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All sorts of networks around us
2

Electrical Network

Social Network

Transportation Network“Neuronal” Network
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Each point has a desired class label           (suppose binary)

x1, x2, ..., xn ∈ Rd

|S| = l < n

Transductive Learning
3

Let X be an array of data points

yk ∈ Y

At training you have the labels of a subset S of X

GOAL: predict remaining labels
Rationale: minimize empirical risk on your training data such that
- your model is predictive
- your model is simple, does not overfit
- your model is “stable” (depends continuously on your training set)
- ... 

Getting data is easy but labeled data is a scarce resource 
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�Xtβ − y�2
2

yk = β · xk + b

β = (XXt)−1Xy

β = (XXt + αI)−1Xy�Xtβ − y�2
2 + α�β�2

2

Transductive Learning
4

Ex: Linear regression
Empirical Risk:

if not enough observations, regularize (Tikhonov):

Ridge Regression

�ΦXβ − y�2
2,S + αS(β)

How can unlabeled data be used ?
Questions: 

More general linear model with a dictionary of features ?

dictionary depends on data points simplifies/stabilizes selected model
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Learning on/with Graphs
5

How can unlabeled data be used ?

Assumption: 
target function is not globally smooth but it is locally smooth over 
regions of data space that have some geometrical structure

Use graph to model this structure
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∆f =
�

i,j∈X

Wij(f(xi)− f(xj))2

= f tLf

�Xt
Sβ − y�2

2 + α�β�2
2 + γβtXLXtβ

Learning on/with Graphs
6

Example (Belkin, Niyogi)

Affinity between data points represented by edge weights 
(affinity matrix W)

measure of smoothness:

Revisit ridge regression:

L = W - D

Solution is smooth in graph “geometry”
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ΦX

arg min
β
�y −MΦXβ�2

2 + αS(β)

Transduction & Representation
7

More general linear model with a dictionary of features ?

dictionary of features on the complete data set (data dependent)

M   restricts to labeled data points (mask)

Empirical Risk
Model Selection penalty, sparsity ?
Smoothness on graph ?

Important Note: our dictionary will be data dependent but its 
construction is not part of the above optimization 
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ψs,a(x) =
1
s
ψ

�
x− a

s

�

(T sf)(a) =
�

1
s
ψ∗

�
x− a

s

�
f(x)dx (T sf)(a) = �ψ(s,a), f�

Wavelet Ingredients
8

Wavelet transform based on two operations:

Dilation (or scaling) and Translation (or localization)

(T sδa)(x) =
1
s
ψ∗

�x− a

s

�

(T sf)(x) =
1
2π

�
eiωxψ̂∗(sω)f̂(ω)dω

Equivalently:
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L = D −A

(Lf)(i) =
�

i∼j

wi,j(f(i)− f(j))

G = (V,E, w)

Graph Laplacian and Spectral Theory
9

Non-normalized Laplacian: Real, symmetric

Lnorm = D−1/2LD−1/2 = I −D−1/2AD−1/2

Remark:

Why Laplacian ? Z2

(Lf)i,j = 4fi,j − fi+1,j − fi−1,j − fi,j+1 − fi,j−1

with usual stencil

In general, graph laplacian from nicely sampled  
manifold converges to Laplace-Beltrami operator

weighted, undirected graph
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eiωx f(x) =
1
2π

�
f̂(ω)eiωxdω

d2

dx2

Graph Laplacian and Spectral Theory
10

Lφl = λlφlEigen decomposition of Laplacian:

0 = λ0 < λ1 ≤ λ2... ≤ λN−1

f̂(�) = �φ�, f� =
N�

i=1

φ∗
� (i)f(i)

f(i) =
N−1�

�=0

f̂(�)φ�(i)

Graph Fourier Transform

For simplicity assume connected graph and

For any function on the vertex set (vector) we have:
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Spectral Graph Wavelets
11

Remember good old Euclidean case:

(T sf)(x) =
1
2π

�
eiωxψ̂∗(sω)f̂(ω)dω

We will adopt this operator view

g : R+ → R+ Tg = g(L)

�Tgf(�) = g(λ�)f̂(�) (Tgf)(i) =
N−1�

�=0

g(λ�)f̂(�)φ�(i)

Operator-valued function via continuous Borel functional calculus

Operator-valued function

Action of operator is induced by its Fourier symbol
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Spectral Graph Wavelets
12

T t
g = g(tL)Dilation operates through operator: 

ψt,j = T t
gδj

ψt,j(i) =
N−1�

�=0

g(tλ�)φ∗� (j)φ�(i)

ψt,a(u) =
�

R
dω ψ̂(tω)e−jωaejωu

Translation (localization):

Define response to a delta at vertex j

Wf (t, j) = �ψt,j , f� Wf (t, j) = T t
gf(j) =

N−1�

�=0

g(tλ�)f̂(�)φ�(j)

And so formally define the graph wavelet coefficients of f:

Now on to our main ingredients !
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γ(λ�) =
� 1

1/2

dt

t
g2(tλ�) g̃(λ�) =

�
γ(λ�)− γ(2λ�)

φn = Thδn = h(L)δn

Frames
13

∃A, B > O, ∃h : R+ → R+ (i.e. scaling function)
0 < A � h2(u) +

�
s g(tsu)2 � B < ∞

scaling function wavelets

0 10
0

1

2

λ

A

B

A simple way to get a tight frame:

for any admissible kernel g
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Scaling & Localization
14

Effect of operator dilation ?

Acts in subtle way, depends on kernel 
but has universal “localization” effect

refaire mieux
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Scaling & Localization
15

Effect of operator dilation ?

Acts in subtle way, depends on kernel 
but has universal “localization” effect
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Scaling & Localization
16

Effect of operator dilation ?

Acts in subtle way, depends on kernel 
but has universal “localization” effect
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Scaling & Localization
17

Effect of operator dilation ?

Acts in subtle way, depends on kernel 
but has universal “localization” effect
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ψt,i(j) should be small if i and j are separated, and t is small

ψt,i(j) = �ψt,i, δj� = �T t
gδi, δj�

Scaling & Localization
18

Study matrix element: 

Reason ? At small scale, wavelet operator behaves like power of Laplacian

ψt,j(i)
�ψt,j�

≤ Dt

dG(i, j) > K

function of dG(i, j)

Theorem:

for any t smaller than a critical scale 

and g has K vanishing derivatives at 0
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−1 0 1−1
0

1
−1

0

1

ψt,i(j)

Scaling & Localization
19
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decreasing scale
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Example
20
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Sparsity and Smoothness on Graphs
21

Using a dictionary of graph wavelets, sparsity and 
smoothness on graph are the same thing !

�

i∈V

|�ψ2−j ,i, f�|2 =
�

l

|g(2jλl)|2|f̂(λl)|2

=
�

2−j−1λmax≤λl≤2−jλmax

|f̂(λl)|2

A
�

l

λ2s
l |f̂(λl)|2 ≤

�

j

2−2sj
�

i

|�ψ2−j ,i, f�|2 ≤ B
�

l

λ2s
l |f̂(λl)|2

�f�2
G,2s =

�

l

λ2s
l |f̂(λl)|2

Idea: for a “Meyer kernel” on the spectrum of G 

discrete Sobolev semi-norm on G
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Sparsity and Smoothness on Graphs
22

scaling functions coeffs
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T t
g �

K−1�

k=0

ak(t)Lk

0 40

0

1

λ

Remark on Implementation
23

Not necessary to compute spectral decomposition

Polynomial approximation :

ex: Chebyshev, minimax

Then wavelet operator expressed with powers of Laplacian:

And use sparsity of Laplacian in an iterative way

g(tω) �
K−1�

k=0

ak(t)pk(ω)
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W̃f (t, j) =
�
p(L)f#

�
j

|Wf (t, j)− W̃f (t, j)| ≤ B�f�

W̃f (tn, j) =

�
1
2
cn,0f

# +
Mn�

k=1

cn,kT k(L)f#

�

j

T k(L)f =
2
a1

(L− a2I)
�
T k−1(L)f

�
− T k−2(L)f

Remark on Implementation
24

sup norm control (minimax or Chebyshef)

O(
J�

n=1

Mn|E|)

Computational cost dominated by matrix-vector multiply with 
(sparse) Laplacian matrix. 
In particular

Note: “same” algorithm for adjoint !
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Distributed Computation
25

Scenario: Network of N nodes, each knows
- local data f(n)
- local neighbors
- M Chebyshev coefficients of wavelet kernel
- A global upper bound on largest eigenvalue of graph laplacian

�
T 1(L)f

�

n
=

� 2
α

(L− αI)f
�

n
sensor only needs f(n) from its neighbors

�
T k(L)f

�
=

2
α

(L− αI)
�
T k−1(L)f

�
− T k−2(L)f

Computed by exchanging 
last computed values 

�
Φ̃f

�
(j−1)N+n

=
�1
2
cj,0f +

M�

k=1

cj,kT k(L)f
�
n

To compute:
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arg min
a

1
2
�y −Φ∗a�2

2 + �a�1,µ

a(k)
i = Sµi,τ

��
ak−1 + τΦ(y −Φ∗ak−1)

�
i

�

Φy

ΦΦ∗a
Cost ∼ |E|

Distributed Computation
26

Communication cost: 2M|E| messages of length 1 per node

Example: distributed denoising, or distributed regression, with Lasso
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Fig. 4. The regularizing multiplier τ
τ+2λr

!
associated with the graph

Fourier multiplier operator R from Proposition 1. Here, r = τ = 1.
Shifted Chebyshev polynomial approximations to the multiplier are shown
for different values of the approximation order M .

Original Signal

(a)

Noise

(b)

Noisy Signal

(c)

Denoised Signal

(d)

Fig. 5. A denoising example on the graph shown in Figure 2, using the
regularizing multiplier shown in Figure 4. (a) The original signal n2

x+n2
y−1,

where nx and ny are the x and y coordinates of sensor node n. (b) The
additive Gaussian noise. (c) The noisy signal y. (d) The denoised signal R̃y.

C. Distributed Wavelet Denoising

In this section, we consider an alternate method of dis-
tributed denoising that may be better suited to signals that are
piecewise smooth on the graph, but not necessarily globally
smooth. The setup is the same as in Section V-B, with a noisy
signal y ∈ RN , and each sensor n observing yn. Instead of
starting with a prior that the signal is globally smooth, we start
with a prior belief that the signal is sparse in the spectral graph
wavelet domain [17]. The spectral graph wavelet transform,
W , defined in [17], is precisely of the form of Φ in (6).
Namely, it is composed of one multiplier, h(·), that acts as
a low-pass filter to stably represent the signal’s low frequency
content, and J wavelet operators, defined by gj(λ!) = g(tjλ!),
where {tj}j=1,2,...,J is a set of scales and g(·) is the wavelet
multiplier that acts as a band-pass filter.

The most common way to incorporate a sparse prior in a

centralized setting is to regularize via a weighted version of the
least absolute shrinkage and selection operator (lasso) [22],
also called basis pursuit denoising [23]:

argmin
a

1

2
‖y − W ∗a‖2

2 + ‖a‖1,µ , (20)

where ‖a‖1,µ :=
∑N(J+1)

i=1 µi |ai|. The optimization problem
in (20) can be solved for example by iterative soft thresholding
[24]. The initial estimate of the wavelet coefficients a(0)

is arbitrary, and at each iteration of the soft thresholding
algorithm, the update of the estimated wavelet coefficients is
given by

a(k)
i = Sµiτ

((
a(k−1) + τW

[
y − W ∗a(k−1)

])

i

)
,

k = 1, 2, . . . (21)

where τ is the step size and Sµiτ is the shrinkage or soft
thresholding operator

Sµiτ (z) :=

{
0 , if | z |≤ µiτ
z − sgn(z)µiτ , o.w.

.

The iterative soft thresholding algorithm converges to a∗, the
minimizer of (20), if τ < 2

‖W∗‖2 [25]. The final denoised
estimate of the signal is then given by W ∗a∗.

We now turn to the issue of how to implement the above al-
gorithm in a distributed fashion by sending messages between
neighbors in the network. One option would be to use the
distributed lasso algorithm of [26], which is a special case of
the Alternating Direction Method of Multipliers [27, p. 253].
In every iteration of that algorithm, each node transmits its
current estimate of all the wavelet coefficients to its local
neighbors. With a transform the size of the spectral graph
wavelet transform, this requires 2|E| total messages at every
iteration, with each message being a vector of length N(J+1).
A method where the amount of communicated information
does not grow with N (beyond the number of edges, |E|)
would be highly preferable.

The Chebyshev polynomial approximation of the spectral
graph wavelet transform allows us to accomplish this goal. Our
approach is to approximate W by W̃ , and use the distributed
implementation of the approximate wavelet transform and its
adjoint to perform iterative soft thresholding. In the first soft
thresholding iteration, each node n must learn (W̃y)(j−1)N+n

at all scales j, via Algorithm 1. These coefficients are then
stored for future iterations. In the kth iteration, each node n
must learn the J + 1 coefficients of W̃W̃ ∗a(k−1) centered at
n, via the method of Section IV-C. Finally, when a stopping
criterion for the soft thresholding is satisfied, the adjoint
operator W̃ ∗ is applied in a distributed manner to the resulting
coefficients ã∗, via the method of Section IV-B, and node n’s

denoised estimate of its signal is
(
W̃ ∗ã∗

)

n
.

We now examine the communication requirements of this
approach. Recall from Section IV that 2M |E| messages of
length 1 are required to compute W̃y in a distributed fashion.
At each iteration, distributed computation of W̃W̃ ∗a(k−1), the
other term needed in the iterative thresholding update (21),

Total communication cost:

2M|E| messages of length 1

4M|E| messages of length J+1

Distributed Lasso [Mateos, Bazerque, Gianakis] Cost ∼ |E|N

Chebyshev
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arg min
β
�y −MΦXβ�2

2 + α�β�1

Sparsity and Transduction
27

Since sparsity = smoothness on graph, why not simple LASSO ?

arg min
β
�y −MΦXβ�2

2 + αS(β)

Bad Idea:
We know there are strongly correlated coefficients 
(LASSO will kill some of them)

There is no information to determine masked wavelets

move “bad idea” comment 
after
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scaling level

Group Sparsity - take I
28

Scaling functions not sparse are optimized separately

Group potentially correlated variables (scales)

scale 1

scale 2
group k

group l

Few groups should be active = local smoothness

Inside group, all coefficients can be active

Simple model, no overlap, optimized like LASSO

Formulate with mixed-norms �β�p,q

put this at the end with 
Composite penalties
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Preliminary Results
29

Ground truth

5% labeled recovered

Is it spectacular ? No. Comparable to state-of-art :(

Wavelets on trees, graphs and high dimensional data

For a regression problem, our estimator for f is

f̂(x) =
∑

!,k,j

â!,k,j ψ!,k,j(x) (12)

whereas for binary classification we output sign(f̂).

Note that conditional on all subfolders of X!
k having

at least one labeled point, â!,k,j is unbiased, E[â!,k,j ] =
a!,k,j . For small folders there is a non-negligible prob-
ability of having empty subfolders, so overall â!,k,j is
biased. However, by Theorem 1, for smooth functions
these coefficients are exponentially small in ". The
following theorem quantifies the expected L2 error of
both the estimate â!,k,j , and the function estimate f̂ .
Its proof is in the supplementary material.

Theorem 4 Let f be (C,α) Hölder, and define C1 =
C2α+1. Assume that the labeled samples si ∈ S ⊂ X
were randomly chosen from the uniform distribution
on X with replacement. Let f̂ be the estimator (12)
with coefficients estimated via Eq. (11). Up to o(1/|S|)
terms, the mean squared error of coefficient estimates
is bounded by

E[â!,k,j − a!,k,j ]
2 ! 1

|S|
C2

1B
2α

ν(X"
k)

2α

1−e−|S|Bν(X"
k
)

(13)

+ 1
B e−|S|Bν(X"

k) · a2!,k,j

The resulting overall MSE is bounded by

E ‖f − f̂‖2 = 1
N

∑

i

(f(xi)− f̂(xi))
2

≤ C2
1B

2α

|S|

∑

!,k,j

B
2α(!−1)

1− e−|S|B" (14)

+ 22α+1C2
1

B

∑

!,k,j

e−|S|B"

(B
2α+1

)!−1

The first term in (13) is the estimation error whereas
the second term is the approximation error, e.g. the
bias-variance decomposition. For sufficiently large
folders, with |S|Bν(X!

k) & 1, the estimation error de-
cays with the number of labeled points as |S|−1, and is
smaller for smoother functions (larger α). The approx-
imation error, due to folders empty of labeled points,
decays exponentially with |S| and with folder size.

The values B and B can be easily extracted from a
given tree. Theorem 4 thus provides a non-parametric
risk analysis that depends on a single parameter, the
assumed smoothness class α of the target function.

5. Numerical Results

We present preliminary numerical results of our SSL
scheme on several datasets. More results and Matlab
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Figure 2. Results on the USPS benchmark.

code appear in supplementary material. We focus on
two well-known handwritten digit data sets, MNIST
and USPS. These are natural choices due to the inher-
ent multiscale structures present in handwritten digits.

Given a dataset X of N digits, of which only a small
subset S is labeled, we first use all samples inX to con-
struct an affinity matrix Wi,j described below. A tree
is constructed as follows: At the finest level, " = L,
we have N singleton folders: XL

i = {xi}. Each coarse
level is constructed from a finer level as follows: Ran-
dom (centroid) points are selected s.t. no two are con-
nected by an edge of weight larger than a ”radius”
parameter. This yields a partition of the current level
according to the nearest centroid. The partition el-
ements constitute the points of the coarser level. A
coarse affinity matrix is constructed, where the edge
weight between two partition elements C and D is
∑

i∈C,j∈D W 2
ij where W is the affinity matrix of the

finer level graph. The motivation for squaring the
affinities at each new coarse level is to capture struc-
tures at different scales. As the choice of centroids
is (pseudo) random, so is the resulting partition tree.
With the partition tree at hand, we construct a Haar-
like basis induced by the tree and estimate the co-
efficients of the target label function as described in
Section 4.

We compare our method to Laplacian Eigenmaps
(Belkin & Niyogi, 2003), with |S|/5 eigenfunctions, as
suggested by the authors, and to the Laplacian Reg-
ularization approach of (Zhu et al., 2003). For the
latter, we also consider an adaptive threshold for clas-
sification (sign(y > qth)), with qth chosen such that
the proportion of test labeled points of each class is
equal to its value in the training set2.

2Note that this method is different from the class mass
normalization approach of (Zhu et al., 2003).

Simulation results from Gavish et al, ICML 2010

2-class USPS 
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Group Sparsity - take II (outlook)
30

Group definition too restrictive

No “spatial” (neighborhood) information

S(β) =
�

j

γj

�

i∈V

��

k∼i

β2
j,k

neighborhood of i

Example (Composite Absolute Penalty [Mosci et al 2010, Jacob, Obozinski, Vert, 2009] ):

weights can trigger influence 
through scales 

�

i∈V

��

k∼i

β2
j,k

Remarks:
CAP is the composition of mixed norm and adjacency mat.
For analysis coefficients, at small scale                   behaves like TV
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Conclusions
 Structured, data dependent dictionary of wavelets
- sparsity and smoothness on graph are merged in simple 

and elegant fashion
- fast algo, clean problem formulation
- graph structure can be totally hidden in wavelets

 results not very encouraging for learning
- on par with state of art but seems more complicated
- no simple model to cope for information loss

 other applications (sensor net, non-local ...)

31
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Example
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Example
33
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Rpatch size

w(u, v) = e−σ2�p(u)−p(v)�22

Non-Local Image De-Noising
34

Non-Local Means, Bilateral Filter: Non-Local Smoothness

Construct kNN graph of patches

Non-Local Filtering: replace pixel value by weighted average 
of its non-local neighbors INL(u) =

�

v∼u

w(u, v)I(v)
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Non-local Wavelet Frame
 Non-local Wavelets are ...

                   ... Graph Wavelets on Non-Local Graph

35

increasing scale

ψt, (i)

Interest: good adaptive sparsity basis
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