Adaptive Geometric

Representations

Gabriel Peyré

www.numerical-tours.com

Natural Image Priors

"Typical" image drawn at random: (denoising noise)

Small $||f||_{\text{Sob}} = \int ||\nabla f||^2$ Fourier decomposition

Small $||f||_{TV} = \int ||\nabla f|$ Wavelet decomposition

Natural Image Priors

"Typical" image drawn at random: (denoising noise)

Small $||f||_{\text{Sob}} = \int ||\nabla f||^2$ Fourier decomposition

Small $||f||_{TV} = \int ||\nabla f|$ Wavelet decomposition

Natural images: structure + texture + noise + \dots

- Sparsity for Approximation
- Sparsity for Processing
- •Geometric Images
- Adaptive Geometric Processing
- Adaptive Inverse Problems Regularization
- Geometric Texture Synthesis

Sparse Approximation in a Basis

Orthogonal basis $\mathcal{B} = (\psi_m)_m$

 $f = \sum \langle f, \psi_m \rangle \psi_m$ m

 $f_M = \sum \langle f, \psi_m \rangle \psi_m$ $m \in I_T$

Sparse Approximation in a Basis

Orthogonal basis $\mathcal{B} = (\psi_m)_m$

 $f = \sum_{m} \langle f, \psi_m \rangle \psi_m$

Linear approximation:

 I_T does not depend on f.

e.g.: $I_T = \{0, 1, \dots, M - 1\}$

(low frequencies)

Image f

Linear approximation

Sparse Approximation in a Basis

Orthogonal basis $\mathcal{B} = (\psi_m)_m$

 $f = \sum_{m} \langle f, \psi_m \rangle \psi_m$

Linear approximation:

 I_T does not depend on f. e.g.: $I_T = \{0, 1, \dots, M - 1\}$ (low frequencies)

Image f

Coefficients I_T

Linear approximation

Non-linear approximation:

minimize $||f - f_M||$ for a given M. $I_T = \{m \setminus |\langle f, \psi_m \rangle| > T\}$ and $M = \#I_T$.

Uniformly smooth C^{α} image. Fourier, Wavelets: $||f - f_M||^2 = O(M^{-\alpha}).$

Uniformly smooth C^{α} image. Fourier, Wavelets: $||f - f_M||^2 = O(M^{-\alpha}).$

Discontinuous image with bounded variation. Wavelets: $||f - f_M||^2 = O(M^{-1}).$

Uniformly smooth C^{α} image. Fourier, Wavelets: $||f - f_M||^2 = O(M^{-\alpha}).$

Discontinuous image with bounded variation. Wavelets: $||f - f_M||^2 = O(M^{-1}).$

 C^2 -geometrically regular image. Curvelets: $||f - f_M||^2 = O(\log^3(M)M^{-2}).$

Uniformly smooth C^{α} image. Fourier, Wavelets: $||f - f_M||^2 = O(M^{-\alpha}).$

Discontinuous image with bounded variation. Wavelets: $||f - f_M||^2 = O(M^{-1}).$

 C^2 -geometrically regular image. Curvelets: $||f - f_M||^2 = O(\log^3(M)M^{-2}).$

 C^{α} -geometrically regular image. Bandlets: $||f - f_M||^2 = O(M^{-\alpha})$. \longrightarrow Adaptivity to the edge orientation.

Uniformly smooth C^{α} image. Fourier, Wavelets: $||f - f_M||^2 = O(M^{-\alpha}).$

Discontinuous image with bounded variation. Wavelets: $||f - f_M||^2 = O(M^{-1}).$

 C^2 -geometrically regular image. Curvelets: $||f - f_M||^2 = O(\log^3(M)M^{-2}).$

 C^{α} -geometrically regular image. Bandlets: $||f - f_M||^2 = O(M^{-\alpha})$. \longrightarrow Adaptivity to the edge orientation.

More complex images: needs adaptivity.

- Sparsity for Approximation
- Sparsity for Processing
- •Geometric Images
- Adaptive Geometric Processing
- Adaptive Inverse Problems Regularization
- Geometric Texture Synthesis

 $\xrightarrow{\text{forward}} a[m] = \langle f, \psi_m \rangle \in \mathbb{R}$

Zoom on f

Image j

Zoom on f

Quantized q[m]

Image j

Zoom on f

Quantized q[m]

$$f \xrightarrow{\text{forward}} a[m] = \langle f, \psi_m \rangle \in \mathbb{R} \xrightarrow{\text{quantization}} q[m] \in \mathbb{Z} \xrightarrow{\text{coding}} \{0,1,0,0,1,\ldots\}$$
$$\tilde{a}[m] \xrightarrow{\text{dequantization}} q[m] \in \mathbb{Z} \xrightarrow{\text{coding}} \{0,1,0,0,1,\ldots\}$$
$$\tilde{a}[m] \xrightarrow{\text{dequantization}} q[m] \in \mathbb{Z} \xrightarrow{\text{decoding}} \{0,1,0,0,1,\ldots\}$$
R bits
R bits
Cuantization: $q[m] = \text{sign}(a[m]) \left\lfloor \frac{|a[m]|}{T} \right\rfloor \in \mathbb{Z} \xrightarrow{\text{coding}} \{0,1,0,0,1,\ldots\}$
$$\tilde{a}[m] = \text{sign}(a[m]) \left\lfloor \frac{|a[m]|}{T} \right\rfloor \in \mathbb{Z} \xrightarrow{\text{coding}} \{0,1,0,0,1,\ldots\}$$
R bits

$$f \xrightarrow{\text{forward}} a[m] = \langle f, \psi_m \rangle \in \mathbb{R} \xrightarrow{\text{quantization}} q[m] \in \mathbb{Z} \xrightarrow{\text{coding}} \{\underbrace{0,1,0,0,1,\ldots}_{R \text{ bits}}\}$$

$$f_R = \sum_{m \in I_T} \tilde{a}[m] \psi_m \xleftarrow{\text{backward}}_{\text{transform}} \tilde{a}[m] \xleftarrow{\text{dequantization}} q[m] \in \mathbb{Z} \xrightarrow{\text{coding}} \{\underbrace{0,1,0,0,1,\ldots}_{R \text{ bits}}\}$$

$$q[m] = \operatorname{sign}(a[m]) \left\lfloor \frac{|a[m]|}{T} \right\rfloor \in \mathbb{Z} \xrightarrow{-2T - T} \xrightarrow{T} 2T \xrightarrow{a[m]} a[m]$$

$$q[m] = \operatorname{sign}(a[m]) \left\lfloor \frac{|a[m]|}{T} \right\rfloor \in \mathbb{Z} \xrightarrow{a[m]} a[m]$$

$$f_R = \sum_{m \in I_T} \tilde{a}[m] = \operatorname{sign}(a[m]) \left\lfloor \frac{|a[m]|}{T} \right\rfloor \in \mathbb{Z}$$

$$f \xrightarrow{\text{forward}} a[m] = \langle f, \psi_m \rangle \in \mathbb{R} \xrightarrow{\text{quantization}} q[m] \in \mathbb{Z} \xrightarrow{\text{coding}} \{\underbrace{0,1,0,0,1,\ldots}_{R \text{ bits}}\}$$

$$f_R = \sum_{m \in I_T} \tilde{a}[m] \psi_m \xleftarrow{\text{backward}}_{\text{transform}} \tilde{a}[m] \xleftarrow{\text{dequantization}} q[m] \in \mathbb{Z} \xrightarrow{\text{coding}} \{\underbrace{0,1,0,0,1,\ldots}_{R \text{ bits}}\}$$

$$q_{m} = \sup_{m \in I_T} \tilde{a}[m] \psi_m \xleftarrow{\text{backward}}_{\text{transform}} \tilde{a}[m] \xleftarrow{\text{dequantization}} q[m] \in \mathbb{Z} \xrightarrow{\text{coding}} \{\underbrace{0,1,0,0,1,\ldots}_{R \text{ bits}}\}$$

$$q_{m} = \sup_{m \in I_T} \tilde{a}[m] = \operatorname{sign}(a[m]) \left\lfloor \frac{|a[m]|}{T} \right\rfloor \in \mathbb{Z} \xrightarrow{\text{coding}} \left\{ \underbrace{0,1,0,0,1,\ldots}_{R \text{ bits}} \right\}$$

$$q_{m} = \operatorname{sign}(a[m]) \left\lfloor \frac{|a[m]|}{T} \right\rfloor \in \mathbb{Z} \xrightarrow{\text{coding}} \left\{ \underbrace{0,1,0,0,1,\ldots}_{R \text{ bits}} \right\}$$

$$q_{m} = \operatorname{sign}(a[m]) \left\lfloor \frac{|a[m]|}{T} \right\rfloor \in \mathbb{Z} \xrightarrow{\text{coding}} \left\{ \underbrace{0,1,0,0,1,\ldots}_{R \text{ bits}} \right\}$$

"Theorem:"
$$||f - f_M||^2 = O(M^{-\alpha}) \implies ||f - f_R||^2 = O(\log^{\alpha}(R)R^{-\alpha})$$

Image .

Zoom on f

Quantized q[m]

 $f_R, R = 0.2$ bit/pixel

JPEG-2000 vs. JPEG

JPEC2k: exploit the statistical redundancy of coefficients.

- + embedded coder.
- \rightarrow chunks of large coefficients.
- \rightarrow neighboring coefficients are *not* independent.

Image f

JPEG2k, R = .15bit/pxl

Denoising (Donoho/Johnstone)

Noisy image $f = f_0 + w, w \sim \mathcal{N}(0, \sigma)$ white noise.

Denoised: \tilde{f} depends only on f.

Clean f_0

Noisy $f_0 = f + w$

Denoising (Donoho/Johnstone)

Noisy image $f = f_0 + w, w \sim \mathcal{N}(0, \sigma)$ white noise.

Denoised: \tilde{f} depends only on f.

Denoising by approximation: f

$$f = \sum_{m=0}^{N-1} \langle f, \psi_m \rangle \psi_m \xrightarrow{\text{thresh.}} \tilde{f} = \sum_{|\langle f, \psi_m \rangle| > T} \langle f, \psi_m \rangle \psi_m$$

Clean f_0

Noisy $f_0 = f + w$

Denoised f

Denoising (Donoho/Johnstone)

Noisy image $f = f_0 + w, w \sim \mathcal{N}(0, \sigma)$ white noise.

Theorem: if $||f_0 - f_{0,M}||^2 = O(M^{-\alpha})$,

 $\|\tilde{f} - f_0\|^2 = O(\sigma^{\frac{2\alpha}{\alpha+1}}) \qquad \text{for} \quad T = \sqrt{2\log(N)}\sigma$

Denoised: \tilde{f} depends only on f. Denoising by approximation: $f = \sum_{m=0}^{N-1} \langle f, \psi_m \rangle \psi_m \xrightarrow{\text{thresh.}} \tilde{f} = \sum_{|\langle f, \psi_m \rangle| > T} \langle f, \psi_m \rangle \psi_m$

> In practice: $T \approx 3\sigma$

Clean f_0

Noisy $f_0 = f + w$

Denoised f

Recovering f_0 from P noisy measurements $y = \Phi f_0 + w \in \mathbb{R}^P$.

 $\Phi: \mathbb{R}^N \mapsto \mathbb{R}^P$ with $P \ll N$ (missing information)

 $w[n] \sim \mathcal{N}(0, \sigma)$ white noise.

Recovering f_0 from P noisy measurements $y = \Phi f_0 + w \in \mathbb{R}^P$. $\Phi : \mathbb{R}^N \mapsto \mathbb{R}^P$ with $P \ll N$ (missing information)

 $w[n] \sim \mathcal{N}(0, \sigma)$ white noise.

Denoising: $\Phi = \mathrm{Id}_N, P = N.$

Recovering f_0 from P noisy measurements $y = \Phi f_0 + w \in \mathbb{R}^P$. $\Phi : \mathbb{R}^N \mapsto \mathbb{R}^P$ with $P \ll N$ (missing information) $w[n] \sim \mathcal{N}(0, \sigma)$ white noise.

Denoising: $\Phi = \mathrm{Id}_N, P = N.$

Inpainting: set $\Omega \subset \{0, \ldots, N-1\}$ of missing pixels, $P = N - |\Omega|$.

$$(\Phi f)(x) = \begin{cases} 0 & \text{if } x \in \Omega, \\ f(x) & \text{if } x \notin \Omega. \end{cases}$$

Recovering f_0 from P noisy measurements $y = \Phi f_0 + w \in \mathbb{R}^P$. $\Phi : \mathbb{R}^N \mapsto \mathbb{R}^P$ with $P \ll N$ (missing information) $w[n] \sim \mathcal{N}(0, \sigma)$ white noise.

Denoising: $\Phi = \mathrm{Id}_N, P = N.$

Inpainting: set $\Omega \subset \{0, \ldots, N-1\}$ of missing pixels, $P = N - |\Omega|$.

Φ

$$(\Phi f)(x) = \begin{cases} 0 & \text{if } x \in \Omega, \\ f(x) & \text{if } x \notin \Omega. \end{cases}$$

Super-resolution: $\Phi f = (f * \varphi) \downarrow_k, P = N/k.$

Restoration with Sparsity

Measurements: $y = \Phi f_0 + w$

Compute \tilde{f} such that:

- Fit measures: $\Phi \tilde{f} \approx y$
- Sparsity: only few $\{\langle \tilde{f}, \psi_m \rangle\}_m$ are large.

Image f

Inpainted \tilde{f}

Restoration with Sparsity

Measurements: $y = \Phi f_0 + w$

Compute \tilde{f} such that:

- Fit measures: $\Phi \tilde{f} \approx y$
- Sparsity: only few $\{\langle \tilde{f}, \psi_m \rangle\}_m$ are large.
- Performance measure:
- super-resolution error $||f_0 \tilde{f}||$.
- visual quality.

Image f

Inpainted \tilde{f}

Restoration with Sparsity

Measurements: $y = \Phi f_0 + w$

Compute \tilde{f} such that:

Performance measure:

Efficient restoration:

Image f

- Fit measures: $\Phi \tilde{f} \approx y$
- Sparsity: only few $\{\langle \tilde{f}, \psi_m \rangle\}_m$ are large.
- super-resolution error $||f_0 \tilde{f}||$.
- visual quality.
- Fast decay of $||f_0 f_M||$ with M.
- $\|\Phi\psi_m\|$ not too small if $\langle f_0, \psi_m \rangle$ is large.

- Sparsity for Approximation
- Sparsity for Processing
- Geometric Images
- Adaptive Geometric Processing
- Adaptive Inverse Problems Regularization
- Geometric Texture Synthesis

Piecewise Regular Functions in 1D

Theorem: If f is C^{α} outside a finite set of discontinuities: $\|f - f_M\|^2 = \begin{cases} O(M^{-1}) & (Fourier), \\ O(M^{-2\alpha}) & (wavelets). \end{cases}$

For Fourier, linear \approx non-linear, sub-optimal.

For wavelets, linear \ll non-linear, optimal.

Piecewise Regular Functions in 2D

Theorem: If f is C^{α} outside a set of finite length edge curves, $\|f - f_M\|^2 = \begin{cases} O(M^{-1/2}) & (\text{Fourier}), \\ O(M^{-1}) & (\text{wavelets}). \end{cases}$

Fourier \ll Wavelets.

Wavelets: same result for BV functions (optimal).

Piecewise Regular Functions in 2D

Theorem: If f is C^{α} outside a set of finite length edge curves, $\|f - f_M\|^2 = \begin{cases} O(M^{-1/2}) & (\text{Fourier}), \\ O(M^{-1}) & (\text{wavelets}). \end{cases}$

Fourier \ll Wavelets.

Wavelets: same result for BV functions (optimal).

Regular C^{α} edges: sub-optimal (requires anisotropy).

Geometrically Regular Images

Geometric image model: f is C^{α} outside a set of C^{α} edge curves.

BV image: level sets have finite lengths.

Geometric image: level sets are regular.

Geometry = cartoon image

Smoothed edges
Curvelets for Cartoon Images

Curvelets: [Candes, Donoho] [Candes, Demanet, Ying, Donoho]

If
$$f$$
 is C^{α} outside C^{α} edges, for $\alpha \ge 2$
 $\|f - f_M\|^2 = O(\log^3(M)M^{-2}).$

www.curvelet.org

Curvelets for Cartoon Images

Curvelets: [Candes, Donoho] [Candes, Demanet, Ying, Donoho]

If f is C^{α} outside C^{α} edges, for $\alpha \geq 2$ $\|f - f_M\|^2 = O(\log^3(M)M^{-2}).$ www.curvelet.org

Redundant tight frame (redundancy ≈ 5): not efficient for compression. Denoising by curvelet thresholding: recovers edges and geometric textures.

Noisy

Wavelets

Curvelets

Triangulation $(\mathcal{V}, \mathcal{F})$:

Vertices $\mathcal{V} = \{v_i\}_{i=1}^M$. Faces $\mathcal{F} \subset \{1, \dots, M\}^3$.

Triangulation $(\mathcal{V}, \mathcal{F})$: Vertices $\mathcal{V} = \{v_i\}_{i=1}^M$. Faces $\mathcal{F} \subset \{1, \dots, M\}^3$. Piecewise linear approximation: $f_M = \sum_{m=1}^M \lambda_m \varphi_m$ $\lambda = \underset{\mu}{\operatorname{argmin}} \|f - \sum_m \mu_m \varphi_m\|$ $\varphi_m(v_i) = \delta_i^m$ is affine on each face of \mathcal{F} .

Vertices $\mathcal{V} = \{v_i\}_{i=1}^M$. Triangulation $(\mathcal{V}, \mathcal{F})$: Faces $\mathcal{F} \subset \{1, \ldots, M\}^3$. Piecewise linear approximation: $f_M = \sum \lambda_m \varphi_m$ m=1 $\lambda = \operatorname{argmin} \| f - \sum \mu_m \varphi_m \|$ $\varphi_m(v_i) = \delta_i^m$ is affine on each face of \mathcal{F} . Theorem: Regular areas: There exists $(\mathcal{V}, \mathcal{F})$ such that $\sim M/2$ equilateral triangles. $\|f - f_M\| \leqslant C_f M^{-2}$ $M^{-1/2}$

Singular areas: \checkmark ~ M/2 anisotropic triangles.

Vertices $\mathcal{V} = \{v_i\}_{i=1}^M$. Triangulation $(\mathcal{V}, \mathcal{F})$: Faces $\mathcal{F} \subset \{1, \ldots, M\}^3$. Piecewise linear approximation: $f_M = \sum \lambda_m \varphi_m$ m=1 $\lambda = \operatorname{argmin} \| f - \sum \mu_m \varphi_m \|$ $\varphi_m(v_i) = \delta_i^m$ is affine on each face of \mathcal{F} . Theorem: Regular areas: There exists $(\mathcal{V}, \mathcal{F})$ such that $\|f - f_M\| \leqslant C_f M^{-2}$ Optimal $(\mathcal{V}, \mathcal{F})$: NP-hard.

Provably good greedy schemes: [Mirebeau, Cohen, 2009]

 $\sim M/2$ equilateral triangles.

Singular areas: $\sim M/2$ anisotropic triangles.

Greedy Triangulation Optimization

Bougleux, Peyré, Cohen, ICCV'09

Anisotropic triangulation

JPEG2000

- Sparsity for Approximation
- Sparsity for Processing
- •Geometric Images
- Adaptive Geometric Processing
- Adaptive Inverse Problems Regularization
- Geometric Texture Synthesis

Geometric Multiscale Processing

Image $f \in \mathbb{R}^N$

Wavelet transform

Wavelet coefficients $f_j^{\omega}[n] = \langle f, \psi_{j,n}^{\omega} \rangle$

Geometric Multiscale Processing

Geometric Multiscale Processing

Bandlets:

[Le Pennec, Mallat, 2005] [Mallat, Peyré, 2007]

Bandlets:

[Le Pennec, Mallat, 2005] [Mallat, Peyré, 2007]

Bandlets:

[Le Pennec, Mallat, 2005] [Mallat, Peyré, 2007]

Bandlets:

[Le Pennec, Mallat, 2005] [Mallat, Peyré, 2007]

warping

Structured set of bases (quadtrees): \rightarrow fast best-basis search algorithm.

Bandlets:

[Le Pennec, Mallat, 2005] [Mallat, Peyré, 2007]

warping

Structured set of bases (quadtrees): \rightarrow fast best-basis search algorithm.

Approximation of a C^{α} cartoon image: $\|f - f_M\|^2 = O(M^{-\alpha})$ $M = M_{\text{band}} + M_{\lambda}$

Bandlets:

[Le Pennec, Mallat, 2005] [Mallat, Peyré, 2007]

warping

Structured set of bases (quadtrees): \rightarrow fast best-basis search algorithm.

Approximation of a C^{α} cartoon image: $\|f - f_M\|^2 = O(M^{-\alpha})$ $M = M_{\text{band}} + M_{\lambda}$ Grouplets: [Mallat, 2009] [Peyré, 2010]

Bandlets:

[Le Pennec, Mallat, 2005] [Mallat, Peyré, 2007]

warping

Structured set of bases (quadtrees): \rightarrow fast best-basis search algorithm.

Approximation of a C^{α} cartoon image: $\|f - f_M\|^2 = O(M^{-\alpha})$ $M = M_{\text{band}} + M_{\lambda}$ Grouplets: [Mallat, 2009] [Peyré, 2010]

Atoms follow the flow λ .

Bandlets:

[Le Pennec, Mallat, 2005] [Mallat, Peyré, 2007]

Structured set of bases (quadtrees): \rightarrow fast best-basis search algorithm.

Approximation of a C^{α} cartoon image: $\|f - f_M\|^2 = O(M^{-\alpha})$ $M = M_{\text{band}} + M_{\lambda}$ Grouplets: [Mallat, 2009] [Peyré, 2010]

Atoms follow the flow λ .

Un-structured set of bases (flows): \rightarrow sub-optimal optical flow algorithms.

Bandlets:

[Le Pennec, Mallat, 2005] [Mallat, Peyré, 2007]

Structured set of bases (quadtrees): \rightarrow fast best-basis search algorithm.

Approximation of a C^{α} cartoon image: $\|f - f_M\|^2 = O(M^{-\alpha})$ $M = M_{\text{band}} + M_{\lambda}$ Grouplets: [Mallat, 2009] [Peyré, 2010]

Atoms follow the flow λ .

Un-structured set of bases (flows): \rightarrow sub-optimal optical flow algorithms.

No optimality results for approximation. Better processing of textures.

Bandlet Compression and Denoising

Wavelets

Bandlets

Original

Bandlet Compression and Denoising

Original

CNES case study (X. Delaunay PhD thesis): On board low complexity bandlet-like coder. \rightarrow Local grouping of wavelet coefficients.

Wavelets

Bandlets

Bandlet Compression and Denoising

Original

Wavelets

Bandlets

CNES case study (X. Delaunay PhD thesis): On board low complexity bandlet-like coder. \rightarrow Local grouping of wavelet coefficients.

Denoising: λ is estimated from the noisy image y = f + w.

- Sparsity for Approximation
- Sparsity for Processing
- •Geometric Images
- Adaptive Geometric Processing
- Adaptive Inverse Problems Regularization
- Geometric Texture Synthesis

Recovering f_0 from P noisy measurements $y = \Phi f_0 + w \in \mathbb{R}^P$. $\Phi : \mathbb{R}^N \mapsto \mathbb{R}^P$ with $P \ll N$ (missing information)

Recovering f_0 from P noisy measurements $y = \Phi f_0 + w \in \mathbb{R}^P$. $\Phi : \mathbb{R}^N \mapsto \mathbb{R}^P$ with $P \ll N$ (missing information)

Inpainting: set $\Omega \subset \{0, \ldots, N-1\}$ of missing pixels, $P = N - |\Omega|$.

$$(\Phi f)(x) = \begin{cases} 0 & \text{if } x \in \Omega, \\ f(x) & \text{if } x \notin \Omega. \end{cases}$$

Recovering f_0 from P noisy measurements $y = \Phi f_0 + w \in \mathbb{R}^P$. $\Phi : \mathbb{R}^N \mapsto \mathbb{R}^P$ with $P \ll N$ (missing information)

Inpainting: set $\Omega \subset \{0, \ldots, N-1\}$ of missing pixels, $P = N - |\Omega|$.

$$(\Phi f)(x) = \begin{cases} 0 & \text{if } x \in \Omega, \\ f(x) & \text{if } x \notin \Omega. \end{cases}$$

Super-resolution: $\Phi f = (f \star h) \downarrow_k, P = N/k.$

Recovering f_0 from P noisy measurements $y = \Phi f_0 + w \in \mathbb{R}^P$. $\Phi : \mathbb{R}^N \mapsto \mathbb{R}^P$ with $P \ll N$ (missing information)

Inpainting: set $\Omega \subset \{0, \ldots, N-1\}$ of missing pixels, $P = N - |\Omega|$.

$$(\Phi f)(x) = \begin{cases} 0 & \text{if } x \in \Omega, \\ f(x) & \text{if } x \notin \Omega. \end{cases}$$

Super-resolution: $\Phi f = (f \star h) \downarrow_k, P = N/k.$

Noisy measurements $y = \Phi f_0 + w \in \mathbb{R}^P$, $w[n] \sim \mathcal{N}(0, \sigma)$.

Noisy measurements $y = \Phi f_0 + w \in \mathbb{R}^P$, $w[n] \sim \mathcal{N}(0, \sigma)$.

Prior model: $J(f) \in \mathbb{R}$ such that $J(f_0)$ is small for $f_0 \in \Theta$.

Regularized inverse:
$$f^* = \underset{f \in \mathbb{R}^N}{\operatorname{argmin}} \underbrace{ \frac{1}{2} \|y - \Phi f\|^2}_{\text{Data fitting}} + \underbrace{ \lambda J(f)}_{\text{Regularity}}$$

Noisy measurements $y = \Phi f_0 + w \in \mathbb{R}^P$, $w[n] \sim \mathcal{N}(0, \sigma)$.

Prior model: $J(f) \in \mathbb{R}$ such that $J(f_0)$ is small for $f_0 \in \Theta$.

 $\begin{array}{ll} Regularized \ inverse: & f^{\star} = \operatorname*{argmin}_{f \in \mathbb{R}^{N}} \underbrace{ \begin{matrix} 1 \\ 2 \\ \end{matrix} \\ y \\ Data \ fitting \end{matrix}}^{1} + \underbrace{ \lambda J(f) }_{\text{Regularity}} \end{array}$

Choice of λ : minimize $||f^* - f_0||$ (oracle)

Trade-off between denoising (λ increases with σ) and regularity of f_0 .

Noisy measurements $y = \Phi f_0 + w \in \mathbb{R}^P$, $w[n] \sim \mathcal{N}(0, \sigma)$.

Prior model: $J(f) \in \mathbb{R}$ such that $J(f_0)$ is small for $f_0 \in \Theta$.

 $\begin{array}{ll} Regularized \ inverse: & f^{\star} = \operatorname*{argmin}_{f \in \mathbb{R}^{N}} \underbrace{\left[\frac{1}{2} \|y - \Phi f\|^{2}}_{f \in \mathbb{R}^{N}} + \underbrace{\left[\lambda J(f) \right]}_{\lambda J(f)} \\ & \downarrow \\ \text{Data fitting} \end{array} \\ \begin{array}{l} \text{Regularity} \end{array}$

Choice of λ : minimize $||f^* - f_0||$ (oracle)

Trade-off between denoising (λ increases with σ) and regularity of f_0 .

No noise: $\sigma = 0, \lambda \to 0$, minimize

$$f^{\star} = \underset{f \in \mathbb{R}^{N}, \Phi f = y}{\operatorname{argmin}} J(f)$$

Smooth and Cartoon Priors

Prior model: energy $J(f) \in \mathbb{R}$ low for images of the model $f \in \Theta$. Sobolev pseudo-norm: $J(f) = \frac{1}{2} \|f\|_{\text{Sob}}^2 = \frac{1}{2} \int \|\nabla_x f\|^2 dx$ (norm: $\mu \|f\| + \|f\|_{\text{Sob}}$)

Smooth and Cartoon Priors

Prior model: energy $J(f) \in \mathbb{R}$ low for images of the model $f \in \Theta$. Sobolev pseudo-norm: $J(f) = \frac{1}{2} \|f\|_{\text{Sob}}^2 = \frac{1}{2} \int \|\nabla_x f\|^2 dx$ (norm: $\mu \|f\| + \|f\|_{\text{Sob}}$)

Total variation pseudo-norm: $J(f) = ||f||_{\mathrm{TV}} = \int ||\nabla_x f|| \mathrm{d}x$ \longrightarrow Extension to non-smooth functions $f \in \mathrm{BV}([0,1]^2)$ Co-area formula: $||f||_{\mathrm{TV}} = \int_{\mathbb{R}} \mathrm{length}(\mathcal{C}_t) \mathrm{d}t$ Level set $\mathcal{C}_t = \{x \setminus f(x) = t\}$

Orthogonal basis $\mathcal{B} = \{\psi_m\}_m$ of \mathbb{R}^N .

Example: Wavelet basis $\psi_m = \psi_{j,n}, m = (j, n).$

Sparsity: most $\langle f, \psi_m \rangle$ are small.

Ideal sparsity: for most m, $\langle f, \psi_m \rangle = 0$.

Ideal prior: $J_0(f) = \# \{ m \setminus \langle f, \psi_m \rangle \neq 0 \}$

Image f

Coefficients $\{\langle f, \psi_m \rangle\}_m$

Sparse Priors

Orthogonal basis $\mathcal{B} = \{\psi_m\}_m$ of \mathbb{R}^N . *Example:* Wavelet basis $\psi_m = \psi_{j,n}, m = (j, n)$. *Sparsity:* most $\langle f, \psi_m \rangle$ are small.

Ideal sparsity: for most m, $\langle f, \psi_m \rangle = 0$.

Ideal prior: $J_0(f) = \# \{ m \setminus \langle f, \psi_m \rangle \neq 0 \}$

Best M-sparse approximation:

 $f_M = \sum_{|\langle f, \psi_m \rangle| > T} \langle f, \psi_m \rangle \psi_m.$ $M = J_0(f_M) = \# \{ m \setminus |\langle f, \psi_m \rangle| > T \}$

Approximate sparsity: $||f - f_M||$ is small.

Image f

Coefficients $\{\langle f, \psi_m \rangle\}_m$
Convex Relaxation: L1 Prior

"Ideal" sparsity prior:

Image with 2 pixels:

$$J_0(f) = \# \{ m \setminus \langle f, \psi_m \rangle \neq 0 \}$$

$$J_0(f) = 0 \longrightarrow \text{null image.} \bullet$$

$$J_0(f) = 1 \longrightarrow \text{sparse image.} \bullet$$

$$J_0(f) = 2 \longrightarrow \text{non-sparse image.} \bullet$$

Convex Relaxation: L1 Prior

Convex Relaxation: L1 Prior

Noiseless Sparse Regularization

Orthogonal basis $\{\psi_m\}_m$ of \mathbb{R}^N . Sparse prior: $J(f) = \sum_m |\langle f, \psi_m \rangle|$ Noiseless measurements $y = \Phi f_0$: $f^* = \underset{\Phi f = y}{\operatorname{argmin}} \sum_m |\langle f, \psi_m \rangle|$ Convex linear program.

- \rightarrow Interior points, cf. [Chen, Donoho, Saunders] "basis pursuit".
- \rightarrow Douglas-Rachford splitting, see [Combettes, Pesquet].

Noisy Sparse Regularization

Noisy measurements: $y = \Phi f_0 + w$: $f^* = \underset{\|\Phi f - y\| \leq \varepsilon}{\operatorname{argmin}} \sum_m |\langle f, \psi_m \rangle|.$

Convex program, can be solved with Lagrangian relaxation.

$$f^{\star} = \underset{f \in \mathbb{R}^{N}}{\operatorname{argmin}} \quad \underbrace{ \begin{array}{c} \frac{1}{2} \|\Phi f - y\|^{2}}_{\text{Data fitting}} + \underbrace{\lambda \sum_{m} |\langle f, \psi_{m} \rangle|}_{\text{Sparsity}} \\ \end{array} }_{\text{Sparsity}}$$

 \rightarrow Iterative thresholding, see [Daubechies et al], [Pesquet et al], etc.

 \rightarrow Nesterov multi-steps schemes.

Inpainting Results

Sobolev, 20.8dB

Wavelets orth, 16.6dB

Dictionary of ortho-bases $\mathcal{B}^{\lambda} = \{\psi_m^{\lambda}\}_m$.

Measurements $y = \Phi f_0 + w$, regularization:

$$\min_{f,\lambda\in\Lambda} E(\lambda,f) = \frac{1}{2} \|y - \Phi f\|^2 + \gamma \sum_m |\langle f, \psi_m^\lambda \rangle|$$

 \longrightarrow estimate both the image f and its geometry λ .

Dictionary of ortho-bases $\mathcal{B}^{\lambda} = \{\psi_m^{\lambda}\}_m$.

Measurements $y = \Phi f_0 + w$, regularization:

$$\min_{f,\lambda\in\Lambda} E(\lambda,f) = \frac{1}{2} \|y - \Phi f\|^2 + \gamma \sum_m |\langle f, \psi_m^\lambda \rangle|$$

 \longrightarrow estimate both the image f and its geometry λ .

 \longrightarrow non-convex problem, use a descent method on (λ, f) .

Initialization: $f^{(0)} = 0$.

Gradient step:
$$\tilde{f}^{(k)} = f^{(k)} - \tau \Phi^* (\Phi f^{(k)} - y)$$

Dictionary of ortho-bases $\mathcal{B}^{\lambda} = \{\psi_m^{\lambda}\}_m$.

Measurements $y = \Phi f_0 + w$, regularization:

$$\min_{f,\lambda\in\Lambda} E(\lambda,f) = \frac{1}{2} \|y - \Phi f\|^2 + \gamma \sum_m |\langle f, \psi_m^\lambda \rangle|$$

 \longrightarrow estimate both the image f and its geometry λ .

 \longrightarrow non-convex problem, use a descent method on (λ, f) .

Initialization: $f^{(0)} = 0$.

Gradient step:
$$\tilde{f}^{(k)} = f^{(k)} - \tau \Phi^*(\Phi f^{(k)} - y)$$

Best basis: $\lambda^{(k+1)} = \underset{\lambda}{\operatorname{argmin}} \sum_m \Psi(\langle \tilde{f}^{(k)}, \psi_m^{\lambda} \rangle) \qquad \Psi(x) = \begin{cases} x^2 & \text{if } |x| \leq \gamma, \\ 2\gamma |x| - \gamma^2. \end{cases}$

 \longrightarrow Lagrangian minimization, fast best-basis search.

Dictionary of ortho-bases $\mathcal{B}^{\lambda} = \{\psi_m^{\lambda}\}_m$.

Measurements $y = \Phi f_0 + w$, regularization:

$$\min_{f,\lambda\in\Lambda} E(\lambda,f) = \frac{1}{2} \|y - \Phi f\|^2 + \gamma \sum_m |\langle f, \psi_m^\lambda \rangle|$$

 \longrightarrow estimate both the image f and its geometry λ .

 \longrightarrow non-convex problem, use a descent method on (λ, f) .

Initialization: $f^{(0)} = 0$.

 $\begin{array}{ll} Gradient \ step: & \tilde{f}^{(k)} = f^{(k)} - \tau \Phi^*(\Phi f^{(k)} - y) \\ Best \ basis: & \lambda^{(k+1)} = \operatorname*{argmin}_{\lambda} \ \sum_m \Psi(\langle \tilde{f}^{(k)}, \ \psi_m^{\lambda} \rangle) & \Psi(x) = \left\{ \begin{array}{ll} x^2 & \mathrm{if} \ |x| \leqslant \gamma, \\ 2\gamma |x| - \gamma^2. \end{array} \right. \end{array}$

 \longrightarrow Lagrangian minimization, fast best-basis search.

Thresholding:
$$f^{(k+1)} = \sum_{m} s_{\gamma}(\langle \tilde{f}^{(k)}, \psi_{m}^{\lambda^{(k+1)}} \rangle) \psi_{m}^{\lambda^{(k+1)}} \quad s_{\gamma}(x) = \max(0, 1 - \frac{\gamma}{|x|}) x$$

Dictionary of ortho-bases $\mathcal{B}^{\lambda} = \{\psi_m^{\lambda}\}_m$.

Measurements $y = \Phi f_0 + w$, regularization:

$$\min_{f,\lambda\in\Lambda} E(\lambda,f) = \frac{1}{2} \|y - \Phi f\|^2 + \gamma \sum_m |\langle f, \psi_m^\lambda \rangle|$$

 \longrightarrow estimate both the image f and its geometry λ .

 \longrightarrow non-convex problem, use a descent method on (λ, f) .

Initialization: $f^{(0)} = 0$.

 $\Rightarrow Gradient step: \quad \tilde{f}^{(k)} = f^{(k)} - \tau \Phi^*(\Phi f^{(k)} - y) \\ Best \ basis: \quad \lambda^{(k+1)} = \operatorname*{argmin}_{\lambda} \sum_m \Psi(\langle \tilde{f}^{(k)}, \psi_m^{\lambda} \rangle) \qquad \Psi(x) = \begin{cases} x^2 & \text{if } |x| \leq \gamma, \\ 2\gamma |x| - \gamma^2. \end{cases} \\ \to \text{Lagrangian minimization, fast best-basis search.} \end{cases}$

Thresholding:
$$f^{(k+1)} = \sum_{m} s_{\gamma}(\langle \tilde{f}^{(k)}, \psi_{m}^{\lambda^{(k+1)}} \rangle) \psi_{m}^{\lambda^{(k+1)}} \quad s_{\gamma}(x) = \max(0, 1 - \frac{\gamma}{|x|}) x$$

One has: $E(\lambda^{(k+1)}, f^{(k+1)}) \leq E(\lambda^{(k)}, f^{(k)})$

Bandlets Compressed Sensing

Compressed sensing acquisition: $\Phi f = \{\langle f, \varphi_k \rangle\}_{k=0}^{P-1}$ P = N/6

Grouplets Texture Inpainting

Missing pixels: $(\Phi f)(x) = \begin{cases} 0 & \text{if } x \in \Omega, \\ f(x) & \text{if } x \notin \Omega. \end{cases}$

Grouplet inpainting: iteratively estimate the geometry λ in Ω . [Peyré, 2010]

Iterations

- Sparsity for Approximation
- Sparsity for Processing
- •Geometric Images
- Adaptive Geometric Processing
- Adaptive Inverse Problems Regularization
- Geometric Texture Synthesis

Texture synthesis: generate f^* perceptually similar to some input f

Texture synthesis: generate f^* perceptually similar to some input f

Mathematical model: $f \in \Theta_{\Gamma}$ where Γ is a geometry.

Analysis of f using a basis $\mathcal{B}(\Gamma) = \{\psi_m^{\Gamma}\}_m$ (bandlets, grouplets, etc).

 Θ_{Γ} encodes statistical constraints on $\{\langle f, \psi_m^{\Gamma} \rangle\}_m$.

Synthesis: draw $f^* \in \Theta_{\Gamma}$ uniformly at random.

Possible to modify the geometry $\Gamma \mapsto \Gamma^*$ and draw $f^* \in \Theta_{\Gamma^*}$

Analysis of the geometry: estimate λ [Peyré, 2010]

Analysis of the geometry: estimate λ [Peyré, 2010]

Synthesis of the geometry: $\lambda \longleftarrow - - \rightarrow \tilde{\lambda}$

- Given by the user.
- Statistical model of (multiscale) association fields.

- Given by the user.
- Statistical model of (multiscale) association fields.

- Given by the user.
- Statistical model of (multiscale) association fields.

Texture Mixing

• Sparsity: approximate signals with few atoms.

sparsifying

transform

• Sparsity: approximate signals with few atoms.

• Sparse approximation: compression / denoising.

sparse

approximation

• Sparsity: approximate signals with few atoms.

• Sparse approximation: compression / denoising.

sparse approximation

• Quest for the best representation:

• Sparsity: approximate signals with few atoms.

• Sparse approximation: compression / denoising.

sparse approximation

• Quest for the best representation: texturelets? Fourier Wavelets curvelets bandlets • Inverse problems regularization:

Convex sparsity prior: ℓ^1 $\sum_m |\langle f, \psi_m \rangle|$ More sparsity \Rightarrow better prior \Rightarrow better recovery.

• Sparsity: approximate signals with few atoms.

• Sparse approximation: compression / denoising.

sparse approximation

• Quest for the best representation:

• Inverse problems regularization:

Convex sparsity prior: ℓ^1 $\sum_m |\langle f, \psi_m \rangle|$ More sparsity \Rightarrow better prior

 \Rightarrow better recovery.

• Texture synthesis:

