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ã[m]

−T T 2T−2T a[m]

Quantized q[m]

bin T
q[m] ∈ Z



Compression by Transform-coding

Image f Zoom on f fR, R =0.2 bit/pixel

f
forward

Dequantization: ã[m] = sign(q[m])
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“Theorem:” ||f − fM ||2 = O(M−α) =⇒ ||f − fR||2 = O(logα(R)R−α)



Enter Wavelets…

• Standard 2-D tensor 
product wavelet transform

+ embedded coder.

→ chunks of large coefficients.

JPEG-2000 vs. JPEG

Image f JPEG, R = .19bit/pxl JPEG2k, R = .15bit/pxl

JPEG Compression

256x256 pixels,  12,500 total bits,  0.19 bits/pixel

JPEG Compression

256x256 pixels,  12,500 total bits,  0.19 bits/pixel

EZW Compression

256x256 pixels,  9,800 total bits,  0.15 bits/pixel

JPEG2k: exploit the statistical redundancy of coefficients.

→ neighboring coefficients are not independent.
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Denoising (Donoho/Johnstone)

thresh.
f =

N−1�

m=0

�f, ψm�ψm f̃ =
�

|�f, ψm�|>T

�f, ψm�ψm

In practice:
T ≈ 3σfor T =

�
2 log(N)σ||f̃ − f0||2 = O(σ

2α
α+1 )

Theorem: if ||f0 − f0,M ||2 = O(M−α),
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For Fourier, linear≈non-linear, sub-optimal.

For wavelets, linear�non-linear, optimal.

||f − fM ||2 =
�

O(M−1) (Fourier),
O(M−2α) (wavelets).

Piecewise Regular Functions in 1D

Theorem: If f is Cα outside a finite set of discontinuities:



Wavelets: same result for BV functions (optimal).
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Wavelets: same result for BV functions (optimal).

Regular Cα edges: sub-optimal (requires anisotropy).

Piecewise Regular Functions in 2D

Theorem: If f is Cα outside a set of finite length edge curves,
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O(M−1/2) (Fourier),
O(M−1) (wavelets).
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Geometric image model: f is Cα outside a set of Cα edge curves.

BV image: level sets have finite lengths.

Geometric image: level sets are regular.

Geometry = cartoon image Sharp edges Smoothed edges

Geometrically Regular Images

�
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Curvelets for Cartoon Images
Curvelets: [Candes, Donoho] [Candes, Demanet, Ying, Donoho]



Curvelets for Cartoon Images
Curvelets: [Candes, Donoho] [Candes, Demanet, Ying, Donoho]

Redundant tight frame (redundancy ≈ 5): not efficient for compression.
Denoising by curvelet thresholding: recovers edges and geometric textures.
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Approximation with Triangulation

Regular areas:
∼M/2 equilateral triangles.

M−1/2

M−1/2 ∼M/2 anisotropic triangles.
Singular areas:

Theorem:
There exists (V,F) such that

||f − fM || � CfM−2

Vertices V = {vi}M
i=1.

Faces F ⊂ {1, . . . ,M}3.

Piecewise linear approximation: fM =
M�

m=1

λmϕm

ϕm(vi) = δm
i is affine on each face of F .

λ = argmin
µ

||f −
�

m

µmϕm||

Triangulation (V,F):

Provably good greedy schemes:
[Mirebeau, Cohen, 2009]

Optimal (V,F): NP-hard.



Greedy Triangulation Optimization

Anisotropic triangulation JPEG2000

M
=

20
0

M
=

60
0

Bougleux, Peyré, Cohen, ICCV’09
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Approximation of a Cα cartoon image:
M = Mband + Mλ

→ fast best-basis search algorithm.
Structured set of bases (quadtrees):

� = 1 � = 2 � = 3 � = 4

Association fields

[Mallat, Peyré, 2007]
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Approximation of a Cα cartoon image:
M = Mband + Mλ

→ fast best-basis search algorithm.
Structured set of bases (quadtrees):

� = 1 � = 2 � = 3 � = 4

Association fields

No optimality results for approximation.
Better processing of textures.

[Mallat, Peyré, 2007]

Bandlets vs. Grouplets

Atoms follow the flow λ.

Un-structured set of bases (flows):
→ sub-optimal optical flow algorithms.

||f − fM ||2 = O(M−α)

Bandlets: [Le Pennec, Mallat, 2005] Grouplets: [Mallat, 2009] [Peyré, 2010]
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Original Bandlets

CNES case study (X. Delaunay PhD thesis):

Denoising: λ is estimated from the noisy image y = f + w.

−→ Local grouping of wavelet coefficients.

Bandlet Compression and Denoising

36.03dB 38.27dB

f Wavelets (BLS-GSM) Bandletsy = f + w

On board low complexity bandlet-like coder.

Wavelets



Overview

•Sparsity for Approximation

•Sparsity for Processing

•Geometric Images

•Adaptive Geometric Processing

•Adaptive Inverse Problems Regularization

•Geometric Texture Synthesis



Inverse Problems



Inverse Problems



Inverse Problems

Super-resolution: Φf = (f � h) ↓k, P = N/k.



Compressed sensing: Φ = random (P,N) matrix.

Inverse Problems
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Sparsity: most �f, ψm� are small.
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Image with 2 pixels:

q = 0

Convex Relaxation: L1 Prior

J0(f) = # {m \ �f, ψm� �= 0}
J0(f) = 0 −→ null image.
J0(f) = 1 −→ sparse image.
J0(f) = 2 −→ non-sparse image.
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Image with 2 pixels:

Jq(f) =
�

m

|�f, ψm�|q
q = 0 q = 1 q = 2q = 3/2q = 1/2

Convex Relaxation: L1 Prior

J1(f) =
�

m

|�f, ψm�|Sparse �1 prior:

J0(f) = # {m \ �f, ψm� �= 0}

�q priors: (convex for q � 1)

J0(f) = 0 −→ null image.
J0(f) = 1 −→ sparse image.
J0(f) = 2 −→ non-sparse image.



Φf = y

f�

Noiseless Sparse Regularization

Convex linear program.

Interior points, cf. [Chen, Donoho, Saunders] “basis pursuit”.

Douglas-Rachford splitting, see [Combettes, Pesquet].

Noiseless measurements y = Φf0:

Φf = y

f�

f� = argmin
Φf=y

�

m

|�f, ψm�|2 = ||f ||2



Noisy Sparse Regularization

f� = argmin
||Φf−y||�ε

�

m

|�f, ψm�|.

Iterative thresholding, see [Daubechies et al], [Pesquet et al], etc.

Nesterov multi-steps schemes.

Convex program, can be solved with Lagrangian relaxation.

f� = argmin
f∈RN

1
2

||Φf − y||2 + λ
�

m

|�f, ψm�|.

Sparsity

Noisy measurements: y = Φf0 + w:

f�
||Φf − y|| � ε



Inpainting Results



Dictionary of ortho-bases Bλ = {ψλ
m}m.
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Dictionary of ortho-bases Bλ = {ψλ
m}m.

Initialization: f (0) = 0.

Gradient step: f̃ (k) = f (k) − τΦ∗(Φf (k) − y)

Best basis:

−→ Lagrangian minimization, fast best-basis search.

Thresholding: f (k+1) =
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|x| )x

E(λ(k+1), f (k+1)) � E(λ(k), f (k))

Measurements y = Φf0 + w, regularization:

−→ estimate both the image f and its geometry λ.

−→ non-convex problem, use a descent method on (λ, f).

Best-Basis Inverse Problems

min
f,λ∈Λ

E(λ, f) =
1
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||y − Φf ||2 + γ
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Ψ(x) =
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x2 if |x| � γ,
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One has:



Original image Wavelets (TI) Bandlets

Bandlets Compressed Sensing

Compressed sensing acquisition: Φf = {�f, ϕk�}P−1
k=0 P = N/6



Missing pixels:

Grouplet inpainting: iteratively estimate the geometry λ in Ω.

Grouplets Texture Inpainting

8

Fig. 8. Iteration of the inpainting process that modifies the image to obtain a sparse representation in an adapted wavelet-grouplet basis.

Observation y Result f�

Fig. 9. Examples of inpainting with grouplets.

1) Initialization: set f (0) = y, t0 = tmax = ||f || and i = 0.
2) Geometry detection: compute the flow Γ(i) adapted to

f (i) by computing the eigenvector direction flow as
detailed in section II-A.

3) Sparsity enforcing: update the estimate by thresholding
in Γ(i)

f̃ (i+1) = Sti(f
(i),Bw(Γ(i)))

where the thresholding operator is defined in (9).
4) Enforce the value of known pixels.

f (i+1)(x) =
�

f̃ (i+1)(x) if x ∈ Ω,
f(x) if x /∈ Ω.

5) Stop: if i < imax, set ti+1 = ti − tmax/imax, i ← i + 1
and go back to 2.

Table 3: Iterative inpainting algorithm.

V. TEXTURE SYNTHESIS WITH GROUPLETS

The problem of texture synthesis consists in creating a new
texture f visually similar to a given input exemplar f0. This
requires a careful statistical modeling of the set of typical
textures together with an algorithm to sample at random a
new image from these statistical constraints.

A. Grouplet Texture Model
Our texture model for locally parallel textures is based

on non parameteric statistics of the wavelet-grouplet decom-
position. Similarly to the work of Heeger and Bergen [?],

we retain only marginal statistics of the decomposition. In
contrast to classical work on texture modeling over multiscale
decompositions [?], [?], [?], our texture model also needs
to constrain the geometry of the texture. This is performed
by computing separate marginal statistics for the grouplets
coefficients and for the geometry of the texture.

The resulting texture model uncouples the underlying ge-
ometry from the texture patterns. This decoupling is valid for
locally parallel textures that have a turbulent behavior.

Texture f (�f, ψj
k�)k (�f, bj,�

m �)m

Wavelets histogram Grouplets histogram

0
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f
,
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,
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Wavelets conditionals Grouplets conditionals
Fig. 10. Statistical analysis of wavelets coefficients (�f, ψj

k�)k and wavelet-
grouplets coefficients (�f, bj,�

m �)m for j = 1 and � = 1.

Sparsity and independence. Our statistical model is based
on marginal distributions of set of transformed coefficients. In
order for such a model to be efficient, these coefficients should
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1) Initialization: set f (0) = y, t0 = tmax = ||f || and i = 0.
2) Geometry detection: compute the flow Γ(i) adapted to

f (i) by computing the eigenvector direction flow as
detailed in section II-A.

3) Sparsity enforcing: update the estimate by thresholding
in Γ(i)

f̃ (i+1) = Sti(f
(i),Bw(Γ(i)))

where the thresholding operator is defined in (9).
4) Enforce the value of known pixels.

f (i+1)(x) =
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f̃ (i+1)(x) if x ∈ Ω,
f(x) if x /∈ Ω.

5) Stop: if i < imax, set ti+1 = ti − tmax/imax, i ← i + 1
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A. Grouplet Texture Model
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Sparsity and independence. Our statistical model is based
on marginal distributions of set of transformed coefficients. In
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correspond to realizations of approximately independent ran-
dom variables with the same distribution. It is well known that
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0 if x ∈ Ω,
f(x) if x /∈ Ω.
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