5.2(iii), which determines
the range of the step sizes (γn)n∈N. It follows from the assumptions of problem 3.1 and (1.1)
that, for every x and y in �2(K),

‖F(∇�(F ∗x)) − F(∇�(F ∗y))‖ � ‖F‖‖∇�(F ∗x) − ∇�(F ∗y)‖
� τ‖F‖‖F ∗x − F ∗y‖
� τ‖F‖2‖x − y‖
� τν‖x − y‖. (5.2)

Thus, the value β = τν can be used in general. In some cases, however, a sharper bound can
be obtained, which results in a wider range for the step sizes (γn)n∈N. For example, in the
problem considered in section 3.3.1, if the norm of R = ∑q

i=1 αiFT ∗
i TiF

∗ can be evaluated,
it follows from (3.13) and the nonexpansivity of the operators (Id − PSi

)1�i�m that one can
take

β = ‖R‖ + ν

m∑
i=1

ϑi. (5.3)

Theorem 5.4. Let (xn)n∈N be an arbitrary sequence generated by algorithm 5.1 under
assumption 5.2. Then (xn)n∈N converges weakly to a solution to problem 3.1.

Proof. Set X = �2(K), f1 = ∑
k∈K

φk(〈· | ok〉) and f2 = � ◦ F ∗, where (ok)k∈K denotes the
canonical orthonormal basis of �2(K). Then ∇f2 = F ◦ ∇� ◦ F ∗ is β-Lipschitz continuous
(see assumption 5.2(iii)) and, as seen in the proof of proposition 3.4, (3.2) conforms to the
format of problem 2.7. Furthermore, it follows from proposition 2.10 that we can rewrite (5.1)
as

xn+1 = xn + λn

(∑
k∈K

(
proxγnφk

〈xn − γnF (∇�(F ∗xn) + bn) | ok〉 + αn,k)ok − xn

)

= xn + λn

(
proxγnf1

(xn − γn(∇f2(xn) + bn)) + an − xn

)
, (5.4)

where an = (αn,k)k∈K and bn = Fbn. Since assumptions 5.2(iv) and (1.1) imply that∑
n∈N

‖an‖ < +∞ and
∑

n∈N
‖bn‖ � √

ν
∑

n∈N
‖bn‖ < +∞, the claim therefore follows

from theorem 2.9. �

Let (xn)n∈N be a sequence generated by algorithm 5.1 under assumption 5.2 and set
(∀n ∈ N) xn = F ∗xn. On the one hand, theorem 5.4 asserts that (xn)n∈N converges weakly to
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a solution x to problem 3.1. On the other hand, since F ∗ is linear and bounded, it is weakly
continuous and, therefore, (xn)n∈N converges weakly to F ∗x. However, it is not possible to
express (5.1) as an iteration in terms of the sequence (xn)n∈N in H in general. The following
corollary addresses the case when F is surjective, which does lead to an algorithm in H.

Corollary 5.5. Suppose that (ek)k∈K is a Riesz basis with companion biorthogonal basis
(ĕk)k∈K. Fix x0 ∈ H and, for every n ∈ N, set

xn+1 = xn + λn

(∑
k∈K

(
proxγnφk

(〈xn | ĕk〉 − γn〈∇�(xn) + bn | ek〉) + αn,k

)
ek − xn

)
, (5.5)

where λn ∈ ]0, 1], γn ∈ ]0, +∞[, {αn,k}k∈K ⊂ R and bn ∈ H. Suppose that assumption 5.2 is
in force. Then (xn)n∈N converges weakly to a point x ∈ H and (〈x | ĕk〉)k∈K is a solution to
problem 3.1.

Proof. Set (∀n ∈ N) (∀k ∈ K) ξn,k = 〈xn | ĕk〉, ηn,k = 〈∇�(xn) | ek〉 and βn,k = 〈bn | ek〉.
Then, for every n ∈ N, it follows from (1.4) that xn = F ∗(ξn,k)k∈K and, in turn, that

(ηn,k)k∈K = F(∇�(F ∗xn)), where xn = (ξn,k)k∈K. (5.6)

Furthermore, for every n ∈ N, it follows from (5.5) and the biorthogonality of (ek)k∈K and
(ĕk)k∈K that

(∀k ∈ K) ξn+1,k = 〈xn+1 | ĕk〉
= 〈xn | ĕk〉 + λn

(
proxγnφk

(〈xn | ĕk〉 − γn〈∇�(xn) + bn | ek〉)
+ αn,k − 〈xn | ĕk〉

)
= ξn,k + λn

(
proxγnφk

(
ξn,k − γn(ηn,k + βn,k)

)
+ αn,k − ξn,k

)
. (5.7)

Since theorem 5.4 states that (xn)n∈N converges weakly to a solution x to problem 3.1,
(xn)n∈N = (F ∗xn)n∈N converges weakly to x = F ∗x. Consequently, (1.4) asserts that we
can write x = (〈x | ĕk〉)k∈K. �

Remark 5.6. Suppose that K = N and that (ek)k∈K is an orthonormal basis of H. Then (5.5)
reduces to

xn+1 = xn + λn

(∑
k∈K

(
proxγnφk

(〈xn − γn(∇�(xn) + bn) | ek〉) + αn,k

)
ek − xn

)
. (5.8)

In this particular setting, some results related to corollary 5.5 are the following.

(i) Suppose that � : x 	→ ‖T x−z‖2/2, where T is a nonzero bounded linear operator fromH
to a real Hilbert space G and z ∈ G. Suppose that, in addition, (∀k ∈ K) φk � φk(0) = 0.
Then the convergence of (5.8) is discussed in [15, corollary 5.16].

(ii) Suppose that (�k)k∈K are closed intervals of R such that 0 ∈ int
⋂

k∈K
�k and that

(∀k ∈ K) φk = ψk + σ�k
, (5.9)

where ψk ∈ �0(R) is differentiable at 0 and ψk � ψk(0) = 0. Then (5.8) is the
thresholding algorithm proposed and analysed in [14], namely

xn+1 = xn + λn

(∑
k∈K

(
proxγnψk

(
softγn�k

〈xn − γn(∇�(xn) + bn) | ek〉
)

+ αn,k

)
ek − xn

)
,

(5.10)

where softγn�k
is defined in (2.8).
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(iii) Suppose that the assumptions of both (i) and (ii) hold and that, in addition, we set
λn ≡ 1, ‖T ‖ < 1, γn ≡ 1, αn,k ≡ 0, bn ≡ 0, and (∀k ∈ K) ψk = 0 and �k = [−ωk, ωk].
Then (5.10) becomes

xn+1 =
∑
k∈K

(
soft[−ωk,ωk ]〈xn + T ∗(z − T xn) | ek〉

)
ek. (5.11)

Algorithm 5.1 can be regarded as a descendant of this original method, which is
investigated in [17, 18].

6. Numerical results

The proposed framework is applicable to a wide array of variational formulations for inverse
problems over frames. We provide a couple of examples to illustrate its applicability in
wavelet-based image restoration in the Euclidean space H = R

512×512. The choice of the
potential functions (φk)k∈K in problem 3.1 is guided by the observation that regular images
typically possess sparse wavelet representations and that the resulting wavelet coefficients
often have even probability density functions [26]. Among the candidate potential functions
investigated in section 4, those of example 4.6 appear to be the most appropriate for modelling
wavelet coefficients on two counts. First, they provide flexible models of even potentials.
Second, as shown in lemma 2.6(iii), their proximity operators are thresholders and they
therefore promote sparsity. More precisely, we employ potential functions of the form
φk = ωk|·|+τk|·|2 +κk|·|pk , where pk ∈ {4/3, 3/2, 3, 4} and {ωk, τk, κk} ⊂ ]0, +∞[. Note that
proxφk

can be obtained explicitly via (4.10) and examples 4.4(i)–(iv). In addition, it follows
from proposition 3.3(iii)(b) that, with such potential functions, problem 3.1 does admit a
solution. The values of the parameters ωk, τk, κk and pk are chosen for each wavelet subband
via a maximum likelihood approach. The first example uses a biorthogonal wavelet basis
and the second one uses an M-band dual-tree wavelet frame. Let us emphasize that such
decompositions cannot be dealt with using the methods developed in [14], which are limited
to orthonormal basis representations. Algorithm 5.1 is implemented with λn ≡ 1 and large
step sizes (i.e., γn close to 2/β) since such values have been observed to provide a good speed
of convergence in our experiments.

6.1. Example 1

We provide a multiview restoration example in a biorthogonal wavelet basis. The original
image x is the standard test image displayed in figure 2 (top left). Two observations (see
figure 2, top right and bottom left) conforming to the model (3.12) are available. In our
experiment, G1 = G2 = H and v1 and v2 are realizations of two independent zero-mean
Gaussian white noise processes. Moreover, the operator T1 models a motion blur in the
diagonal direction and satisfies ‖T1‖ = 1, whereas T2 = Id/2. The blurred image-to-noise
ratio is higher for the first observation (22.79 dB versus 15.18 dB) and so is the relative
error (18.53 dB versus 5.891 dB) (the decibel value of the relative error between an image z

and x is 20 log10(‖x‖/‖z − x‖)). The function � in problem 3.1 is given by (3.13), where
α1 = 4.00×10−2 and α2 = 6.94×10−3 are the inverses of the variances of the noise corrupting
each observation. In addition, we set m = 1, ϑ1 = 10−2 and S1 = [0, 255]512×512 to enforce
the known range of the pixel values. A discrete biorthogonal spline 9–7 decomposition
[2] is used over three resolution levels. Algorithm 5.1 is used to solve problem 3.1. By
numerically evaluating ‖R‖ in (5.3), we obtain β = 0.230 and the step sizes are chosen to be
γn ≡ 1.99/β = 8.66. The resulting restored image, shown in figure 2 (bottom right), yields a
relative error of 23.84 dB.



1514 C Chaux et al

Figure 2. Example 1—original image (top left), first observation (top right), second observation
(bottom left) and image restored with 200 iterations of algorithm 5.1 (bottom right).

6.2. Example 2

The original SPOT5 satellite image x is shown in figure 3 (top) and the degraded image z in
G = H is shown in figure 3 (centre). The degradation model is given by (3.16), where T is a
7 × 7 uniform blur with ‖T ‖ = 1, and where v is a realization of a zero-mean Gaussian white
noise process. The blurred image-to-noise ratio is 28.08 dB and the relative error is 12.49 dB.

In this example, we perform a restoration in a discrete two-dimensional version of an
M-band dual-tree wavelet frame [7]. This decomposition has a redundancy factor of 2 (i.e.,
with the notation of section 3.3.2, K/N = 2). In our experiments, decompositions over
two resolution levels are performed with M = 4 using the filter bank proposed in [1]. The
function � in problem 3.1 is given by (3.22), where fV is the probability density function of
the Gaussian noise. A solution is obtained via algorithm 5.1. For the representation under
consideration, we derive from (5.3) that β = 2 and we set γn ≡ 0.995. The restored image,
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Figure 3. Example 2—original image (top); degraded image (centre); image restored in a dual-tree
wavelet frame with 100 iterations of algorithm 5.1 (bottom).
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Figure 4. Example 2—zoom on a 100×100 portion of the SPOT5 satellite image. Original image
(top), degraded image (centre), image restored in a dual-tree wavelet frame with 100 iterations of
algorithm 5.1 (bottom).
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shown in figure 3 (bottom), yields a relative error of 15.68 dB, i.e., a significant improvement
of over 3 dB in terms of signal-to-noise ratio. A more precise inspection of the magnified
areas displayed in figure 4 shows that the proposed method makes it possible to recover sharp
edges while removing noise in uniform areas. This behaviour in terms of edge recovery may
be attributed to the choice of the M-band dual-tree wavelet decomposition, which is known to
provide a good representation of directional features such as edges [7].
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