2D and 3D Multiscale Geometric Transforms

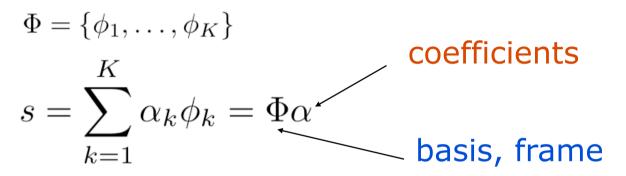
Jean-Luc Starck

CEA Saclay

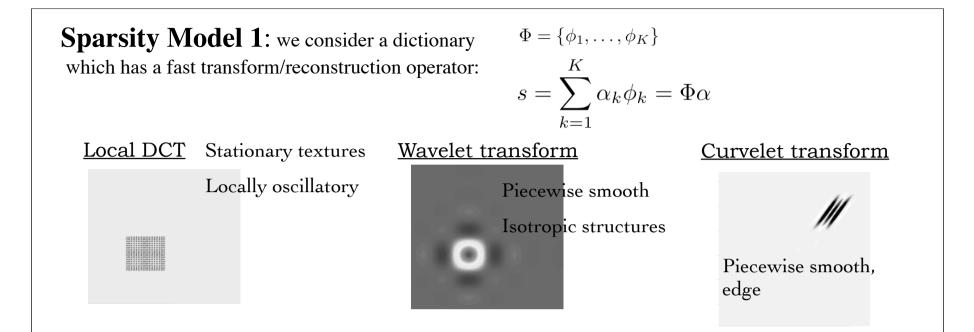
Collaborators: Arnaud Woiselle (SAGEM) Jalal Fadili (GREYC, Université de Caen)

What is a good representation for data?

• Computational harmonic analysis seeks representations of a signal as linear combinations of basis, frame, dictionary, element :



- Fast calculation of the coefficients
- Analyze the signal through the statistical properties of the coefficients
- Approximation theory uses the sparsity of the coefficients.



Sparsity Model 2: Morphological Diversity:

$$\phi = [\phi_1, \dots, \phi_L], \quad \alpha = \{\alpha_1, \dots, \alpha_L\}, \quad s = \phi \alpha = \sum_{k=1}^L \phi_k \alpha_k$$

Sparsity Model 3: we adapt/learn the dictionary directly from the data

Model 3 can be also combined with model 2:

G. Peyre, M.J. Fadili and J.L. Starck, , "Learning the Morphological Diversity", SIAM Journal of Imaging Science, 3 (3), pp.646-669, 2010.

Sparsity Model 1: Multiscale Transforms

Critical Sampling

Redundant Transforms

(bi-) Orthogonal WT Lifting scheme construction Wavelet Packets Mirror Basis Pyramidal decomposition (Burt and Adelson) Undecimated Wavelet Transform Isotropic Undecimated Wavelet Transform Complex Wavelet Transform Steerable Wavelet Transform Dyadic Wavelet Transform Nonlinear Pyramidal decomposition (Median)

New Multiscale Construction

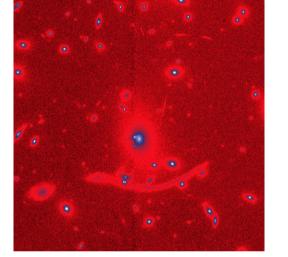
Contourlet Bandelet Finite Ridgelet Transform Platelet (W-)Edgelet Adaptive Wavelet Groupelet

Ridgelet Curvelet (Several implementations) Wave Atom

Morphological Diversity

•J.-L. Starck, M. Elad, and D.L. Donoho, Redundant Multiscale Transforms and their Application for Morphological Component Analysis, Advances in Imaging and Electron Physics, 132, 2004.

•J.-L. Starck, M. Elad, and D.L. Donoho, Image Decomposition Via the Combination of Sparse Representation and a Variational Approach, IEEE Trans. on Image Proces., 14, 10, pp 1570--1582, 2005.



$$\phi = [\phi_1, \dots, \phi_L], \quad \alpha = \{\alpha_1, \dots, \alpha_L\}, \quad s = \phi \alpha = \sum_{k=1}^L \phi_k \alpha_k$$

Sparsity Model 2: we consider a signal as a sum of K components s_k , $s = \sum_{k=1}^{K} s_k$ each of them being sparse in a given dictionary :

$$s_k = \Phi_k \alpha_k$$

$$s = \sum_{k=1}^K s_k = \sum_{k=1}^K \Phi_k \alpha_k = \Phi \alpha$$

Advantages of model 1: extremely fast.

Advantages of model 2:

- more flexible to model 1.

- The coupling of local DCT+curvelet is well adapted to a relatively large class of images.

Advantages of model 3:

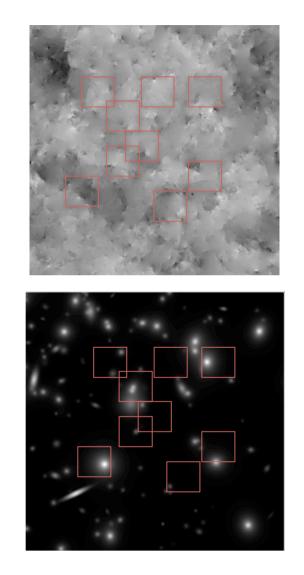
atoms can be obtained which are well adapted to the data, and which could never be obtained with a fixed dictionary.

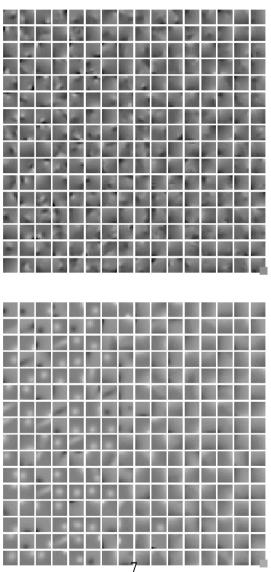
Drawback of model 3 versus model 1,2:

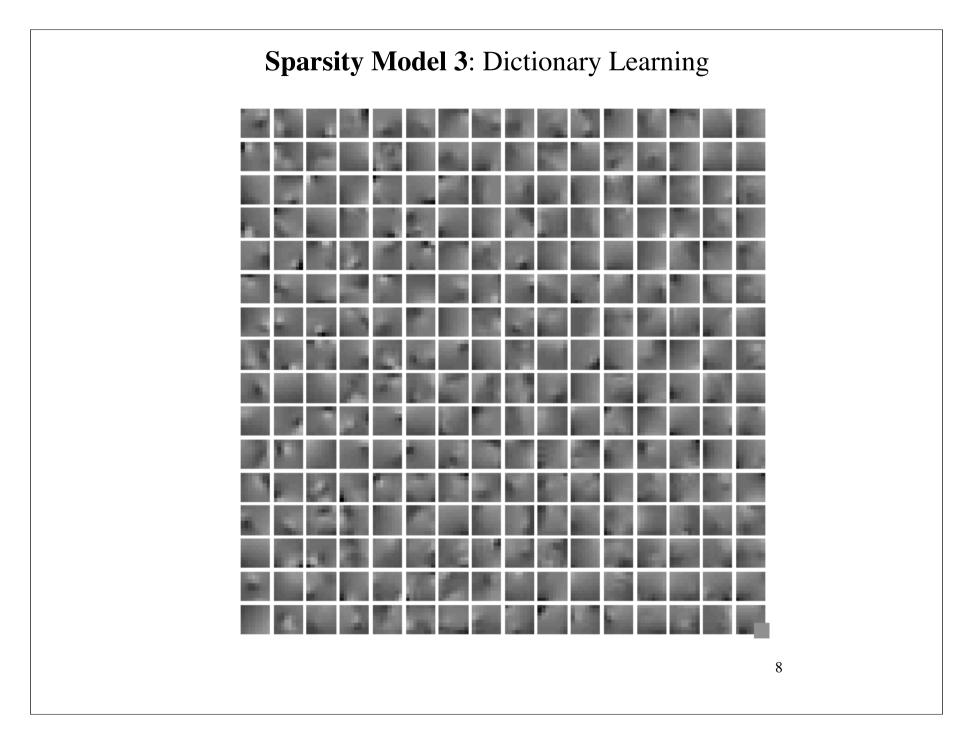
We pay the price of dictionary learning by being less sensitive to detect very faint features.

Complexity: Computation time, parameters, etc

Sparsity Model 3: Dictionary Learning







2D and 3D Multiscale Geometric Transforms

- Ridgelet 2D
- Cuvelet 2D
- BeamCurvelet 3D
- RidCurvelet 3D
- FastCurvelet 3D
- 3D Morphological Diversity

Problems related to the WT

 Edges representation:
 if the WT performs better than the FFT to represent edges in an image, it is still not optimal.

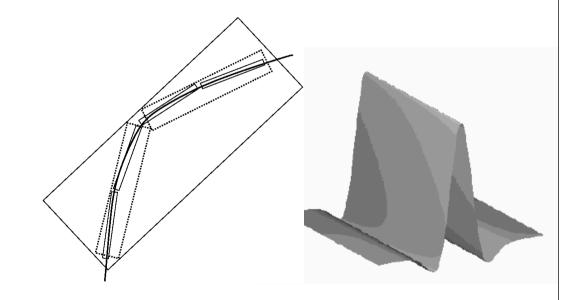
2) There is only a fixed number of directional elements independent of scales.

3) Limitation of existing scale concepts: there is no highly anisotropic elements.

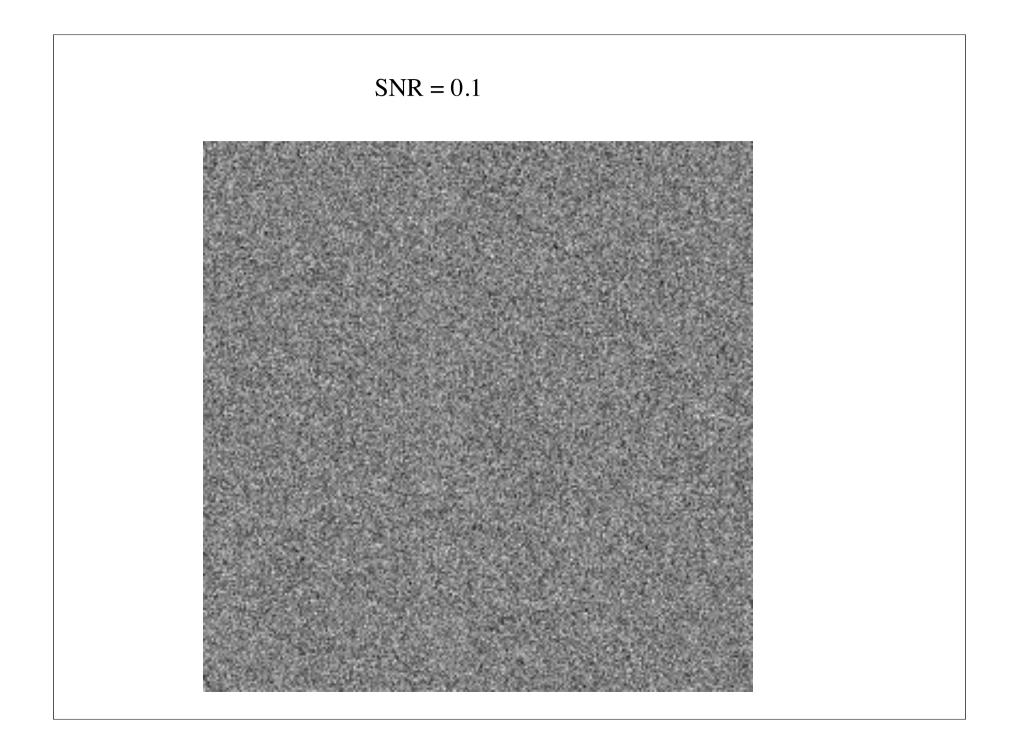
Wavelets and edges

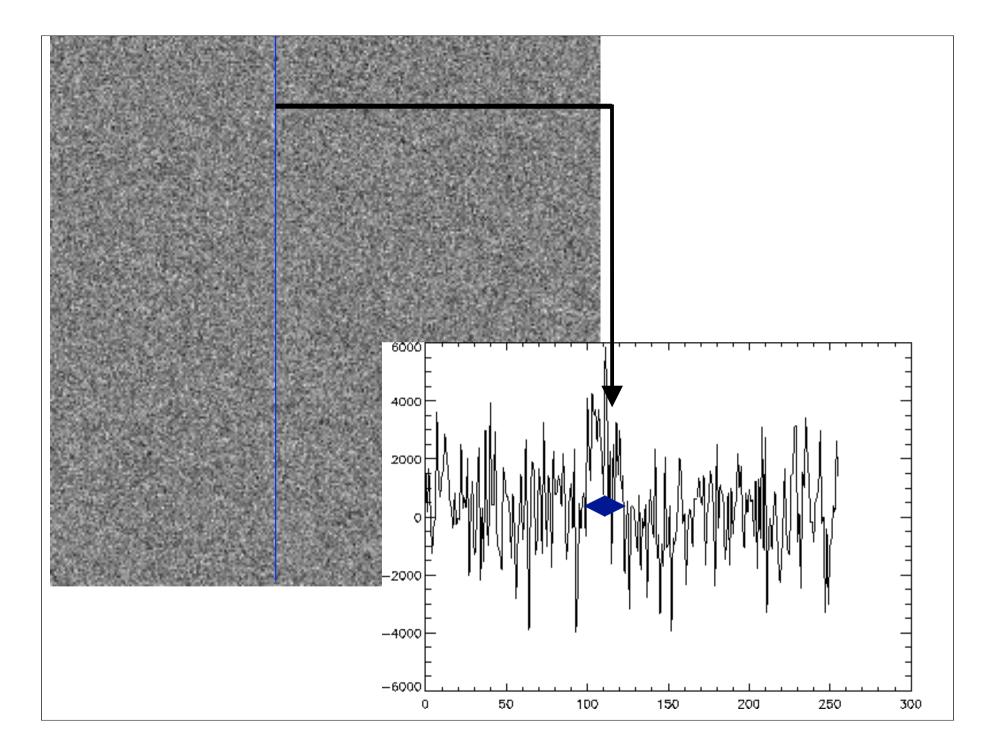
• many wavelet coefficients are needed to account for edges i.e. singularities along lines or curves :

• need dictionaries of strongly anisotropic atoms :

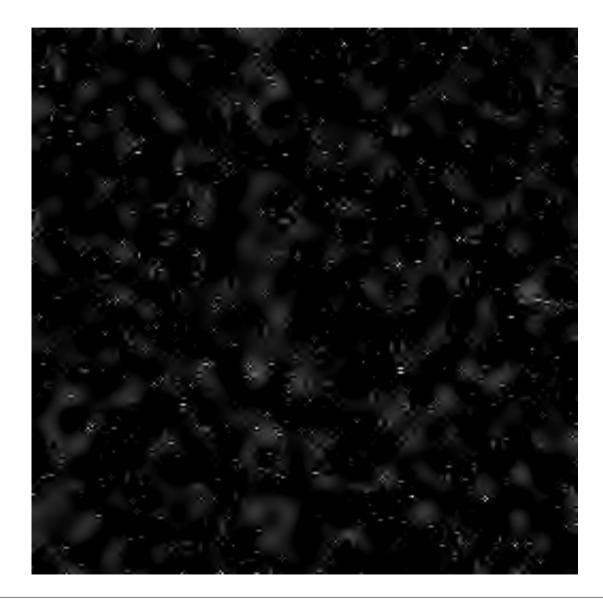


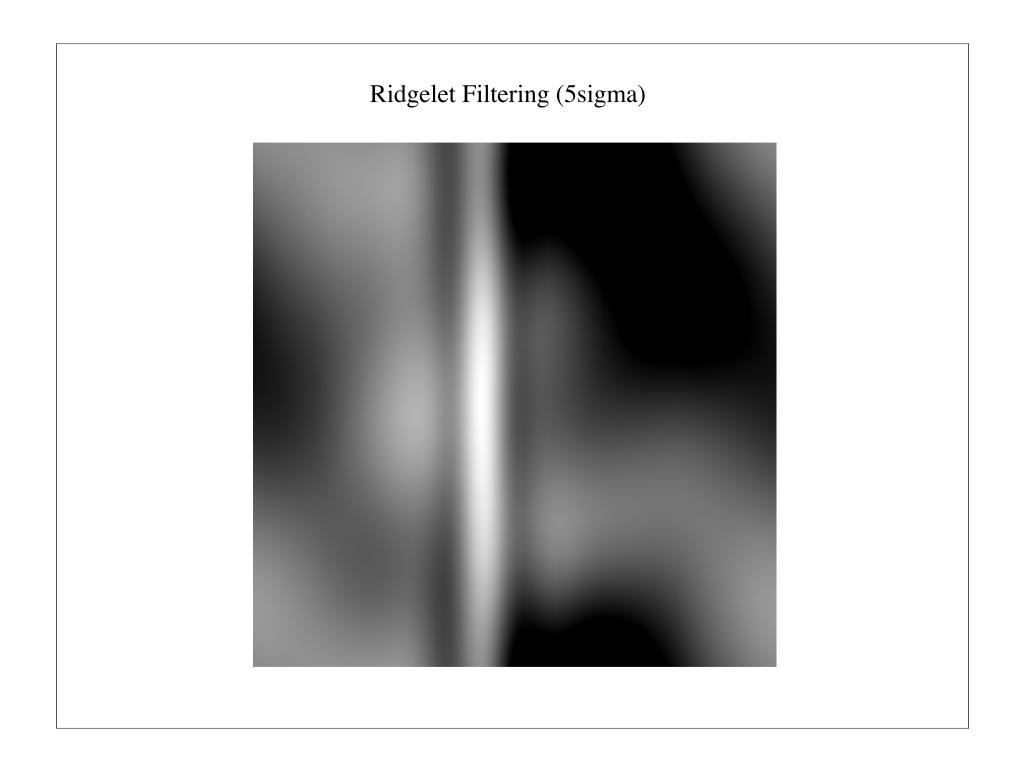
ridgelets, curvelets, contourlets, bandelettes, etc.





Undecimated Wavelet Filtering (3 sigma)



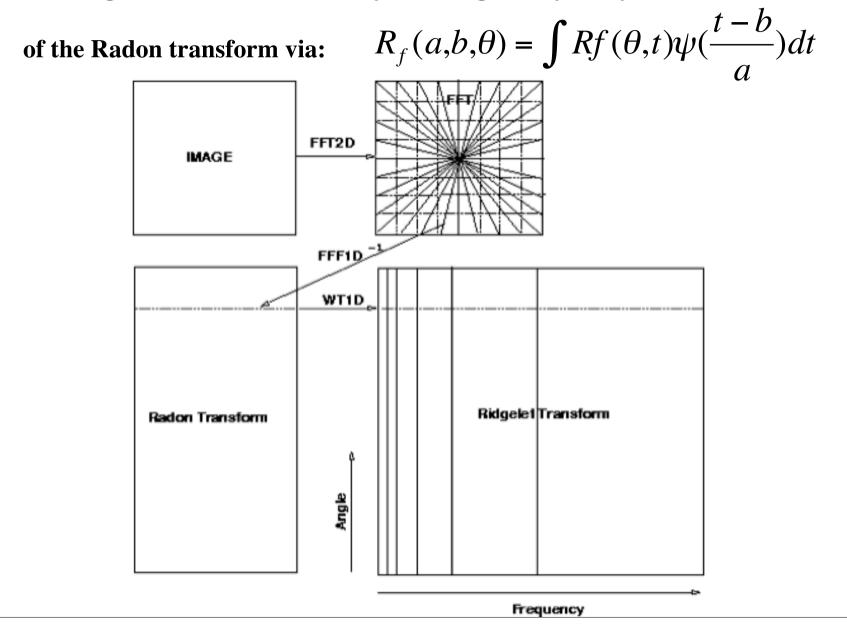


Continuous Ridgelet Transform

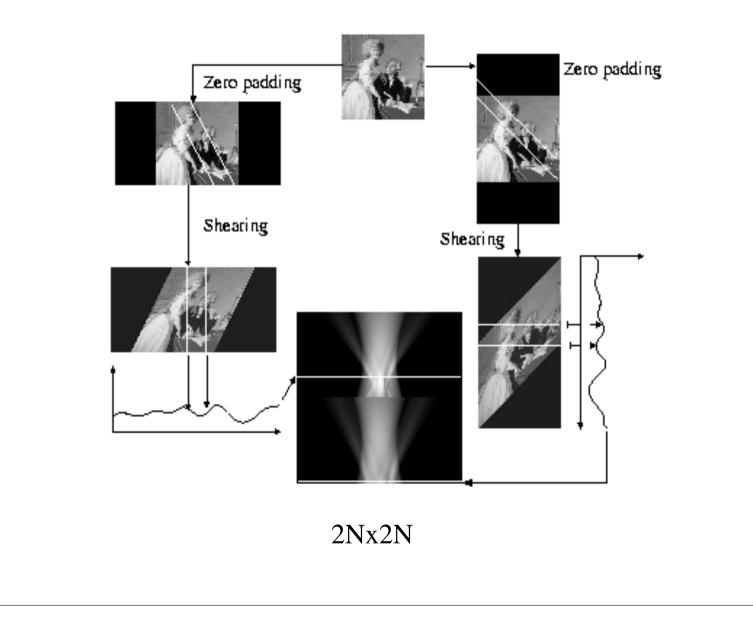
 $R_f(a,b,\theta) = \int \psi_{a,b,\theta}(x) f(x) dx$ Ridgelet Transform (Candes, 1998): $\psi_{a,b,\theta}(x) = a^{\frac{1}{2}}\psi\left(\frac{x_1\cos(\theta) + x_2\sin(\theta) - b}{a}\right)$ Ridgelet function: The function is constant along lines. Transverse to these ridges, it is a wavelet. ΟR 0.2 0.0

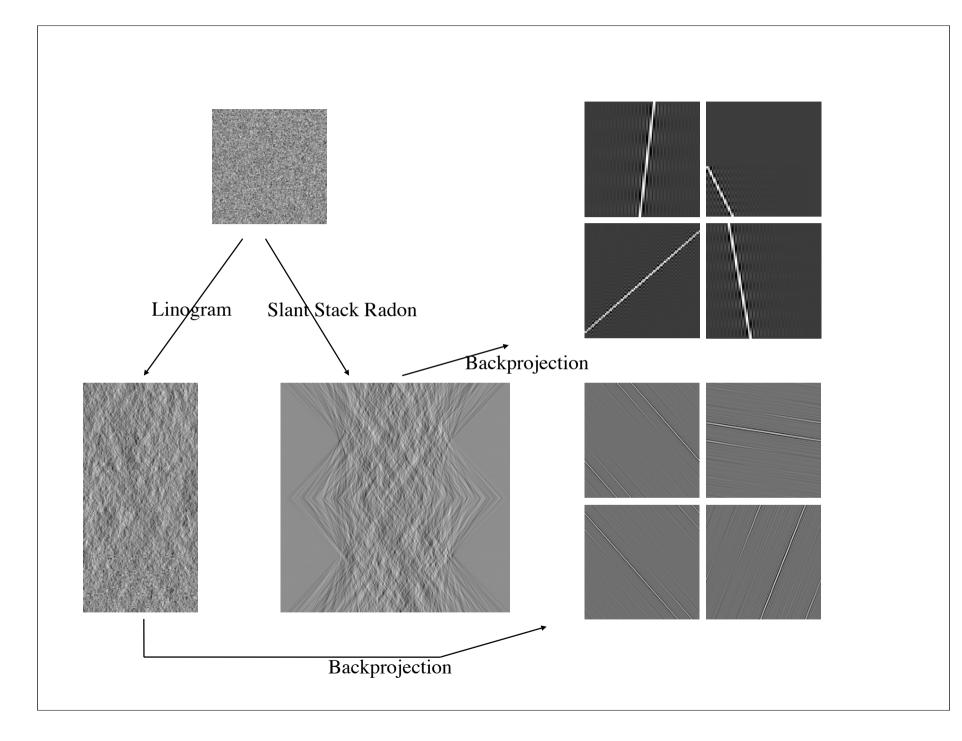
ø

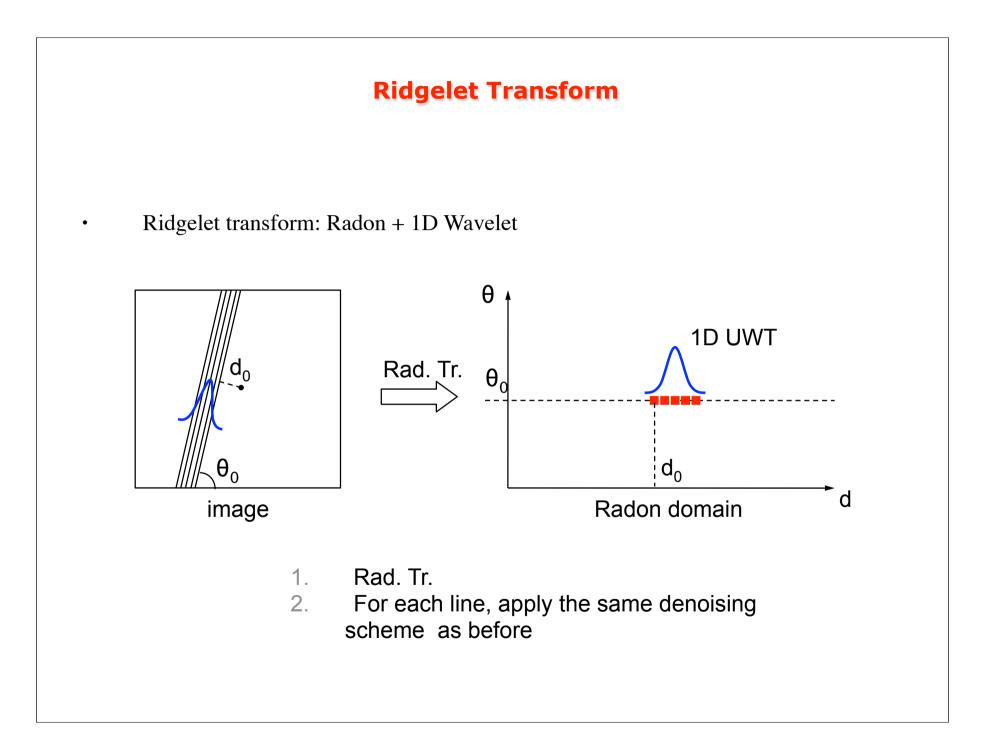
-2

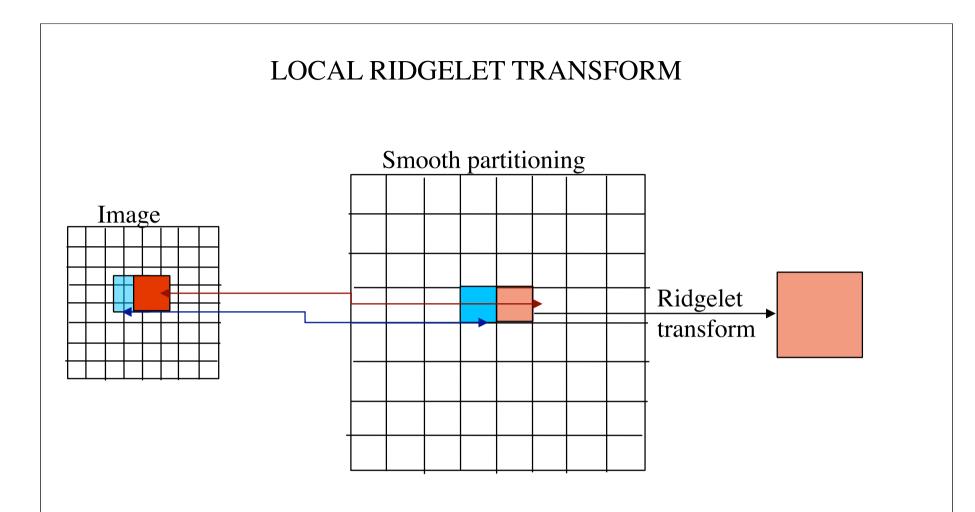


Slant Stack Radon Transform (Averbuch et al, 2001) CUR01-SSR





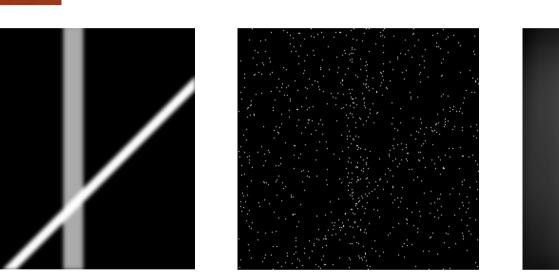


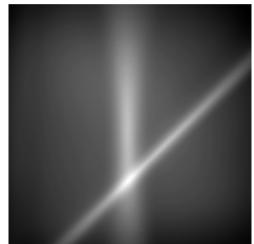


The partitioning introduces a redundancy, as a pixel belongs to 4 neighboring blocks.

Poisson Noise and Line-Like Sources Restoration (MS-VST + Ridgelet)

B. Zhang, M.J. Fadili and J.-L. Starck, "Wavelets, Ridgelets and Curvelets for Poisson Noise Removal", ITIP, Vol 17, No 7, pp 1093--1108, 2008.

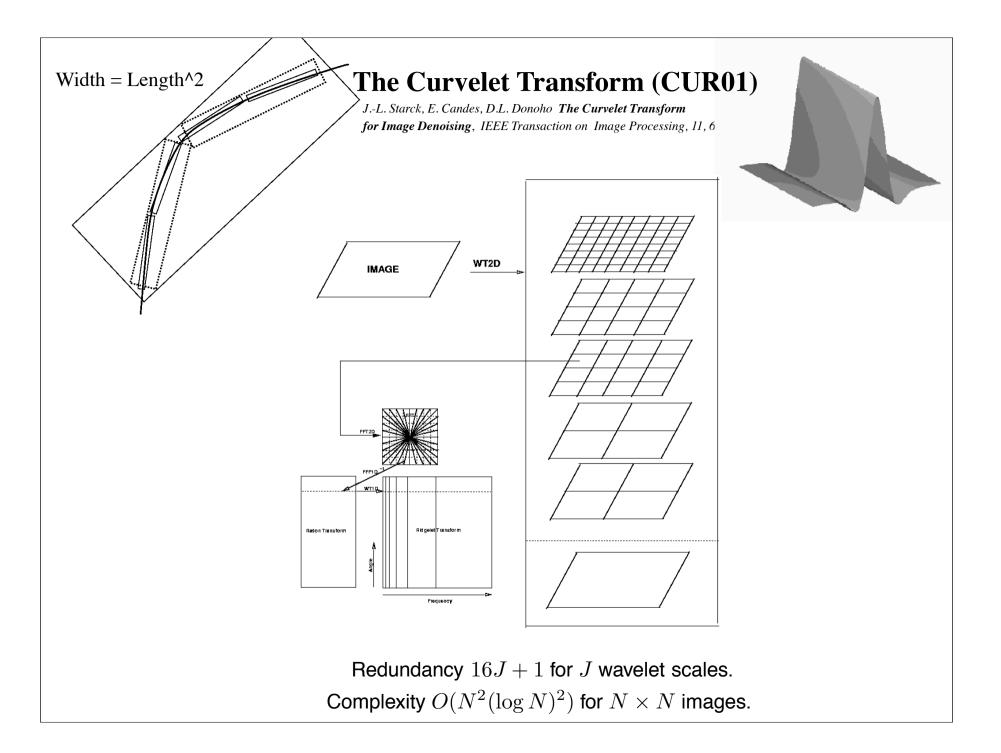


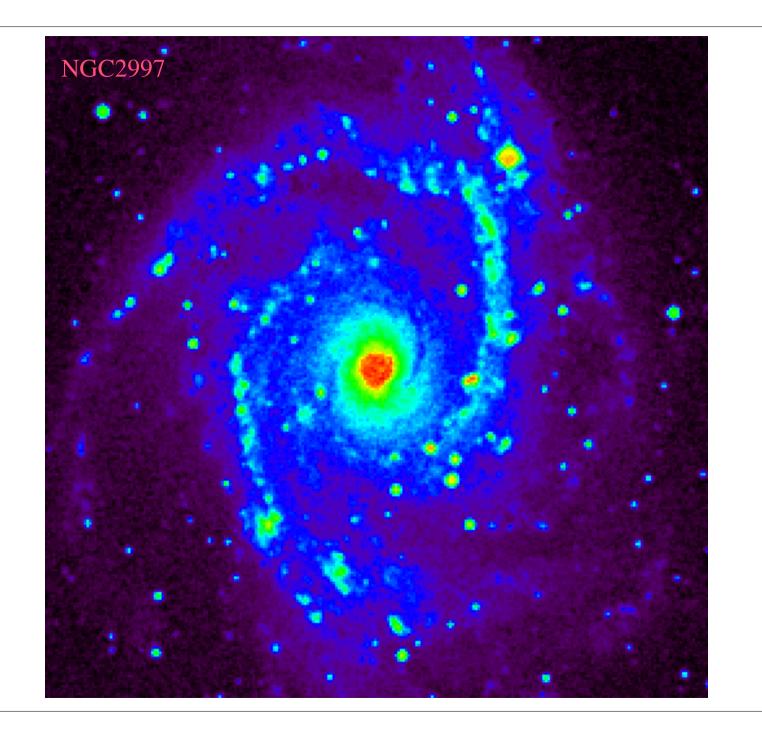


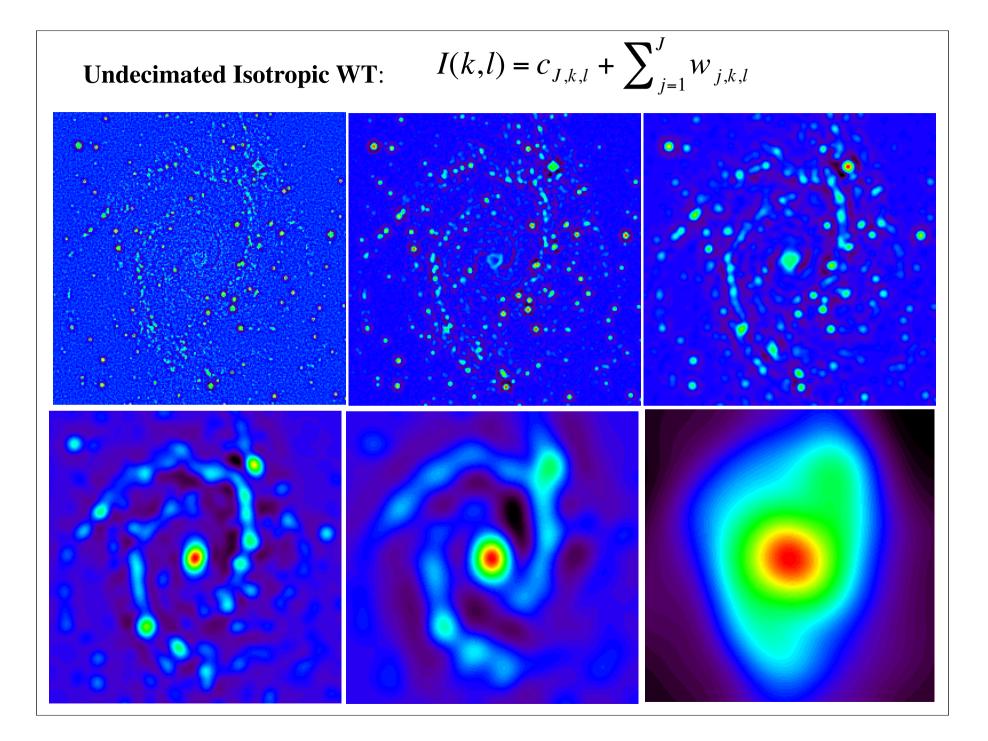
underlying intensity image simulated image of counts

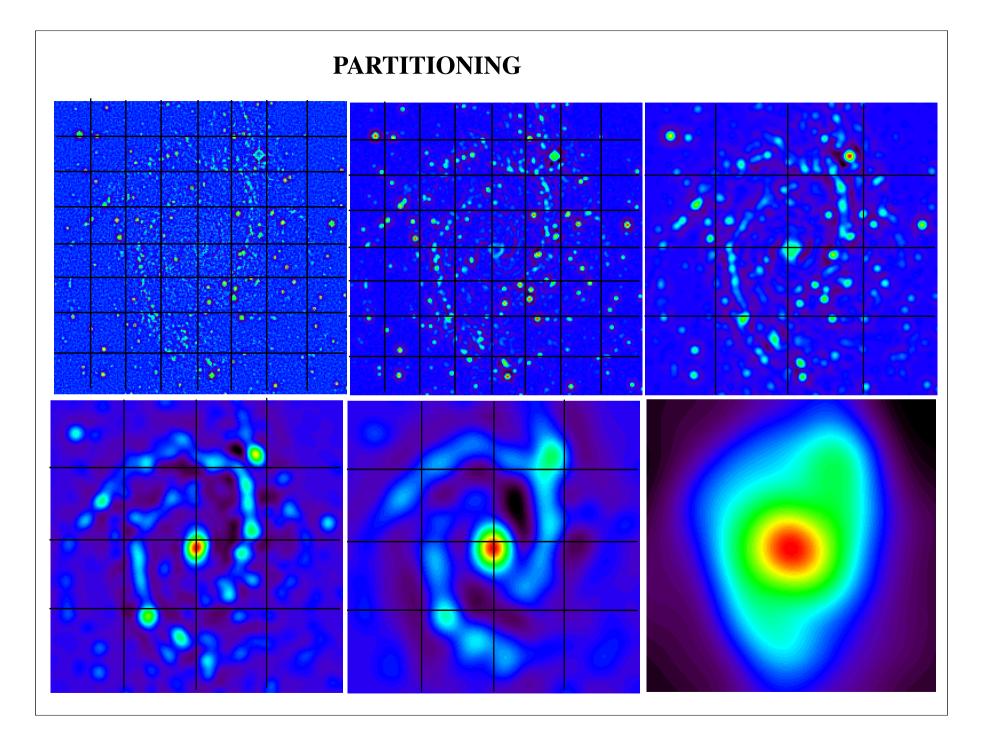
restored image from the left image of counts

Max Intensity background = 0.01 vertical bar = 0.03 inclined bar = 0.04



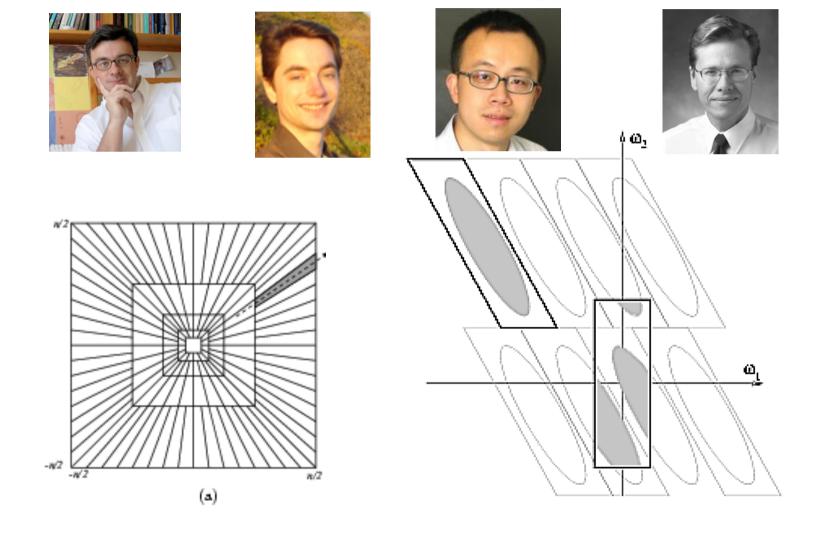


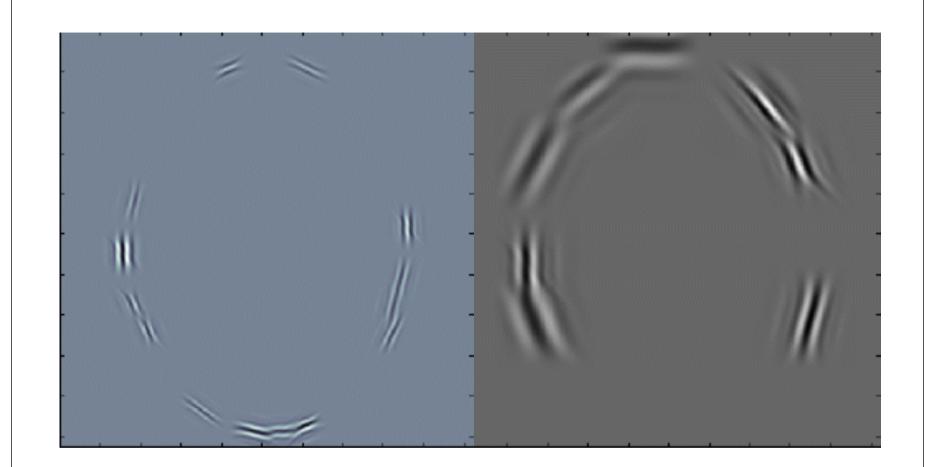




The Fast Curvelet Transform, Candes et al, 2005

CUR03 - Fast Curvelet Transform using the USFFT CUR04 - Fast Curvelet Transform using the Wrapping and 2DFFT





•J.L. Starck, E. Candes, and D.L. Donoho, "The Curvelet Transform for Image Denoising", IEEE Transactions on Image Processing, 11, 6, pp 670 -684, 2002.

•J.-L. Starck, M.K. Nguyen and F. Murtagh, "Wavelets and Curvelets for Image Deconvolution: a Combined Approach", Signal Processing, 83, 10, pp 2279–2283, 2003.

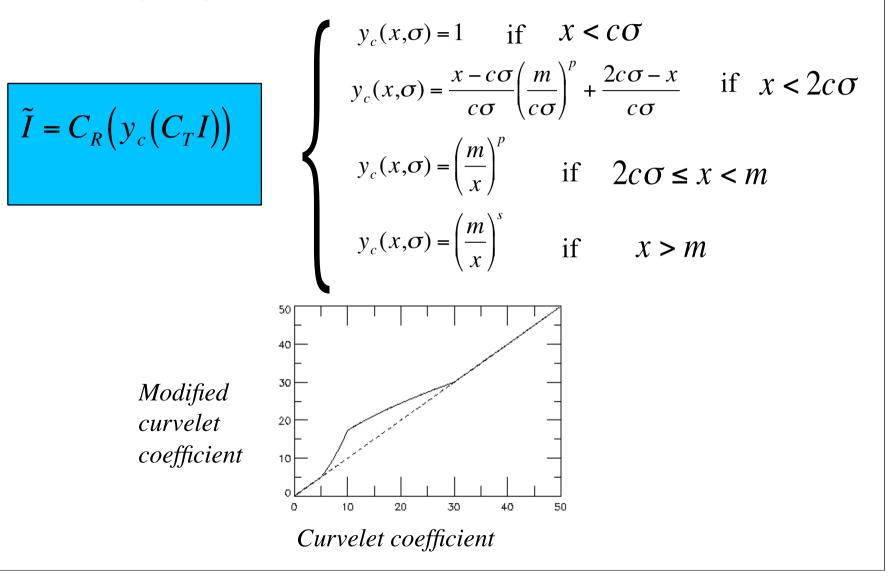
•J.-L. Starck, E. Candes, and D.L. Donoho, "Astronomical Image Representation by the Curvelet Tansform", Astronomy and Astrophysics, 398, 785--800, 2003.

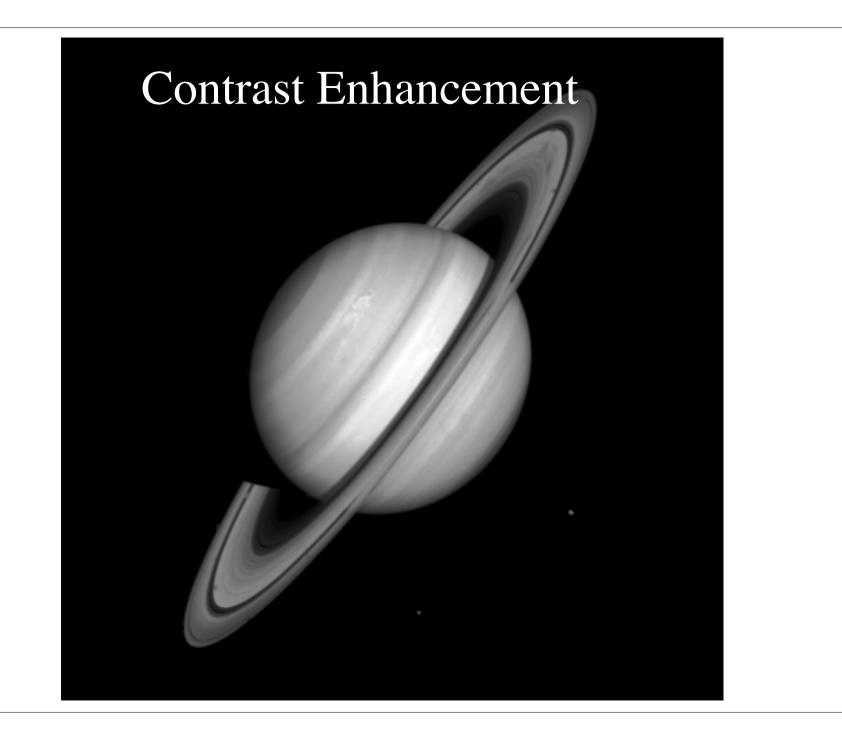
• J.-L. Starck, F. Murtagh, E. Candes, and D.L. Donoho, "Gray and Color Image Contrast Enhancement by the Curvelet Transform", IEEE Transaction on Image Processing, 12, 6, pp 706--717, 2003.

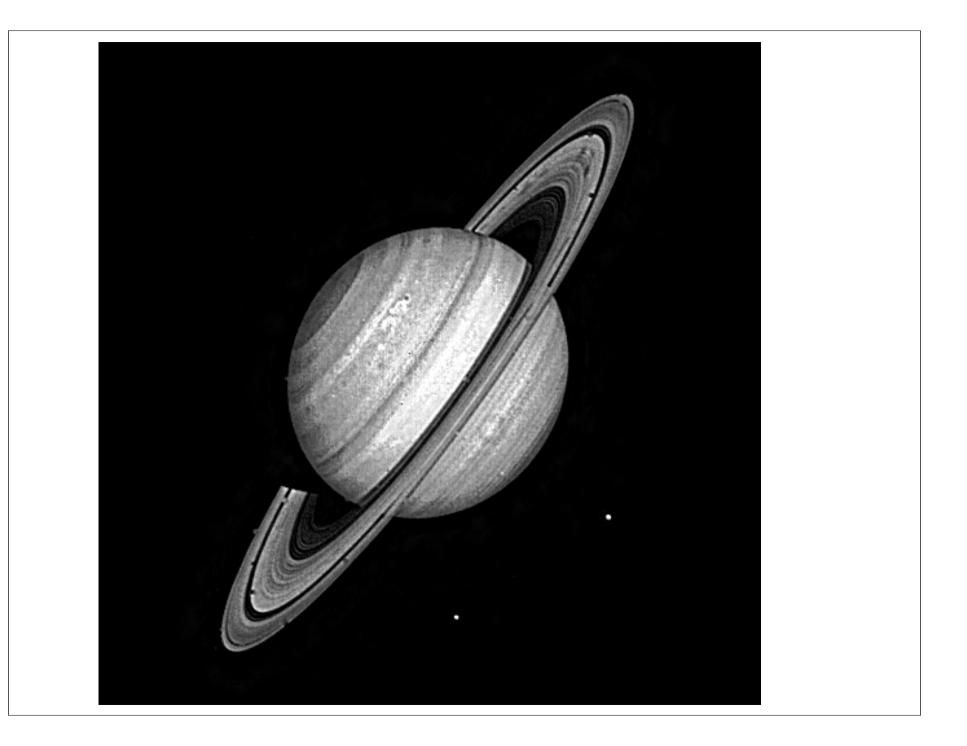
CONTRAST ENHANCEMENT USING THE CURVELET TRANSFORM

J.-L Starck, F. Murtagh, E. Candes and D.L. Donoho, "Gray and Color Image Contrast Enhancement by the Curvelet Transform",

IEEE Transaction on Image Processing, 12, 6, 2003.

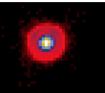


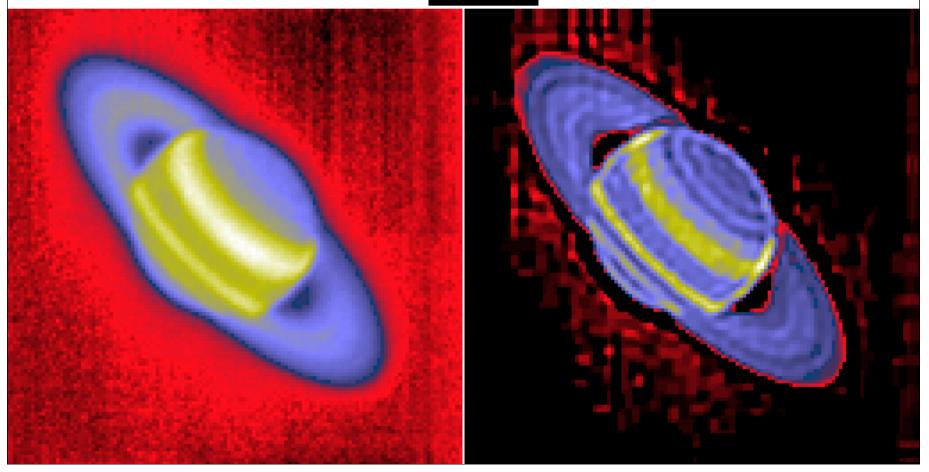




DECONVOLUTION

- E. Pantin, J.-L. Starck, and F. Murtagh, "Deconvolution and Blind Deconvolution in Astronomy", in Blind image deconvolution: theory and applications, pp 277--317, 2007.
- J.-L. Starck, F. Murtagh, and M. Bertero, "The Starlet Transform in Astronomical Data Processing: Application to Source Detection and Image Deconvolution", Springer, Handbook of Mathematical Methods in Imaging, in press, 2011.





PSNR

(=-10log10(Variance(Error)/255^2))

Lena sig=20		Lena sig=42	Nimes $= 10$
DATA	22.09	15.66	28.15
DWT	28.31	24.42	29.09
Contourlet(1.5)	28.61	25.42	
CUR03 (4)	30.73	27.71	
CUR04 (4)	30.91	27.92	31.49
PWT(4)	30.56	26.99	31.62
Complex WT (4)	30.97	27.46	31.45
UWT	31.36	28.66	32.68
CUR01	31.51	28.74	32.60
CUR01+ SSR	31.65	28.83	
ſ			
CUR01+UWT	32.11	28.90	
CUR04+UWT	32.02	28.82	
L			

<u>Very High Quality Image Restoration</u>, in Signal and Image Processing IX, San Diego, 1-4 August, 2001, Eds Laine, Andrew F.; Unser, Michael A.; Aldroubi, Akram, Vol. 4478, pp 9-19, 2001.

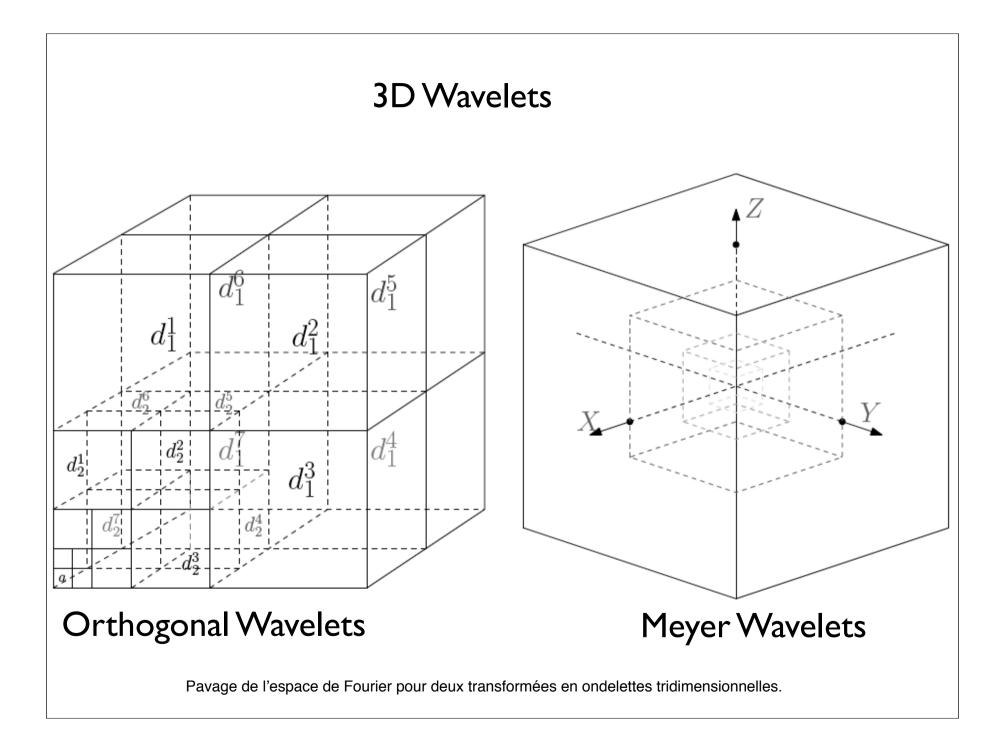
3D Multiscale Geometric Transforms

A. Woiselle, J.L. Starck and M.J. Fadili, <u>"3D curvelet transforms and astronomical data restoration</u>", **Applied and Computational Harmonic Analysis**, Vol. 28, No. 2, pp. 171-188, 2010.

A. Woiselle, J.L. Starck, M.J. Fadili, <u>"3D Data Denoising and Inpainting with the Fast Curvelet transform"</u>, **JMIV**, in press, 2011.

Software: http://jstarck.free.fr/cur3d.html

Curvelet 01 2D ==> 3D FastCurvelet 3D



3D extension of Curvelet

- As in 2D, the 3D first generation curvelet transform we develop is based on the 3D ridgelet transform applied to localized blocks of the output of a 3D wavelet transform.
- The essential ingredient is the projection slice theorem: the m-D FT of the projection of a d-D function onto an m-D linear submanifold is equal to an m-D central slice of the d-D FT parallel to the submanifold.
- Two 3D extensions of the ridgelet transform:
 - Projections along lines (3D partial Radon transform, d=3, m=2): BeamCurvelets.
 - Projecting along planes (3D Radon transform, d=3, m=1): RidCurvelets.

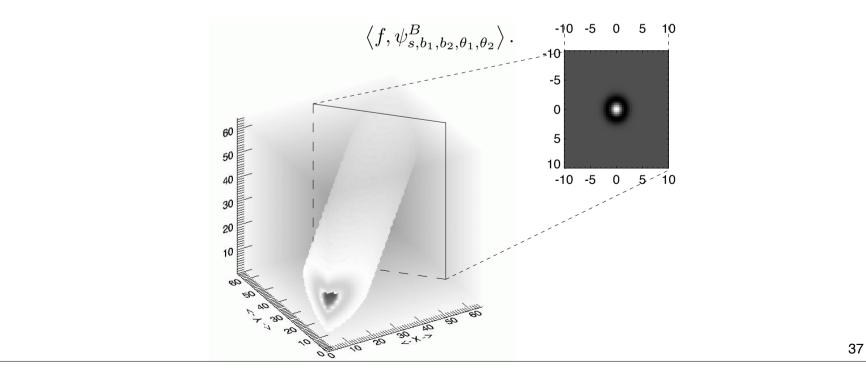
3D beamlet transform

• $\gamma \in L_2(\mathbb{R}^2)$ with zero-mean and has sufficient decay (2D wavelet).

For each scale *s* > 0, position (*b*₁, *b*₂) ∈ ℝ² and orientation (*θ*₁, *θ*₂) ∈ [0, 2π) × [0, π), define the 2D beamlet $ψ^B_{s,b_1,b_2,\theta_1,\theta_2}$: ℝ³ → ℝ by

$$\psi^B_{s,b_1,b_2,\theta_1,\theta_2}(\mathbf{x}) = s^{-1/2} \cdot \gamma((-x\sin\theta_1 + y\cos\theta_1 - b_1)/s,$$
$$(x\cos\theta_1\sin\theta_2 + y\sin\theta_1\sin\theta_2 - z\cos\theta_2 - b_2)/s).$$

9 The 3D beamlet transform of $f(\mathbf{x})$, $\mathbf{x} \in \mathbb{R}^3$ is the set of coefficients



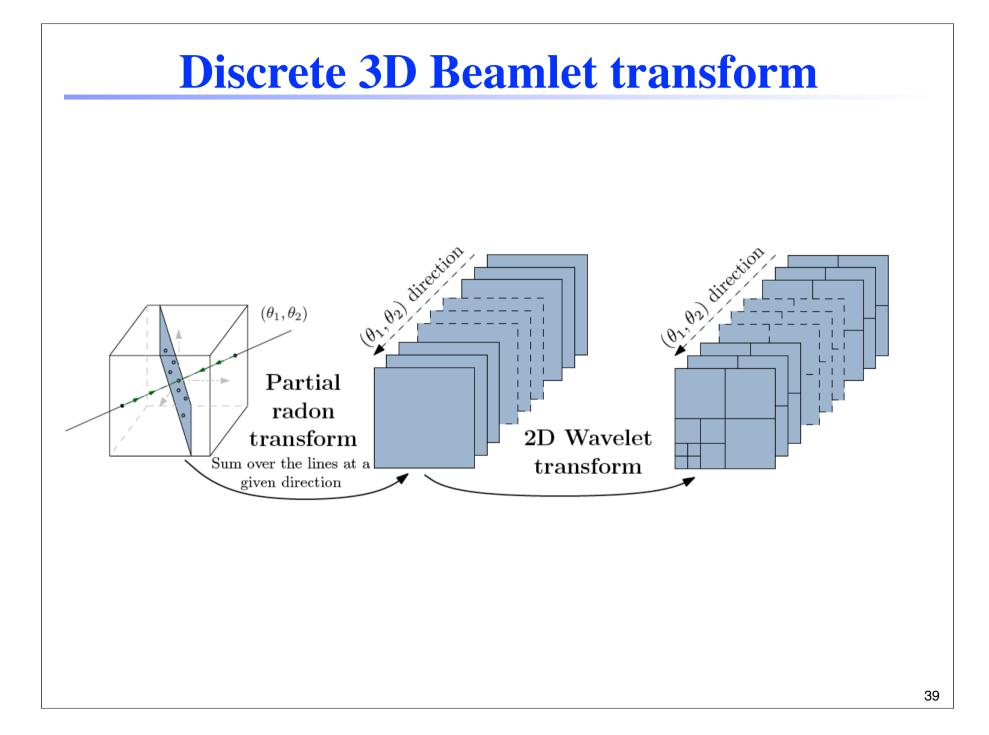
3D BeamCurvelet transform

The 3D BeamCurvelet transform of $f(\mathbf{x})$:

$$\left\langle (T_{\mathsf{Q}_{j,\mathbf{k}}})^{-1} w_{\mathsf{Q}_{j,\mathbf{k}}} \Delta_j(f), \psi^B_{s,b_1,b_2,\theta_1,\theta_2}) \right\rangle = \left\langle f, \Delta_j(w_{\mathsf{Q}_{j,\mathbf{k}}} T_{\mathsf{Q}_{j,\mathbf{k}}} \psi^B_{s,b_1,b_2,\theta_1,\theta_2}) \right\rangle \;,$$

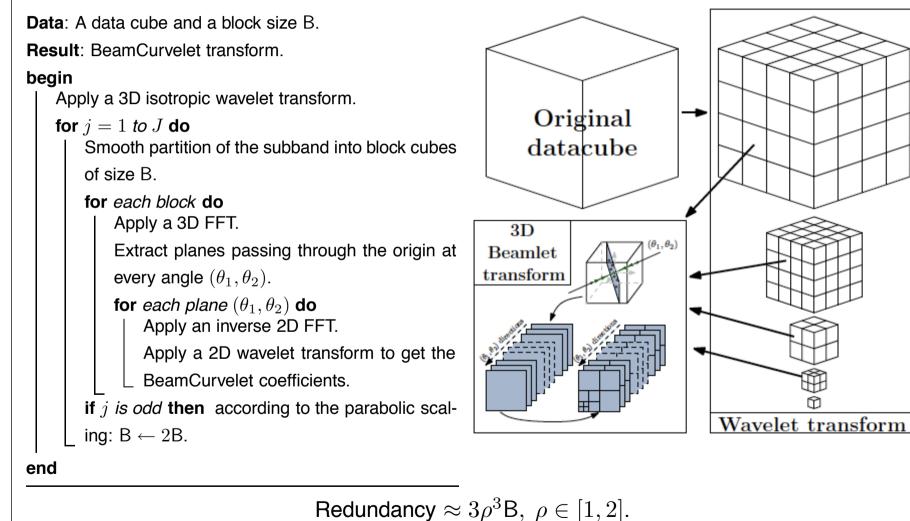
- **s** spatial scale j,
- **Solution** $\mathbf{k} = (k_x, k_y, k_z),$
- \checkmark ridge scale s,
- \checkmark ridge location (b_1, b_2) ,
- **s** angular location (θ_1, θ_2) .

A. Woiselle, J.L. Starck and M.J. Fadili, <u>"3D curvelet transforms and astronomical data restoration"</u>, Applied and Computational Harmonic Analysis, Vol. 28, No. 2, pp. 171-188, 2010.



Discrete 3D BeamCurvelet transform

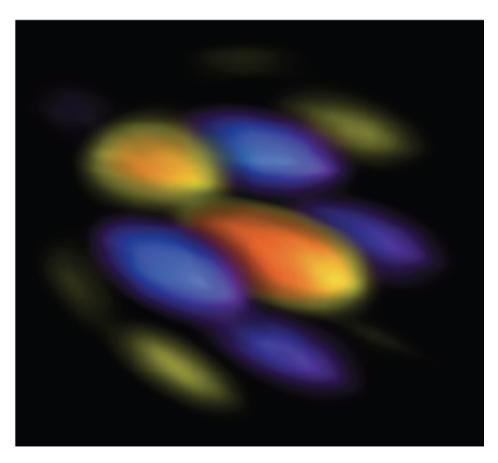
Algorithm: Fourier-based implementation.

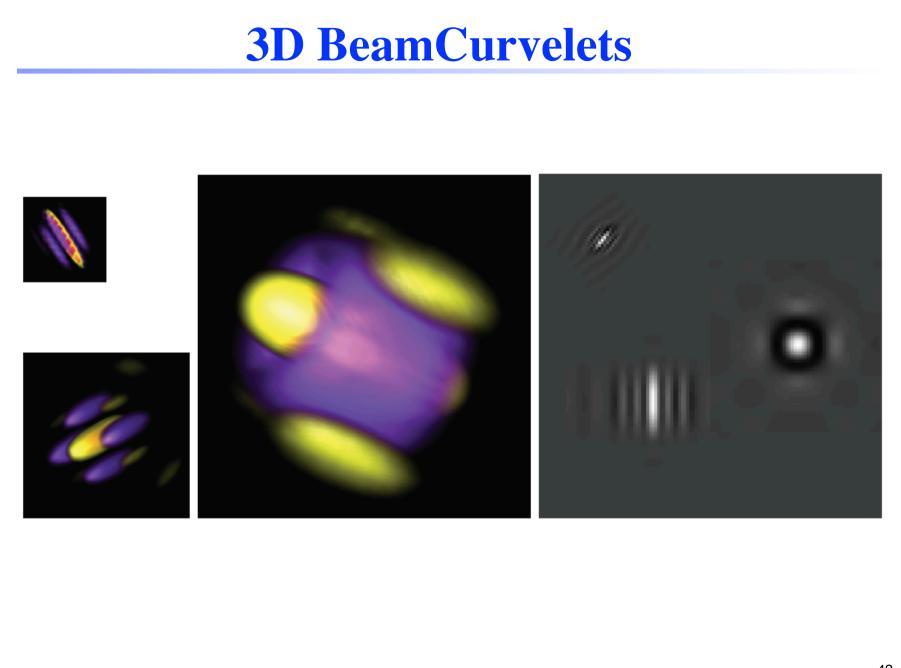


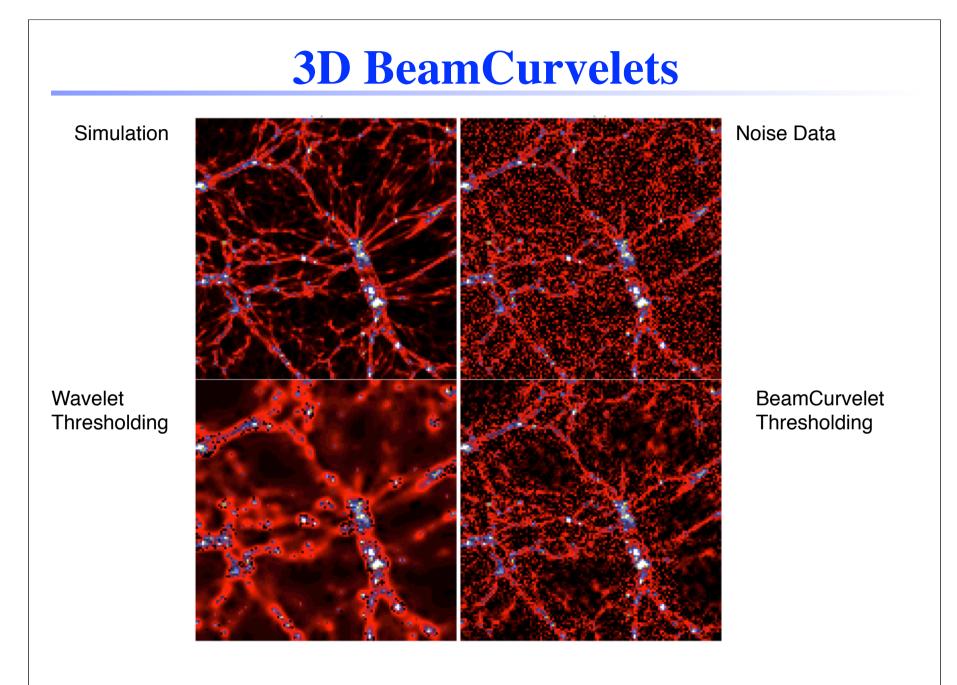
Complexity $O(N^3(\log N)^2)$ for $N \times N \times N$ volume.

3D BeamCurvelets

- It is constant along segments of direction (θ_1, θ_2) , and a 2D wavelet function transverse to this direction.
- Adapted to filamentary structures in 3D.







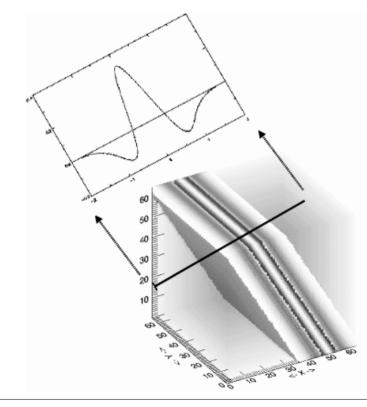
3D ridgelet transform

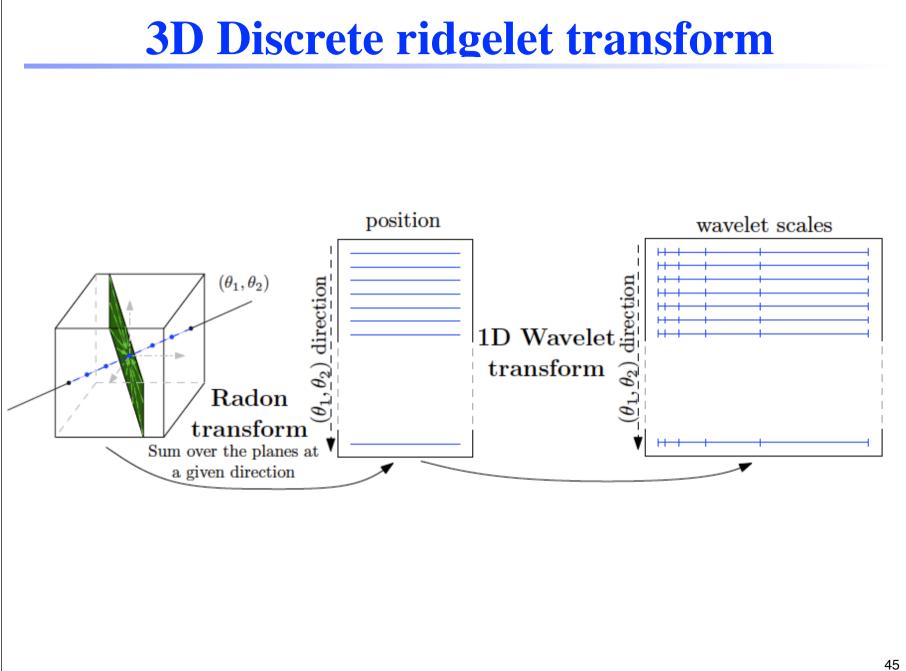
• $\psi \in L_2(\mathbb{R})$ with zero-mean and has sufficient decay.

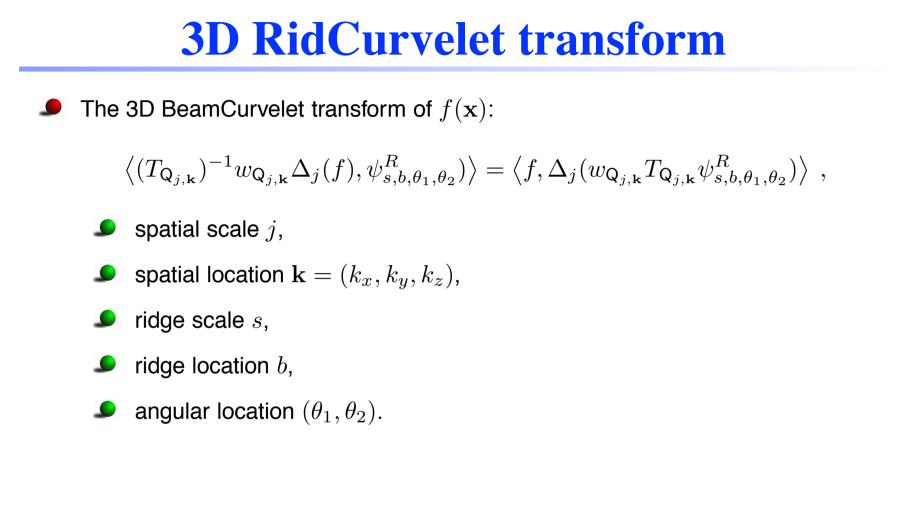
For each scale s > 0, position $b \in \mathbb{R}$ and orientation $(\theta_1, \theta_2) \in [0, 2\pi) \times [0, \pi)$, define the 2D ridgelet $\psi^R_{s, b, \theta_1, \theta_2} : \mathbb{R}^3 \to \mathbb{R}$ by

 $\psi_{s,b,\theta_1,\theta_2}^R(\mathbf{x}) = s^{-1/2} \cdot \psi((x\cos\theta_1\cos\theta_2 + y\sin\theta_1\cos\theta_2 + z\sin\theta_2 - b)/s) \,.$

● The 3D ridgelet transform of $f(\mathbf{x})$, $\mathbf{x} \in \mathbb{R}^3$ is the set of coefficients



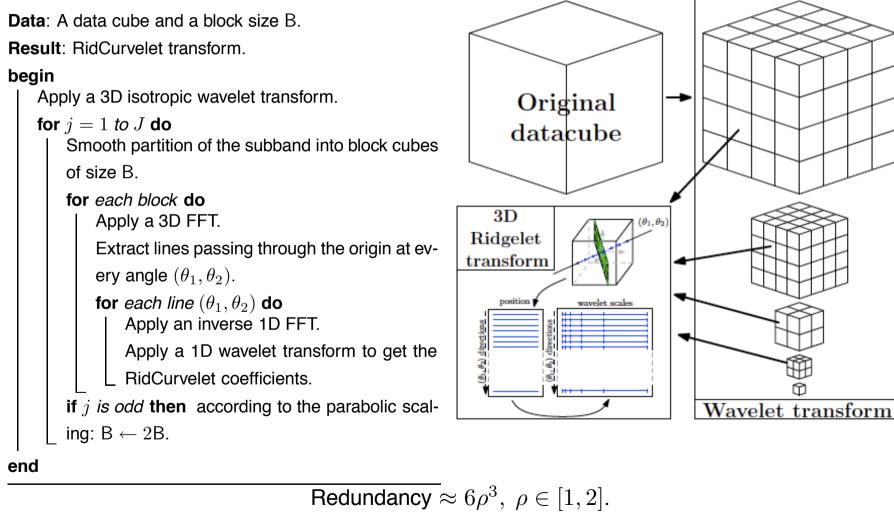




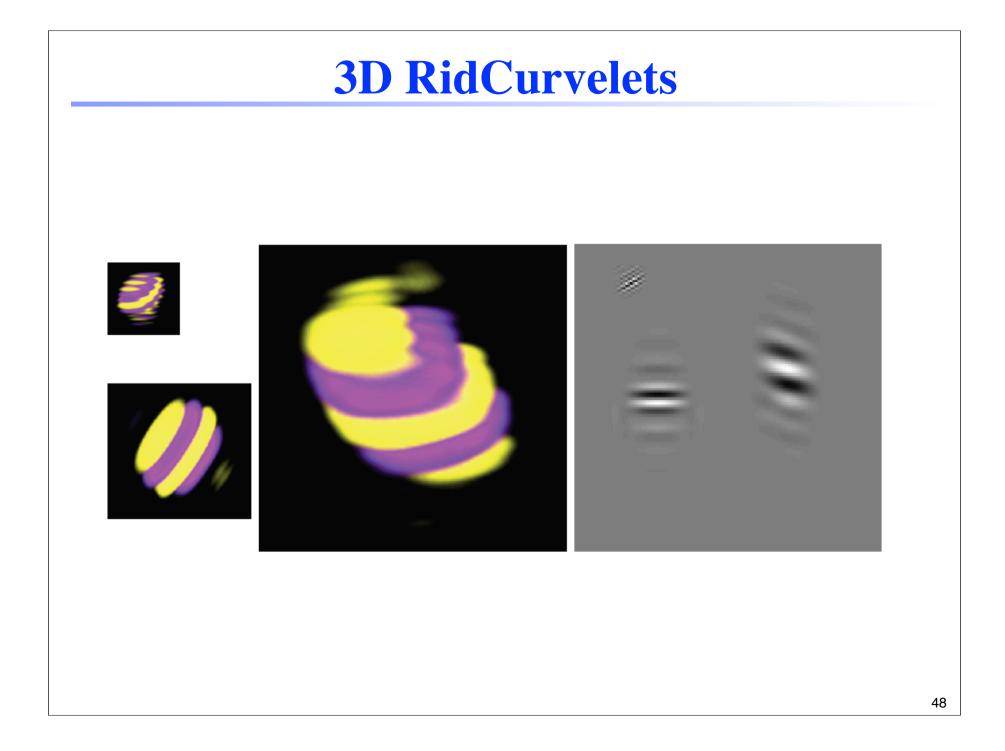
A. Woiselle, J.L. Starck and M.J. Fadili, <u>"3D curvelet transforms and astronomical data restoration"</u>, Applied and Computational Harmonic Analysis, Vol. 28, No. 2, pp. 171-188, 2010.

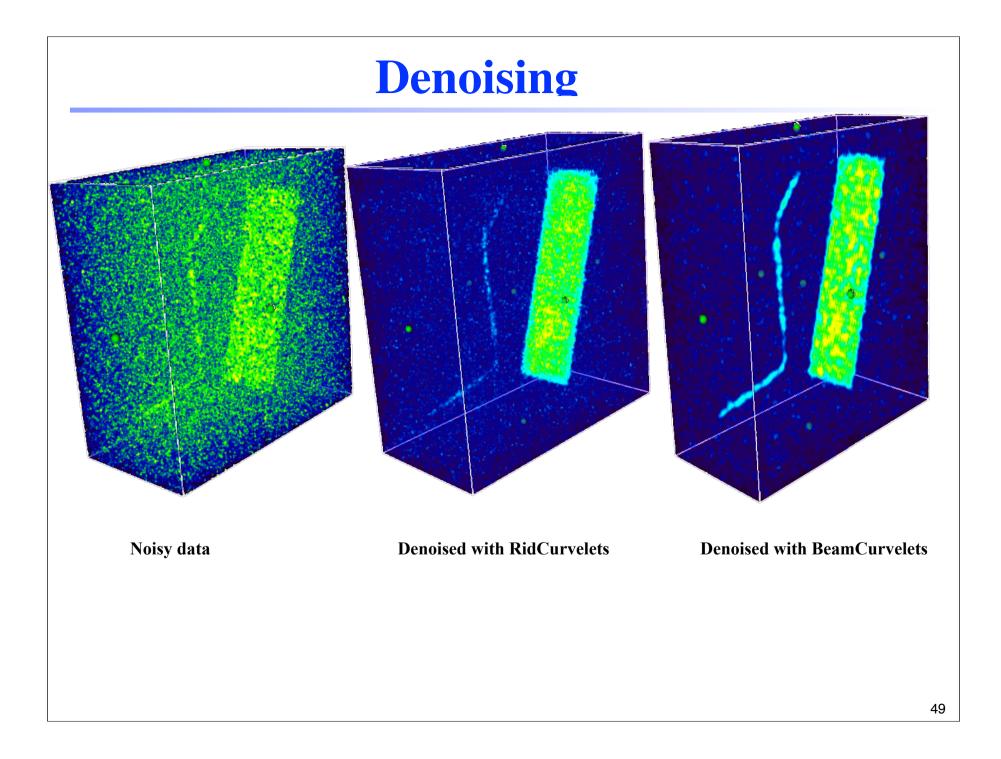
Discrete 3D RidCurvelet transform

Algorithm: Fourier-based implementation.

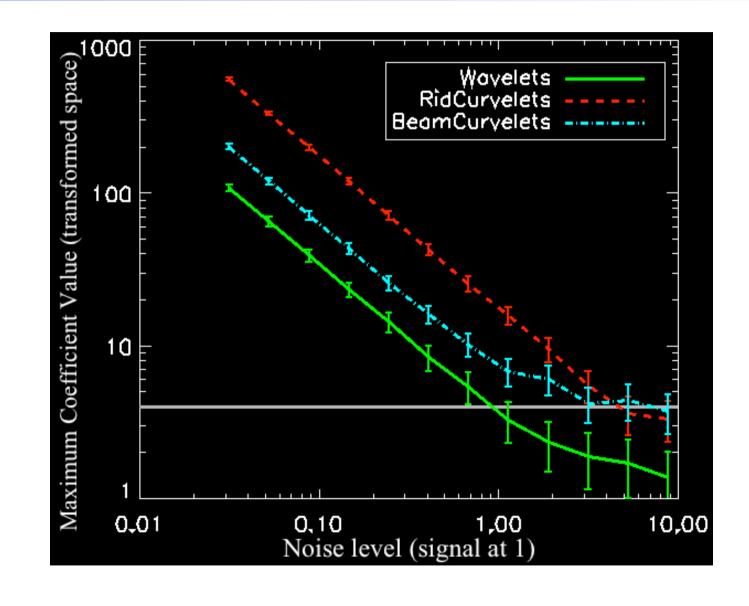


Complexity $O(N^3(\log N)^2)$ for $N \times N \times N$ volume.

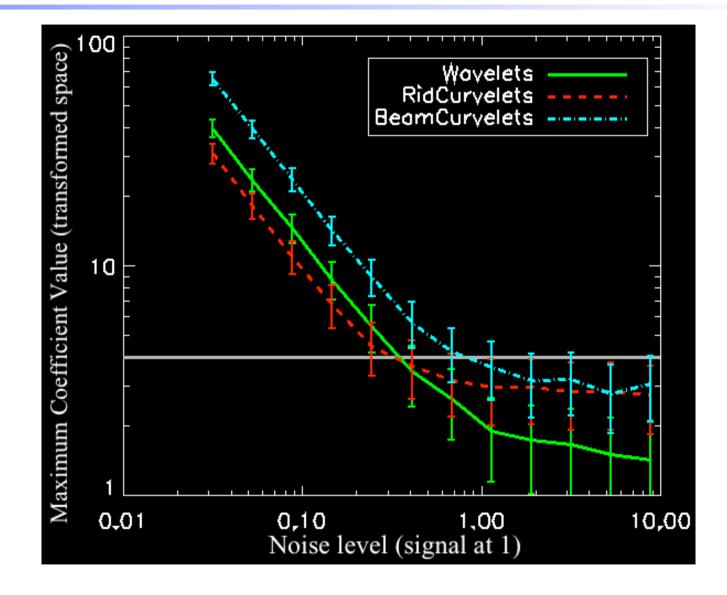




3D Plane detection level



3D Line detection level



Combined denoising

- Amalgamate several transforms in a single dictionary $\Phi = [\Phi_1, \cdots, \Phi_K]$ to benefit from the best of each transform.
- More flexbility to represent complex geometrical content: the blessing of overcompletness.
- We have to solve

$$\min_{\alpha} \|\alpha\|_p^p \quad \text{s.t.} \quad \|g - \mathbf{\Phi}\alpha\|_2 \le \epsilon(\sigma) \ , \ 0 \le p \le 1.$$

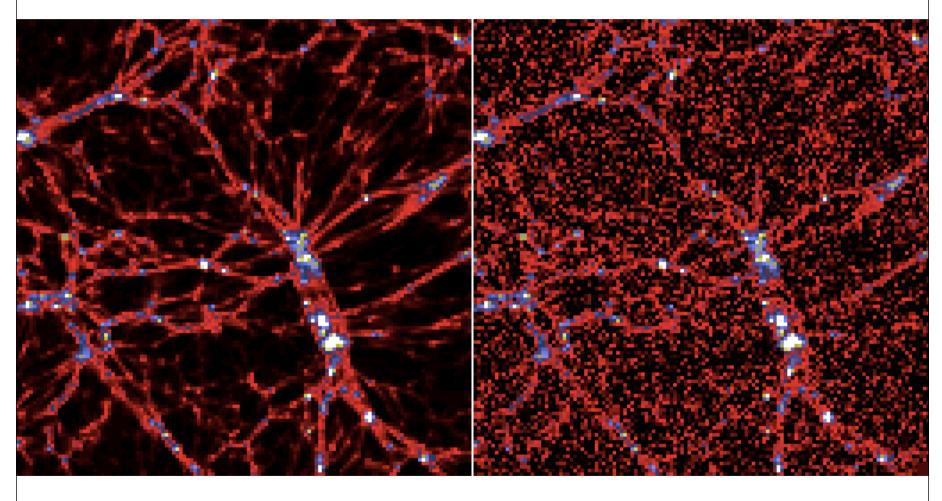
Solutions by e.g.:

Convex optimization (monotone operator splitting).

Greedy pursuit.

Combined denoising results

Cold Dark Matter simulations: clusters and filamentary structures with density of the filaments 3 orders of magnitude lower than the clusters.

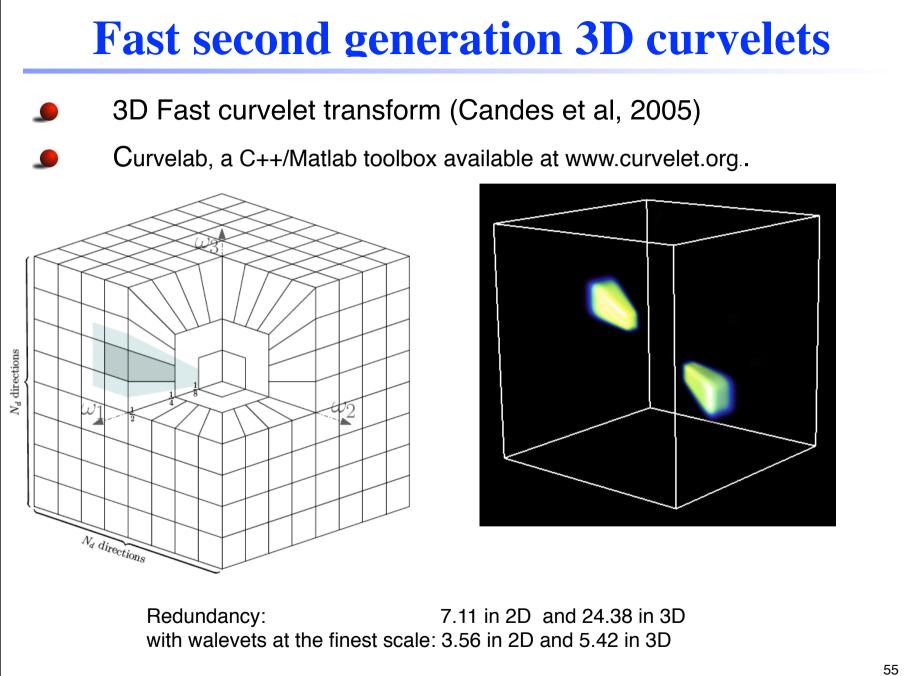


Combined denoising results

 3D UDWT
 BeamCurvelets
 Combined denoising BeamCurvelets+3D UDWT

 Image: Combined denoising BeamCurvelets+3D UDWT
 Image: Combined denoising BeamCurvelets+3D UDWT

 Image: Combined denoising BeamCurvelets+3D UDWT
 Image: Combined denoising BeamCurvelets+3D UDWT



Fast second generation 3D curvelets

3D Fast curvelet transform.

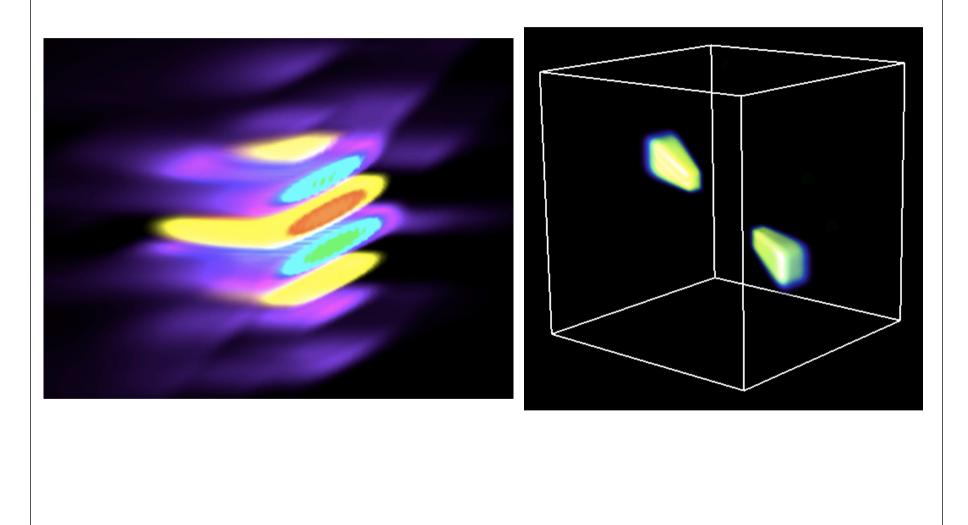
Main differences with Candès et al. CurveLab :

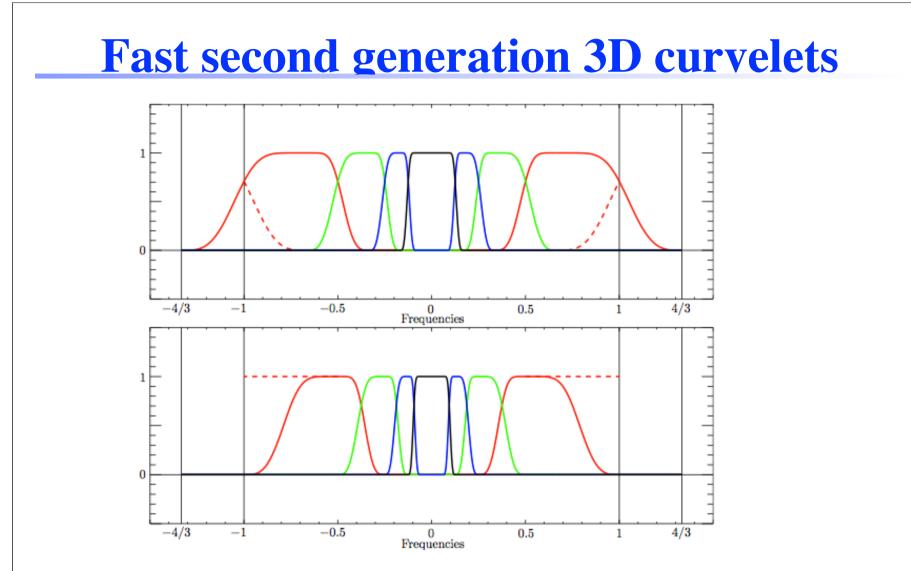
- Implementation: e.g. wavelet transform, overlapping angular windows.
- Much less redundant than Candès et al. (2.3-10.3 instead of 5.4-24.4).
- **Faster in practice**.

	Original FCT		Proposed FCT	
	С	W	С	W
2-D	7.11	3.56	4.00	2.00
3-D	24.38	5.42	10.29	2.29

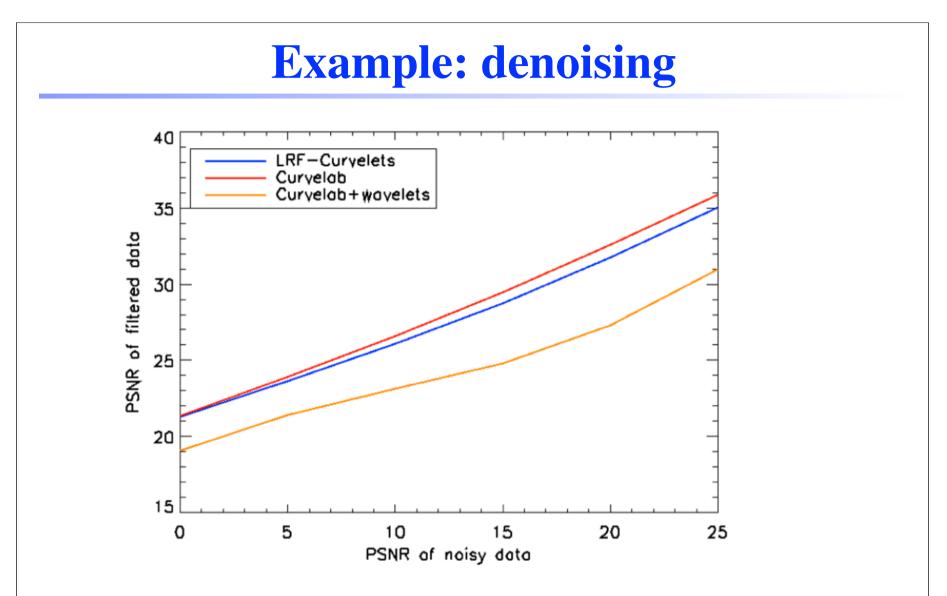
. Woiselle, J.L. Starck, M.J. Fadili, "3D Data Denoising and Inpainting with the Fast Curvelet transform", JMIV, in press, 2011.

Fast second generation 3D curvelets

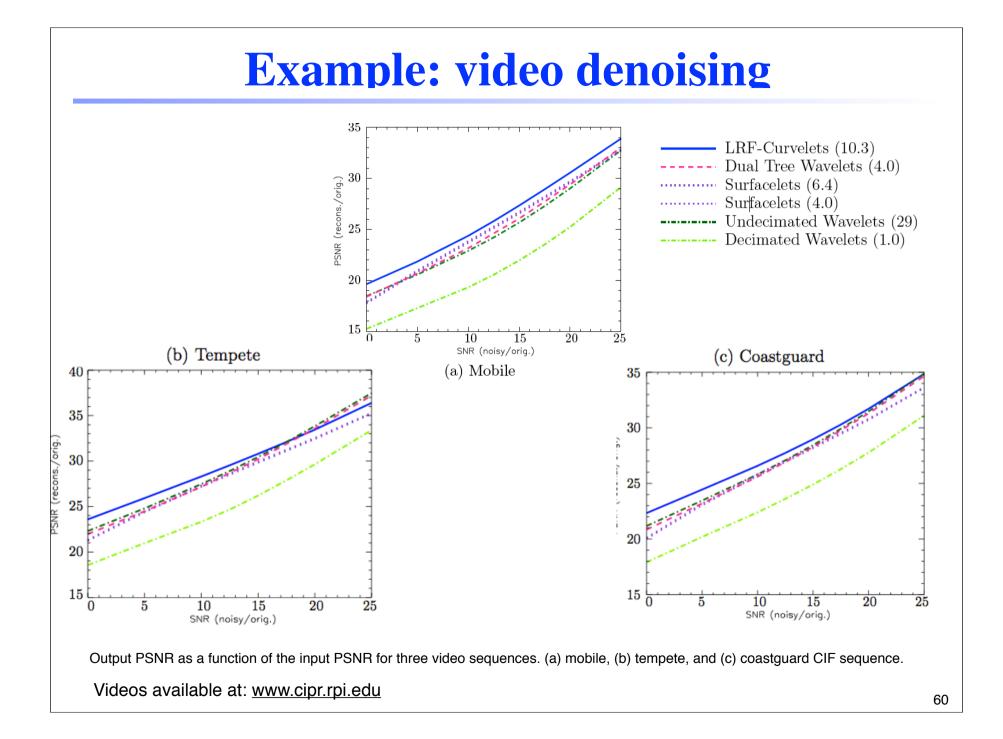




Meyer wavelets functions in Fourier domain. In the discrete case, we only have access to the Fourier samples inside the Shannon band [-1/2, 1/2], while the wavelet corresponding to the finest scale (solid red line) exceeds the Shannon frequency band to 2/3. Top : In the Curvelab implementation, the Meyer wavelet basis is periodized in Fourier, so that the exceeding end of the finest scale wavelet is replaced with the mirrored dashed line on the plot. Bottom : In our implementation, the wavelets are shrunk so that they fit in the [-1/2, 1/2] Shannon band, and the decreasing tail of the finest scale wavelet is replaced by a constant (dashed red line) to ensure a uniform partition of the unity.

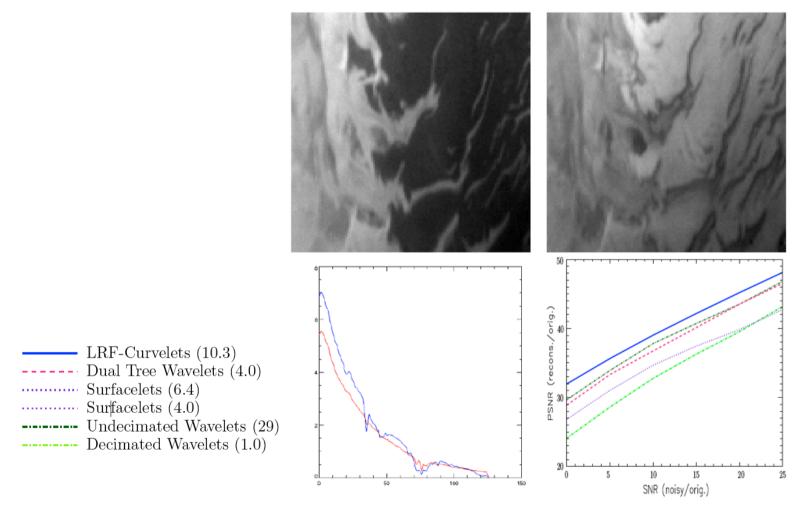


Mean denoising PSNR versus noise level using different FCT implementations. The denoising PSNR was averaged over ten noise realizations and several datasets. The LR-FCT is in blue. Original FCT implementation of Curvelab using curvelets (red) and wavelets (orange) at the finest scale.



Example: hyperspectral data denoising

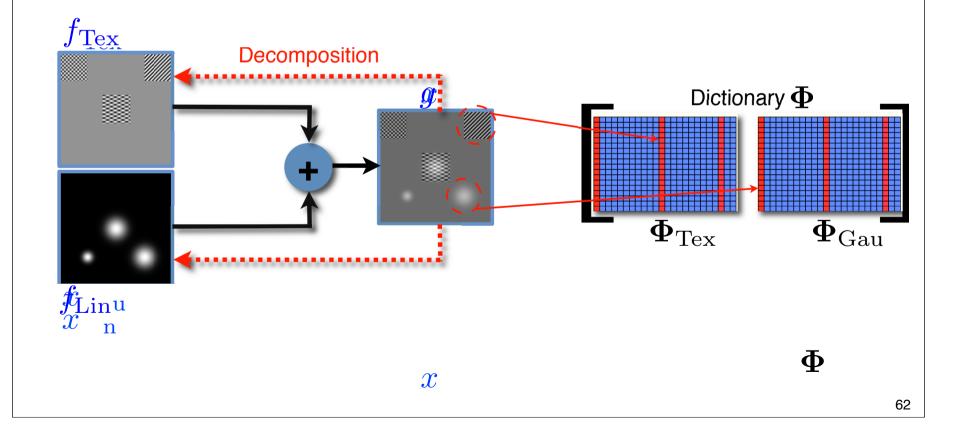
DATA: OMEGA spectrometer on Mars Express (<u>www.esa.int/marsexpress</u>) with 128 wavelength from 0.93µm to 2.73µm.

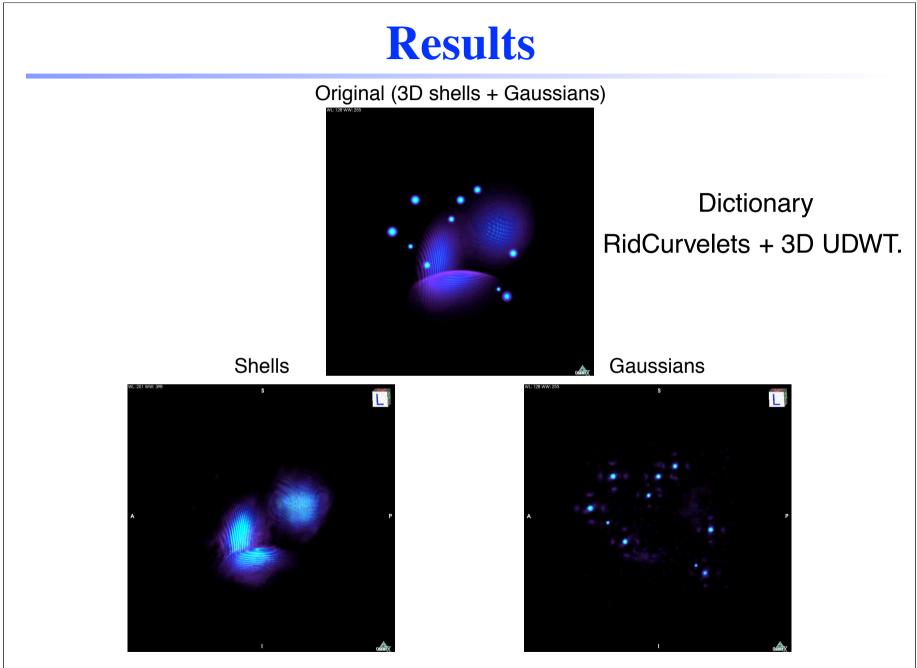


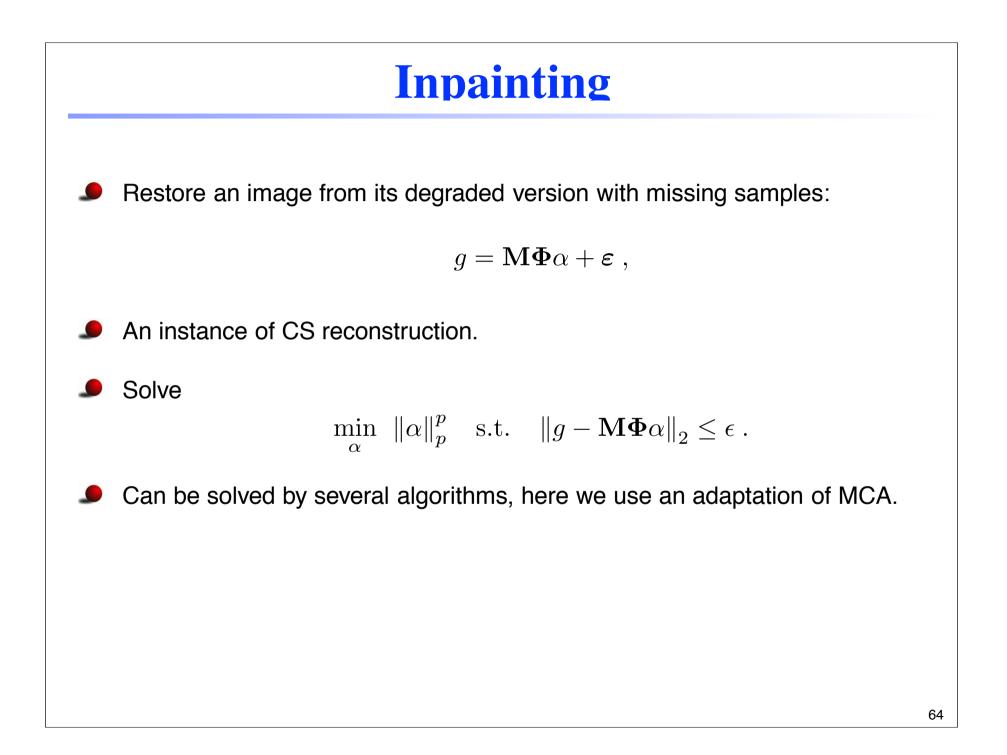
Top row : Mars Express observations at two different wavelengths. Bottom-left : two spectra at two distinct pixels. Bottom-right : output PSNR as a function of the input PSNR for different transforms

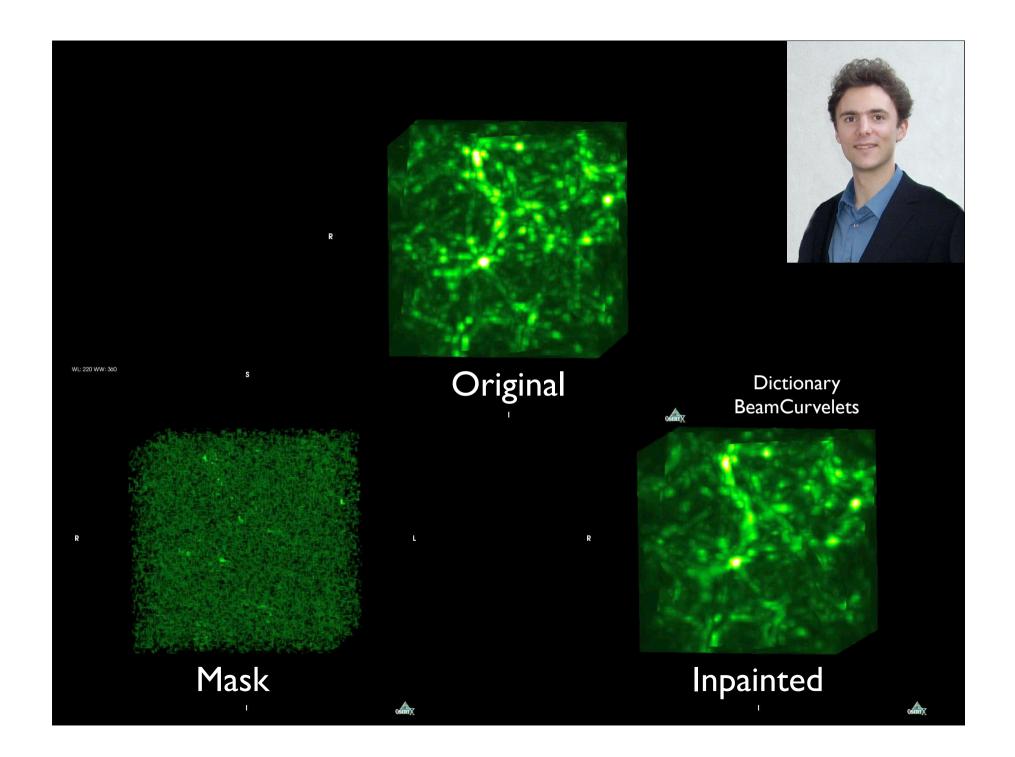
Sparse component separation

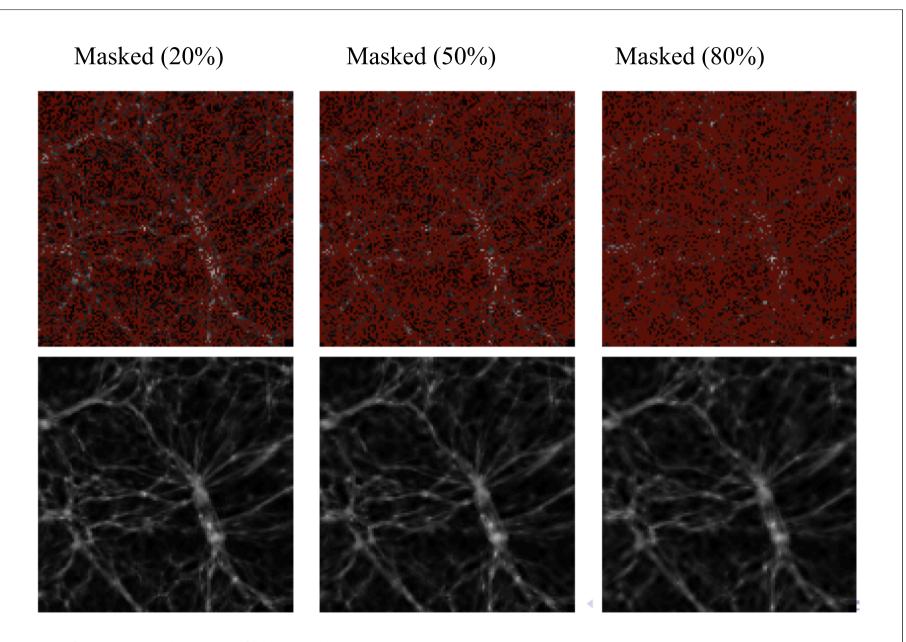
- Separate an image into its morphological components from $g = \sum_{k=1}^{K} f_k + \varepsilon = \sum_{k=1}^{K} \Phi_k \alpha_k + \varepsilon$, each α_k is sparse in Φ_k but not (or less) sparse in $\Phi_{k' \neq k}$.
- A sparse decomposition problem solved by MCA [Starck et al. 2004-2009].



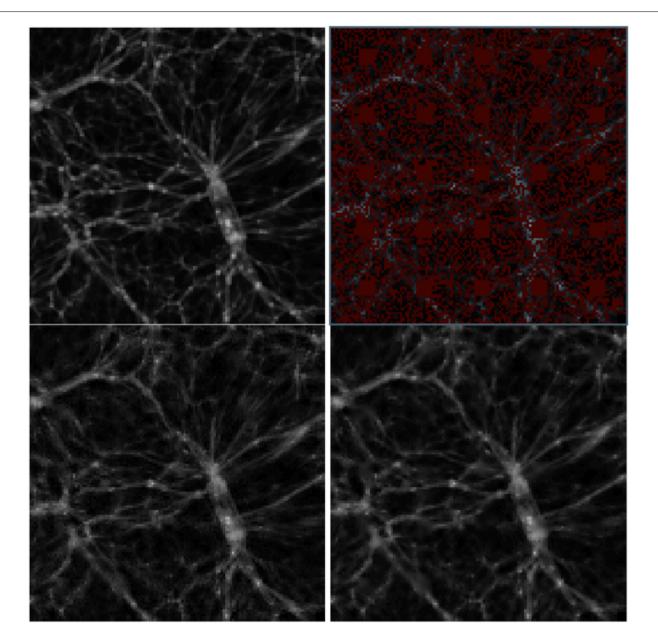




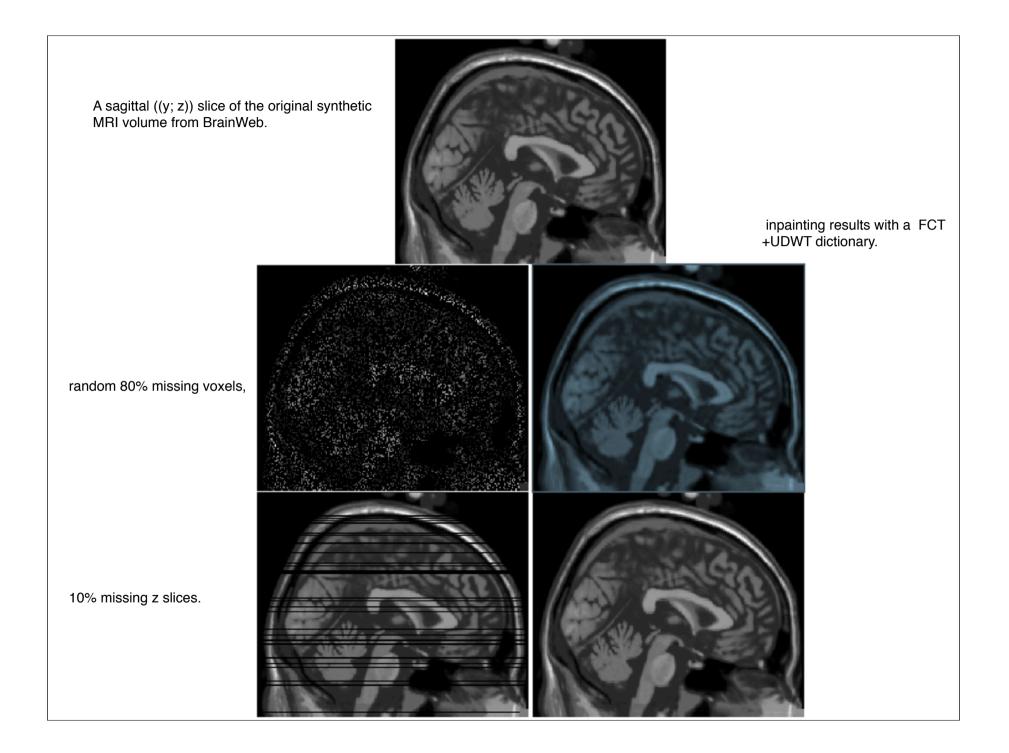




Central slice of the masked CDM data with 20, 50, and 80% missing voxels, and the inpainted maps. The missing voxels are dark red.



First row : original central frame of the CDM data cube, and degraded version with missing voxels in red. Bottom row : the filtered results using the RidCurvelets (left) and the BeamCurvelets (right).



Conclusions

- Several 3D multiscale oriented representations.
- Adapted to sparsify several geometrical structures: filamentary and planar segments.
- Fast analysis and synthesis algorithms (FFT-based): parallel implementations.
- A wide variety of applications.

Jean-Luc Starck Fionn Murtagh

Astronomical Image and Data Analysis

Second Edition

Jean-Luc Starck Fionn Murtagh Jalal Fadili

SPARSE IMAGE and SIGNAL PROCESSING

Wavelets, Curvelets, Morphological Diversity

CAMBRIDGE