Introduction	Problems and Algorithms	Solution	Conclusion
00000	0000	00000000	0
Comment relâcher la contrainte de	trame ajustée dans le cadre des méthodes proxima	les en restauration d'images?	1/20

Comment relâcher la contrainte de trame ajustée dans le cadre des méthodes proximales en restauration d'images?

Nelly Pustelnik⁽¹⁾, Jean-Christophe Pesquet⁽²⁾ et Caroline Chaux⁽²⁾

(1) Lab. IMS – Université Bordeaux 1
 (2) Lab. IGM - Université Paris-Est

GdR ISIS : 1er Avril 2011

Degradation model: convolution and noise

- $T: \ell^2(\mathbb{Z}) \to \ell^2(\mathbb{Z})$: Convolution operator
- \mathcal{D}_{α} : Effect of noise (Gaussian noise, Poisson noise, Laplace noise, ...)
- α: noise parameter (variance for Gaussian noise, scaling parameter for Poisson noise, ...)

Degradation model: convolution and noise

- $T: \ell^2(\mathbb{Z}) \to \ell^2(\mathbb{Z})$: Convolution operator
- \mathcal{D}_{α} : Effect of noise (Gaussian noise, Poisson noise, Laplace noise, ...)
- α: noise parameter (variance for Gaussian noise, scaling parameter for Poisson noise, ...)

 \Rightarrow Our objective is to recover an image \hat{y} , the closest as possible to \overline{y} .

Introduction	Problems and Algorithms	Solution	Conclusion
0000	0000	00000000	0
Comment relâcher la contrainte de	trame ajustée dans le cadre des méthodes proxima	ales en restauration d'images?	3/20

Gaussian noise + convolution

- Quadratic regularization techniques (Wiener filtering).
- Multiresolution analyses were used for denoising (T = Id).
- Redundant frame representations were substituted for wavelet bases for denoising.

Introduction	Problems and Algorithms	Solution	Conclusion
00000	0000	00000000	0
Comment relâcher la contrainte d	e trame ajustée dans le cadre des méthodes proxim	ales en restauration d'images?	4/20

Frame representation

 $y = F^* x$

Frame coefficients (x)

Image (y)

x ∈ l²(Z): Frame coefficients of the image y.
 F*: l²(Z) → l²(Z): Frame synthesis operator

F: ℓ²(ℤ) → ℓ²(ℤ): Frame analysis operator
Frame is tight if ∃μ ∈]0, +∞[, F*F = μld.

Introduction	Problems and Algorithms	Solution	Conclusion
00000	0000	00000000	0
Comment relâcher la	a contrainte de trame ajustée dans le cadre des méti	nodes proximales en restauration d'images	? 5/20

Tight frame drawback: DTT example

Original

Diagonal decomposition coefficients for the first resolution level without prefiltering (top) and with prefiltering (bottom) after a dual-tree decomposition with Meyer filter M = 2.

Introduction	Problems and Algorithms	Solution	Conclusion
00000	0000	00000000	0
Comment relâcher la contrainte de	trame ajustée dans le cadre des méthodes proxima	ales en restauration d'images?	6/20

Gaussian noise + convolution

- Quadratic regularization techniques (Wiener filtering).
- Multiresolution analyses were used for denoising (T = Id).
- Redundant frame representations were substituted for wavelet bases for denoising.

Introduction	Problems and Algorithms	Solution	Conclusion
00000	0000	00000000	0
Comment relâcher la contrainte c	e trame ajustée dans le cadre des méthodes proxim	ales en restauration d'images?	6/20

Gaussian noise + convolution

- Quadratic regularization techniques (Wiener filtering).
- Multiresolution analyses were used for denoising (T = Id).
- Redundant frame representations were substituted for wavelet bases for denoising.
- ► Forward-backward when $T \neq Id$ [Combettes&Wajs 2005, Daubechies et al. 2004, Figueiredo&BioucasDias 2003, Bect et al. 2004] \rightarrow thresholded Landweber to solve $||T \cdot -z||_2^2 + || \cdot ||_1$.

Introduction	Problems and Algorithms	Solution	Conclusion
00000	0000	00000000	0
Comment relâcher la contrainte c	e trame ajustée dans le cadre des méthodes proxim	ales en restauration d'images?	6/20

Gaussian noise + convolution

- Quadratic regularization techniques (Wiener filtering).
- Multiresolution analyses were used for denoising (T = Id).
- Redundant frame representations were substituted for wavelet bases for denoising.
- ► Forward-backward when $T \neq \text{Id}$ [Combettes&Wajs 2005, Daubechies et al. 2004, Figueiredo&BioucasDias 2003, Bect et al. 2004] \rightarrow thresholded Landweber to solve $||T \cdot -z||_2^2 + || \cdot ||_1$.

Laplace, Poisson, \dots noise + convolution

Introduction	Problems and Algorithms	Solution	Conclusion
00000	0000	00000000	0
Comment relâcher la contrainte c	e trame ajustée dans le cadre des méthodes proxim	ales en restauration d'images?	6/20

Gaussian noise + convolution

- Quadratic regularization techniques (Wiener filtering).
- Multiresolution analyses were used for denoising (T = Id).
- Redundant frame representations were substituted for wavelet bases for denoising.
- ► Forward-backward when $T \neq Id$ [Combettes&Wajs 2005, Daubechies et al. 2004, Figueiredo&BioucasDias 2003, Bect et al. 2004] \rightarrow thresholded Landweber to solve $||T \cdot -z||_2^2 + || \cdot ||_1$.

Laplace, Poisson, \dots noise + convolution

- ► Douglas-Rachford (DR) algorithm [Combettes&Pesquet 2007]
- ► Parallel Proximal Algo. (PPXA) [Combettes&Pesquet 2008]
- ► ADMM [Afonso et al. 2009, Setzer et al. 2009]
- PPXA+: unifying framework for PPXA and ADMM [Pesquet 2010]

Introduction	Problems and Algorithms	Solution	Conclusion
00000	0000	00000000	0
Comment relâcher la contrainte c	e trame ajustée dans le cadre des méthodes proxim	ales en restauration d'images?	6/20

Gaussian noise + convolution

- Quadratic regularization techniques (Wiener filtering).
- Multiresolution analyses were used for denoising (T = Id).
- Redundant frame representations were substituted for wavelet bases for denoising.
- ► Forward-backward when $T \neq Id$ [Combettes&Wajs 2005, Daubechies et al. 2004, Figueiredo&BioucasDias 2003, Bect et al. 2004] \rightarrow thresholded Landweber to solve $||T \cdot -z||_2^2 + || \cdot ||_1$. NTF

Laplace, Poisson, \dots noise + convolution

- ► Douglas-Rachford (DR) algorithm [Combettes&Pesquet 2007] TF
- Parallel Proximal Algo. (PPXA) [Combettes&Pesquet 2008] TF
- ► ADMM [Afonso et al. 2009, Setzer et al. 2009] TF
- ▶ PPXA+: unifying framework for PPXA and ADMM [Pesquet 2010] TF

Introduction	Problems and Algorithms	Solution	Conclusion
00000	●000	00000000	0
Comment relâcher la contrainte de	trame ajustée dans le cadre des méthodes proxima	ales en restauration d'images?	7/20

Considered problems

Synthesis formulation (SF):

$$\hat{y} = F^* \hat{x}$$
 such that $\hat{x} \in \operatorname{Argmin}_{x \in \ell^2(\mathbb{Z})} \sum_{i=1}^n f_i(L_i F^* x) + \sum_{j=1}^m g_j(x)$

Analysis formulation (AF):

$$\hat{y} \in \operatorname{Argmin}_{y \in \ell^2(\mathbb{Z})} \sum_{i=1}^n f_i(L_i y) + \sum_{j=1}^m g_j(F_y)$$

For every i ∈ {1,..., n}, f_i: l²(ℤ) →]−∞, +∞] is a convex, l.s.c and proper function and L_i: l²(ℤ) → l²(ℤ) is a convolutive operator.

For every j ∈ {1,...,m}, g_j: ℓ²(ℤ) →]−∞, +∞] is a convex, l.s.c and proper function.

Introduction	Problems and Algorithms	Solution	Conclusion
00000	0000	00000000	0
Comment relâcher la contrainte de	trame ajustée dans le cadre des méthodes proxim	ales en restauration d'images?	8/20

Proximity operator

Definition [Moreau (1965)]

(∀u

▶ **Definition**: For every *u* in a Hilbert space \mathcal{H} , the function $v \mapsto \varphi(v) + ||u - v||^2/2$, where φ is a convex, l.s.c and proper function, achieves its minimum at a unique point denoted by $\operatorname{prox}_{\varphi} u$, i.e.,

$$\in \mathcal{H}), \qquad \operatorname{prox}_{\varphi} u = \arg\min_{v \in \mathcal{H}} \varphi(v) + \frac{1}{2} \|u - v\|^2$$

Introduction	Problems and Algorithms	Solution	Conclusion
00000	0000	00000000	0
Comment relâcher la contrainte de	trame ajustée dans le cadre des méthodes proxim	ales en restauration d'images?	8/20

Proximity operator

Definition [Moreau (1965)]

▶ **Definition**: For every *u* in a Hilbert space \mathcal{H} , the function $v \mapsto \varphi(v) + ||u - v||^2/2$, where φ is a convex, l.s.c and proper function, achieves its minimum at a unique point denoted by $\operatorname{prox}_{\varphi} u$, i.e.,

$$(\forall u \in \mathcal{H}), \qquad \operatorname{prox}_{\varphi} u = \arg\min_{v \in \mathcal{H}} \varphi(v) + \frac{1}{2} \|u - v\|^2$$

Examples:

- If φ = ι_C ⇒ prox_{ι_C} = P_C where ι_C denotes the indicator function over a closed convex set C and P_C denotes the projection onto C
- ▶ If $\varphi = \chi |.|$ with $\chi > 0 \Rightarrow \operatorname{prox}_{\chi|.|}$ is a soft-thresholding with threshold value χ

▶ If
$$\varphi = \omega |.|^p + \chi |.|$$
 with $\omega > 0 \Rightarrow$ Closed forms for several $p \ge 1$

Introduction 00000	Problems and Algorithms	Solution 00000000	Conclusion 0
Comment relâcher la	contrainte de trame ajustée dans le cadre des me	thodes proximales en restauration d'images?	9/20
PPXA+:	$\underset{x \in \ell^2(\mathbb{Z})}{\text{minimize }} \sum_{i=1}^n \mathbf{f}_i(L_i F)$	$(x^*x) + \sum_{j=1}^m g_j(x)$	
$\left[\begin{array}{c} Initializatio\\(\eta_i)_{1\leq i\leq}\\(v_{i,0})_{1\leq i}\\x_0=arg\end{array}\right]$	$ \begin{array}{l} & n \\ & n \in \]0, +\infty[^n, (\kappa_j)_{1 \le j \le m} \in \]0, \\ & \leq_n \in (\ell^2(\mathbb{Z}))^n, (w_{j,0})_{1 \le j \le m} \in (n, n) \\ & g \min_{u \in \ell^2(\mathbb{Z})} \sum_{i=1}^n \eta_i \ L_i F^* u - v_i \ \\ \end{array} $	$ +\infty[^{m} \\ \ell^{2}(\mathbb{Z}))^{m} \\ _{i,0}\ ^{2} + \sum_{j=1}^{m} \kappa_{j} \ u - w_{j,0}\ ^{2} $	
For $\ell = 0, 1$ For $i = 1$ $\begin{bmatrix} For & i = 1 \\ p_{i,\ell} = 1 \\ For & j = 1 \\ r_{j,\ell} = 1 \\ \lambda_{\ell} \in]0, 2 \\ c_{\ell} = \arg \\ For & i = 1 \end{bmatrix}$	1,, n = $\operatorname{prox}_{f_i/\eta_i} v_{i,\ell}$ 1,, m = $\operatorname{prox}_{g_j/\kappa_j} w_{j,\ell}$ 2[$\operatorname{grin}_{u \in \ell^2(\mathbb{Z})} \sum_{i=1}^n \eta_i \ L_i F^* u - p_i\ $ 1,, n	$\ u_{j,\ell}\ ^2 + \sum_{j=1}^m \kappa_j \ u - r_{j,\ell}\ ^2$	
$\begin{bmatrix} v_{i,\ell+} \\ For i = \end{bmatrix}$	$1 = \mathbf{v}_{i,\ell} + \lambda_{\ell} (\mathbf{L}_i \mathbf{F}^* (2c_{\ell} - \mathbf{x}_{\ell}) - \mathbf{u}_{\ell}) - \mathbf{u}_{\ell} \mathbf{v}_{\ell} \mathbf$	$(p_{i,\ell})$	

For
$$j = 1, \dots, m$$

$$\lfloor w_{j,\ell+1} = w_{j,\ell} + \lambda_{\ell} (2c_{\ell} - x_{\ell} - r_{j,\ell})$$

$$x_{\ell+1} = x_{\ell} + \lambda_{\ell} (c_{\ell} - x_{\ell})$$

Introduction	Problems and Algorithms	Solution	Conclusion
Comment relâcher la c	contrainte de trame ajustée dans le cadre des métho	odes proximales en restauration d'images?	9/20
PPXA+:	$\underset{x \in \ell^2(\mathbb{Z})}{\text{minimize}} \sum_{i=1}^n f_i(L_i F^*)$	$(x) + \sum_{j=1}^m g_j(x)$	
Initializatio $ \begin{bmatrix} (\eta_i)_{1 \leq i \leq} \\ (v_{i,0})_{1 \leq i} \\ x_0 = \arg \end{bmatrix} $	$n_{n \in [0, +\infty[^{n}, (\kappa_{j})_{1 \le j \le m} \in]0, + \\ \le n \in (\ell^{2}(\mathbb{Z}))^{n}, (w_{j,0})_{1 \le j \le m} \in (\ell^{2}(\mathbb{Z}))^{n}, (w_{j,0})_{1 \le j \le m} \in (\ell^{2}(\mathbb{Z}))^{n} $	$\infty[^{m} (\mathbb{Z}))^{m} \\ \ ^{2} + \sum_{j=1}^{m} \kappa_{j} \ u - w_{j,0}\ ^{2}$	
For $\ell = 0, 1$ For $i = \lfloor p_{i,\ell} = \rfloor$	$1, \dots, n$ = $\operatorname{prox}_{f_i/\eta_i} v_{i,\ell}$		
For $J = [r_{j,\ell} = \lambda_\ell \in]0,2$	$1, \dots, m$ = $\operatorname{prox}_{g_j/\kappa_j} w_{j,\ell}$ 2[u2 ⊂ m u u2	
$\begin{array}{c} c_{\ell} = \arg\\ \text{For } i = \\ \lfloor & v_{i,\ell+1} \end{array}$	$ \min_{u \in \ell^2(\mathbb{Z})} \sum_{i=1}^{m} \eta_i L_i F^* u - p_{i,\ell} $ $ 1, \dots, n $ $ 1 = v_{i,\ell} + \lambda_\ell (L_i F^* (2c_\ell - x_\ell) - p_i) $	$ ^{-} + \sum_{j=1}^{\dots} \kappa_j u - r_{j,\ell} ^{-}$	
$\begin{bmatrix} For \ j = \\ \ \ \ \ \ \ \ \ \ \ \ \ \$	$1, \dots, m$ $\mu_1 = w_{j,\ell} + \lambda_\ell (2c_\ell - x_\ell - r_{j,\ell})$ $\kappa_\ell + \lambda_\ell (c_\ell - x_\ell)$		

Introduction 00000	Problems and Algorithms	Solution 00000000	Conclusion 0
Comment relâcher la co	ntrainte de trame ajustée dans le cadre des n	néthodes proximales en restauration d'images?	9/20
PPXA+:	$\underset{y \in \ell^2(\mathbb{Z})}{\text{minimize }} \sum_{i=1}^n f_i(L)$	$_{i}y)+\sum_{j=1}^{m}g_{j}(Fy)$	
Initialization $ \begin{bmatrix} (\eta_i)_{1 \leq i \leq n} \\ (v_{i,0})_{1 \leq i \leq i \leq n} \\ y_0 = \arg n \end{bmatrix} $	$ \begin{array}{l} \in \]0, +\infty[^n, (\kappa_j)_{1 \leq j \leq m} \in \]0\\ \mathbf{x}_n \in (\ell^2(\mathbb{Z}))^n, (w_{j,0})_{1 \leq j \leq m} \in \\ \min_{u \in \ell^2(\mathbb{Z})} \sum_{i=1}^n \eta_i \ \underbrace{L}_i u - v_{i,0} \ \end{array} $	$\ (\ell^{2}(\mathbb{Z}))^{m} \ ^{2} + \sum_{j=1}^{m} \kappa_{j} \ \mathbf{F} u - w_{j,0} \ ^{2}$	
For $\ell = 0, 1$, • • •		
For $i = 1$.,, n		
$[p_{i,\ell} =$	$\operatorname{prox}_{\mathbf{f}_i/\eta_i} \mathbf{v}_{i,\ell}$		
For $j = 1$	1,, m		
	$\operatorname{prox}_{g_j/\kappa_j} W_{j,\ell}$		
$\lambda_{\ell} \in]0,2]$			
$c_\ell = \arg r$	$\min_{u\in\ell^2(\mathbb{Z})}\sum_{i=1}^n\eta_i\ L_iu-p_{i,\ell}\ $	$\ ^{2} + \sum_{j=1}^{m} \kappa_{j} \ \mathbf{F} u - \mathbf{r}_{j,\ell} \ ^{2}$	
For $i = 1$, n	-	
$\lfloor v_{i,\ell+1}$	$= v_{i,\ell} + \lambda_\ell (L_i(2c_\ell - y_\ell) - p_\ell)$	i, ℓ)	
For $j = 1$	L,, m		
$\lfloor w_{j,\ell+1}$	$\lambda = w_{j,\ell} + \lambda_\ell ig({F(2c_\ell - y_\ell) - r_\ell} ig)$	(j,ℓ)	
$\int y_{\ell+1} = y_{\ell}$	$(z_{\ell} + \lambda_{\ell}(c_{\ell} - y_{\ell}))$		

Introduction 00000	Problems and Algorithms	Solution 000000000	O Conclusion
Comment relâcher la co	ntrainte de trame ajustée dans le cadre des méth	odes proximales en restauration d'images?	9/20
PPXA+:	$\underset{y \in \ell^2(\mathbb{Z})}{\text{minimize}} \sum_{i=1}^n \mathbf{f}_i(\mathbf{L}_i y)$	$(F) + \sum_{j=1}^{m} g_j(Fy)$	
Initialization $ \begin{bmatrix} (\eta_i)_{1 \le i \le n} \\ (v_{i,0})_{1 \le i \le i} \\ y_0 = \arg r \end{bmatrix} $	$ \in]0, +\infty[^{n}, (\kappa_{j})_{1 \le j \le m} \in]0, +\infty[^{n}, (\omega_{j,0})_{1 \le j \le m} \in (\ell^{2}(\mathbb{Z}))^{n}, (w_{j,0})_{1 \le j \le m} \in (\ell^{2}(\mathbb{Z}))^{n} = 0, -\infty[n] = 0 $	$\mathcal{L}^{m} \in \mathbb{Z}^{m}$ $\mathcal{L}^{m} + \sum_{j=1}^{m} \kappa_{j} \ \mathcal{F} u - w_{j,0} \ ^{2}$	
For $\ell = 0, 1,$ For $i = 1$ $\lfloor p_{i,\ell} =$	\dots, \dots, n $\operatorname{prox}_{f_i/\eta_i} v_{i,\ell}$		
$\begin{bmatrix} r_{j,\ell} = \\ \lambda_{\ell} \in]0, 2[\\ c_{\ell} = \arg n \end{bmatrix}$	$\operatorname{prox}_{g_j/\kappa_j} w_{j,\ell}$ $\operatorname{prox}_{g_j/\kappa_j} \sum_{i=1}^n n_i L_i u - p_{i,\ell} ^2$	$+\sum_{i=1}^{m} \kappa_{i} \ Fu - r_{i}\ ^{2}$	
For $i = 1$ $\begin{bmatrix} v_{i,\ell+1} \\ For \\ i = 1 \end{bmatrix}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$))	
$\left[\begin{array}{c} \lfloor w_{j,\ell+1} \\ y_{\ell+1} = y_{\ell} \end{array}\right]$	$\tilde{f} = w_{j,\ell} + \lambda_\ell (F(2c_\ell - y_\ell) - r_{j,\ell}) + \lambda_\ell (c_\ell - y_\ell)$)	

Introduction	Problems and Algorithms	Solution	Conclusion
00000	0000	00000000	0
Comment relâcher la contrainte de	trame ajustée dans le cadre des méthodes proxima	ales en restauration d'images?	10/20

PPXA+ convergence

The convergence of the sequence $(x_{\ell})_{\ell \in \mathbb{N}}$ (resp. $(y_{\ell})_{\ell \in \mathbb{N}}$) generated by algorithm PPXA+ for SF (resp. algorithm PPXA+ for AF) is established under the following assumptions:

1.
$$\left(\bigcap_{i=1}^{n} \operatorname{ri} \operatorname{dom} f_{i} \circ L_{i}F^{*}\right) \cap \left(\bigcap_{j=1}^{m} \operatorname{ri} \operatorname{dom} g_{j}\right) \neq \emptyset$$

(resp. $\left(\bigcap_{i=1}^{n} \operatorname{ri} \operatorname{dom} f_{i} \circ L_{i}\right) \cap \left(\bigcap_{j=1}^{m} \operatorname{ri} \operatorname{dom} g_{j} \circ F\right) \neq \emptyset$).

2. There exists $\underline{\lambda} \in]0, 2[$ such that $(\forall \ell \in \mathbb{N}), \ \underline{\lambda} \leq \lambda_{\ell+1} \leq \lambda_{\ell}.$

Introduction	Problems and Algorithms	Solution	Conclusion
00000	0000	●00000000	0
Comment relâcher la contrainte de	trame ajustée dans le cadre des méthodes proxima	les en restauration d'images?	11/20

Difficulties to use PPXA+ and frame representations

• Analysis formulation

PPXA+ iteration:

$$c_{\ell} = \left(\sum_{i=1}^{n} \eta_i L_i^* L_i + \sum_{j=1}^{m} \kappa_j F^* F\right)^{-1} \left(\sum_{i=1}^{n} \eta_i L_i^* p_{i,\ell} + \sum_{j=1}^{m} \kappa_j F^* r_{j,\ell}\right)$$

• Synthesis formulation

PPXA+ iteration:

$$c_{\ell} = \left(\sum_{i=1}^{n} \eta_i F L_i^* L_i F^* + \sum_{j=1}^{m} \kappa_j I\right)^{-1} \left(\sum_{i=1}^{n} \eta_i F L_i^* p_{i,\ell} + \sum_{j=1}^{m} \kappa_j r_{j,\ell}\right)$$

Introduction	Problems and Algorithms	Solution	Conclusion
00000	0000	●00000000	0
Comment relâcher la contrainte de	trame ajustée dans le cadre des méthodes proxima	les en restauration d'images?	11/20

Difficulties to use PPXA+ and frame representations

• Analysis formulation

PPXA+ iteration:

$$c_{\ell} = \left(\sum_{i=1}^{n} \eta_i L_i^* L_i + \sum_{j=1}^{m} \kappa_j F^* F\right)^{-1} \left(\sum_{i=1}^{n} \eta_i L_i^* p_{i,\ell} + \sum_{j=1}^{m} \kappa_j F^* r_{j,\ell}\right)$$

Difficulty:

$$\left(\sum_{i=1}^n \eta_i L_i^* L_i + \kappa F^* F\right)^{-1} \qquad \text{by setting} \qquad \kappa = \sum_{j=1}^m \kappa_j$$

• Synthesis formulation

PPXA+ iteration:

$$c_{\ell} = \left(\sum_{i=1}^{n} \eta_i F L_i^* L_i F^* + \sum_{j=1}^{m} \kappa_j I\right)^{-1} \left(\sum_{i=1}^{n} \eta_i F L_i^* p_{i,\ell} + \sum_{j=1}^{m} \kappa_j r_{j,\ell}\right)$$

Difficulty:

$$\kappa \Big(\sum_{i=1}^n \eta_i F L_i^* L_i F^* + \kappa \mathrm{Id}\Big)^{-1} = \mathrm{Id} - F\Big(\sum_{i=1}^n \eta_i L_i^* L_i\Big)\Big(\kappa \mathrm{I} + F^* F\Big(\sum_{i=1}^n \eta_i L_i^* L_i\Big)\Big)^{-1} F^*$$

 \Rightarrow How can we compute efficiently ($\cdot + F^*F \cdot)^{-1}$?

Introduction	Problems and Algorithms	Solution	Conclusion
00000	0000	00000000	0
Comment relâcher la contrainte de	trame ajustée dans le cadre des méthodes proxima	ales en restauration d'images?	12/20

Q-channel undecimated filter bank

Introduction	Problems and Algorithms	Solution	Conclusion
00000	0000	00000000	0
Comment relâcher la contrainte de	trame ajustée dans le cadre des méthodes proxim	ales en restauration d'images?	12/20

Q-channel undecimated filter bank

► *V_q*: **filtering operator** such that

$$(orall \omega \in [-\pi,\pi]^2) \qquad \sum_{q=1}^Q |\hat{v}_q(\omega)|^2 \geq \mu,$$

and $\hat{v}_q(\omega)$: frequency response of the filter associated with the convolutive operator V_q .

Introduction	Problems and Algorithms	Solution	Conclusion
00000	0000	00000000	0
Comment relâcher la contrainte de	trame ajustée dans le cadre des méthodes proxim	ales en restauration d'images?	13/20

Q-band DTT [Kingsbury 2001, Chaux et al. 2006]

Introduction	Problems and Algorithms	Solution	Conclusion
00000	0000	00000000	0
Comment relâcher la contrainte de	trame ajustée dans le cadre des méthodes proxima	ales en restauration d'images?	13/20

Q-band DTT [Kingsbury 2001, Chaux et al. 2006]

- ► U_q: ortho. matrices (Q-band orthon. wav. decomp. in parallel)
- R: orthogonal combination of the subbands applied to ensure directionality (2D)

Introduction	Problems and Algorithms	Solution	Conclusion
00000	0000	00000000	0
Comment relâcher la contrainte de	trame ajustée dans le cadre des méthodes proxim	ales en restauration d'images?	14/20

A specific class of frame representation: DTT

$$F = U \begin{bmatrix} V_1 \\ V_2 \\ \vdots \\ V_Q \end{bmatrix} \implies F^*F = \mu_U \sum_{q=1}^Q V_q^* V_q.$$

U: tight frame analysis matrix with constant µ_U ∈]0, +∞[.
 V_q: prefiltering operator such that

$$(\forall \omega \in [-\pi,\pi]^2)$$
 $\mu_U \sum_{q=1}^Q |\hat{v}_q(\omega)|^2 \ge \mu,$

and $\hat{v}_q(\omega)$: frequency response of the filter associated with the convolutive operator V_q .

Introduction	Problems and Algorithms	Solution	Con	clusion
00000	0000	00000000	0	
Comment relâcher la contrainte de	trame ajustée dans le cadre des méthodes proxim	ales en restauration d'images?		14/20

A specific class of frame representation: DTT

$$F = U \begin{bmatrix} V_1 \\ V_2 \\ \vdots \\ V_Q \end{bmatrix} \implies F^*F = \mu_U \sum_{q=1}^Q V_q^* V_q.$$

• Analysis formulation:

$$\left(\sum_{i=1}^{n}\eta_{i}L_{i}^{*}L_{i}+\kappa F^{*}F\right)^{-1}=\left(\sum_{i=1}^{n}\eta_{i}L_{i}^{*}L_{i}+\kappa\mu_{U}\sum_{q=1}^{Q}V_{q}^{*}V_{q}\right)^{-1}$$

• Synthesis formulation:

$$\begin{split} \mathrm{Id} &- F\big(\sum_{i=1}^n \eta_i L_i^* L_i\big) \Big(\kappa \mathrm{I} + F^* F\big(\sum_{i=1}^n \eta_i L_i^* L_i\big)\Big)^{-1} F^* \\ &= \mathrm{Id} - F\big(\sum_{i=1}^n \eta_i L_i^* L_i\big) \Big(\kappa \mathrm{I} + \mu_U \sum_{q=1}^Q V_q^* V_q\big(\sum_{i=1}^n \eta_i L_i^* L_i\big)\Big)^{-1} F^* \end{split}$$

Results: Cropped versions of Barbara image. Images are restored using SF and complex DTT

Degraded

SNR = 11.4 dB, SSIM = 0.53

Original

Results: Cropped versions of Barbara image. Images are restored using SF and complex DTT

Tight-frame Complex DTT SNR = 13.3 dB, SSIM = 0.69

 $\begin{array}{l} \mbox{Complex DTT} \\ \mbox{SNR} = 14.2 \mbox{ dB} \mbox{ , SSIM} = 0.73 \end{array}$

Introduction	Problems and Algorithms	Solution	Conclusion
00000	0000	000000000	0
Comment relâcher la contrainte de	trame ajustée dans le cadre des méthodes proxima	ales en restauration d'images?	16/20

Filter bank – polyphase implementation

- $Q \in \mathbb{N}^*$: decimation factor.
- $P \in \mathbb{N}^*$: number of channels.
- $P/Q \ge 1$: redundancy introduced by such a filter bank structure.
- Π_Q: polyphase decomposition from ℓ²(ℤ) to (ℓ²(ℤ))^Q, Π_Qy = (y^(j))_{1≤j≤Q} where y^(j) = (y(Qn − j + 1))_{n∈ℤ} is the j-th polyphase component of order Q of the signal y.
- ▶ $V_{i,j}$: $\ell^2(\mathbb{Z}) \to \ell^2(\mathbb{Z})$: **SISO** (Single-Input Single-Ouput) stable filter.

Introduction	Problems and Algorithms	Solution	Conclusion
00000	0000	000000000	0
Comment relâcher la contrainte de	trame ajustée dans le cadre des méthodes proxima	les en restauration d'images?	17/20

Filter bank – polyphase implementation

$$F = V \Pi_Q \quad \text{with} \quad \begin{bmatrix} V_{1,1} & \dots & V_{1,Q} \\ \vdots & & \vdots \\ V_{P,1} & \dots & V_{P,Q} \end{bmatrix} \quad \Rightarrow \quad F^*F = \Pi_Q^* V^* V \Pi_Q$$

Introduction	Problems and Algorithms	Solution	Conclusion
00000	0000	000000000	0
Comment relâcher la contrainte de	trame ajustée dans le cadre des méthodes proxima	les en restauration d'images?	17/20

Filter bank – polyphase implementation

$$F = V \Pi_Q \quad \text{with} \quad \begin{bmatrix} V_{1,1} & \dots & V_{1,Q} \\ \vdots & & \vdots \\ V_{P,1} & \dots & V_{P,Q} \end{bmatrix} \quad \Rightarrow \quad F^*F = \Pi_Q^* V^* V \Pi_Q$$

• Analysis formulation:

$$\left(\sum_{i=1}^{n}\eta_{i}\boldsymbol{L}_{i}^{*}\boldsymbol{L}_{i}+\kappa\boldsymbol{F}^{*}\boldsymbol{F}\right)^{-1}=\boldsymbol{\Pi}_{Q}^{*}\left(\sum_{i=1}^{n}\eta_{i}\boldsymbol{W}_{i}^{*}\boldsymbol{W}_{i}+\kappa\boldsymbol{V}^{*}\boldsymbol{V}\right)^{-1}\boldsymbol{\Pi}_{Q}$$

• Synthesis formulation:

$$\begin{split} \mathrm{Id} &- F \big(\sum_{i=1}^n \eta_i L_i^* L_i \big) \Big(\kappa \mathrm{I} + F^* F \big(\sum_{i=1}^n \eta_i L_i^* L_i \big) \Big)^{-1} F^* \\ &= \mathrm{Id} - F \Pi_Q^* \big(\sum_{i=1}^n \eta_i W_i^* W_i \big) \Big(\kappa \mathrm{I} + V^* V \big(\sum_{i=1}^n \eta_i W_i^* W_i \big) \Big)^{-1} \Pi_Q F^* \end{split}$$

Introduction	Problems and Algorithms	Solution	Conclusion
00000	0000	00000000	0
Comment relâcher la contrain	te de trame ajustée dans le cadre des mét	hodes proximales en restauration d'images?	18/20

Results: Image restored using AF with DTT and GenLOT

Original

 $\begin{array}{l} \mbox{Degraded} \\ \mbox{SNR} = 14.8 \mbox{ dB} \mbox{ , SSIM} = 0.42 \end{array}$

Introduction	Problems and Algorithms	Solution	Conclusion
00000	0000	000000000	0
Comment relâcher la contrain	te de trame ajustée dans le cadre des méti	odes proximales en restauration d'images?	18/20

Results: Image restored using AF with DTT and GenLOT

 $\begin{array}{ccc} \mathsf{DTT} & \mathsf{GenLOT}\\ \mathsf{SNR}=16.7 \; \mathsf{dB} \; , \; \mathsf{SSIM}=0.63 & \; \mathsf{SNR}=17.1 \; \mathsf{dB} \; , \; \mathsf{SSIM}=0.67 \end{array}$

Introduction	Problems and Algorithms	Solution	Conclusion
00000	0000	00000000	0
Comment relâcher la contrainte de trame ajustée dans le cadre des méthodes proximales en restauration d'images?			19/20

Generalization

Proposition

The operator

$$\mathsf{F} = \Pi_R^* U V \Pi_Q$$

is a frame operator with frame constants

$$\underline{\mu} = \mu_U \inf_{\nu \in [-1/2, 1/2]} \sigma_{\min}(\nu) \quad \text{and} \quad \overline{\mu} = \mu_U \sup_{\nu \in [-1/2, 1/2]} \sigma_{\max}(\nu)$$

where, for every ν , $\sigma_{\min}(\nu)$ and $\sigma_{\max}(\nu)$ are the minimum and maximum eigenvalues of $\hat{\mathbf{v}}(\nu)^{\mathrm{H}}\hat{\mathbf{v}}(\nu)$. In addition, we have:

 $F^*F = \mu_U \Pi_Q^* V^* V \Pi_Q.$

Introduction	Problems and Algorithms	Solution	Conclusion
00000	0000	00000000	•
Comment relâcher la contrainte de	trame ajustée dans le cadre des méthodes proxima	ales en restauration d'images?	20/20

Conclusion

- Experimental results motivate the use of non tight frame representations.
- Allows us to deal with a large class of restoration problems with the considered class of non tight frame representations.
- ► Examples obtained with DTT and GenLOT but other forms of frame representations could be written as $F = \prod_{R}^{*} UV \prod_{D}$.