

Réunion GDR ISIS – Transformées Géométriques Multirésolution – 1^{er} Avril 2011 - Paris

Transformées en ondelettes analytiques pour les images.

Raphaël Soulard, P. Carré, C. Fernandez Laboratoire Xlim-SIC, Poitiers

PLAN

- Contexte : Ondelettes + Signal analytique
- Ondelettes quaternioniques (\mathbb{H})
- QWT : Applications
- Ondelettes monogènes (G₃)
- Ondelettes monogènes couleur
- Conclusion

Limites des ondelettes classiques

AVANTAGES

- Separation des details
- Différentes échelles

APPLICATIONS

- JPEG-2000, MPEG-4 ...
- RdF, Classification ...

INCONVENIENTS

- Oscillations autour des singularités
- Variance / translation Pas de phase
- Faible directionalité

ALTERNATIVES

Ridgelets, Bandlets, Contourlets ...

Variance par translation

Signal Analytique

Phase

→ Ondelettes analytiques ?
→ 2D (images)?

Ondelettes analytiques 1D : Dual-Tree

→ Ondelettes analytiques implantables : Amélioration de la DWT Phase ? 2D ? Géométrie ?

Généralisation 2D

R. Soulard – XLim-SIC

$$|q| = \sqrt{a^2 + b^2 + c^2 + d^2}$$
Generalization des nombres complexes,
3 parties imaginaires : i,j,k.

$$|q| = \sqrt{a^2 + b^2 + c^2 + d^2}$$

$$\varphi = \frac{1}{2} \arctan\left(\frac{2(cd + ab)}{a^2 - b^2 + c^2 - d^2}\right)$$

$$\theta = \frac{1}{2} \arctan\left(\frac{2(bd + ac)}{a^2 + b^2 - c^2 - d^2}\right)$$

$$\theta = \frac{1}{2} \arctan\left(\frac{2(bd + ac)}{a^2 + b^2 - c^2 - d^2}\right)$$

$$\psi = -\frac{1}{2} \operatorname{arcsin}(2(bc - ad))$$

$$(\varphi, \theta, \psi) \in [-\pi, \pi[\times[-\frac{\pi}{2}, \frac{\pi}{2}[\times[-\frac{\pi}{4}, \frac{\pi}{4}]]])$$

Algebre des quaternions – Signaux 2D

Thomas Bülow (thèse – 1999) :

- "Les complexes ne sont pas suffisants pour les signaux 2D"
- Transf. De Fourier quaternionique (2D)
- Signal quaternionique-analytique (2D)

Signal Quaternionique Analytique

1D Signal analytique classique

Hilbert 2D séparable

Ondelettes quaternioniques / Dual-Tree $\pi \tau$

Definition continue: (transformée redondante)

 $\psi^{H}(x,y) = \psi_{1}^{H}(x,y) + \mathbf{i} \psi_{2}^{H}(x,y) + \mathbf{j} \psi_{3}^{H}(x,y) + \mathbf{k} \psi_{4}^{H}(x,y)$ Ond. réelle \rightarrow extension analytique $\psi^{V}(x,y) = \psi_1^{V}(x,y) + \mathbf{i} \psi_2^{V}(x,y) + \mathbf{j} \psi_3^{V}(x,y) + \mathbf{k} \psi_4^{V}(x,y)$ $\psi^{D}(x,y) = \psi_{1}^{D}(x,y) + \mathbf{i} \psi_{2}^{D}(x,y) + \mathbf{j} \psi_{3}^{D}(x,y) + \mathbf{k} \psi_{4}^{D}(x,y)$

Implantation 2D séparable du Dual-Tree

4 bancs de filtres \Leftrightarrow Hilbert 2D \rightarrow Ondelettes 2D analytiques

QWT = even-even + i odd-even + j even-odd + k odd-odd

Fourier quaternionique (Bülow) *Shift theorem* :

$$f_2(x,y) = f_1(x - r_x, y - r_y) \iff \begin{pmatrix} \varphi_2 \\ \theta_2 \end{pmatrix}$$

$$\begin{pmatrix} \varphi_2(u,v) \\ \theta_2(u,v) \end{pmatrix} = \begin{pmatrix} \varphi_1(u,v) - 2\pi u r_x \\ \theta_1(u,v) - 2\pi v r_y \end{pmatrix}$$

 \rightarrow (ϕ , θ) = <u>Décalage</u> local \rightarrow Flot optique

Littérature / QWT très pauvre : **T. Bülow** 1999 : Signal quaternionique, **W. Chan** et. al. 2004 : QWT, **E. Bayro-Corrochano** 2006 : QWT continue, **J. Zhou** et. al. 2007 : Flot optique.

Objectif du travail :

- Caractérisation de la transformation
- Utilisation dans un schéma de RdF + compression

Texture (?)

Application 1 : Classification de Textures

Extraction du descripteur *classique* : 1 mesure / sous-bande

Application 2 : Compression

R. Soulard – XLim-SIC

(Zooms)

Original (8 bpp)

1) Info mieux répartie

2) codage *léger* de la **phase**.

Bon résultat / forte quantification

et dans une chaîne de codage complète?

→ Integration dans un algo. *type* EZW : difficultés / organisation du flux
 Perspectives : - Optimiser codage phase (beaucoup de paramètres)

- Hierarchiser les données (transmission MIMO)

R. Soulard – XLim-SIC

Bilan QWT

Avancée : Compréhension phase QWT
QWT > DWT en classification de textures et en compression.

Solution : Signal monogène ? \rightarrow Invariant par rotation \rightarrow Facile à interpréter \rightarrow Défini dans G_3

Algèbre Géométrique

Signal Monogène

2D Signal quaternionique-analytique

Signal Monogène (Felsberg, 2001)

Point de vue signal :

-Transf. Hilbert $\mathcal{H}{f} = \frac{1}{\pi t} * f(t) \iff -j\frac{\omega}{|\omega|}\hat{f}(\omega) \iff \text{"déphasage pur" (1D)}$

-Transf. Riesz $\mathcal{R}{f} = -\frac{1}{2}$

 $\mathcal{R}{f} = \frac{x + \mathbf{j}y}{2\pi(x^2 + y^2)^{\frac{3}{2}}} * f(x, y) \quad \longleftrightarrow \quad \frac{-\mathbf{j}\omega_x + \omega_y}{\sqrt{\omega_x^2 + \omega_y^2}} \hat{f}(\omega_x, \omega_y)$

⇔ "déphasage pur 2D isotropique"

Point de vue *mathématique* :

- Signal analytique = "extension holomorphe restreinte à l'axe réel"
- "Fonction holomorphe" \Leftrightarrow "Champ harmonique 2D" (Laplacien 2D)
- Généralisation avec les champs harmoniques 3D (Laplacien 3D) -> Riesz

Ondelettes Monogènes

IDEE : - Transformée non-séparable (isotropique?)

- Une seule sous-bande par échelle
- Coefficients « monogènes » = module + phase + orientation

M. Unser et al. 2009

Ondelettes Monogènes (M. Unser)

1 Transformée réelle // 1 Transformée complexe (« Riesz »)

- Décomposition en Pyramide dyadique (trame)
- Banc de filtres discret non-séparable
- Approx. Isotropique et steerable
- Reconstruction optimale / algo. « subband regression »
- Redondance = 4:1

Ouvert : Le filtre « Riesz » correspondant semble non discret...

Ondelettes Monogènes

Pistes

Version isotropique
 Radon discrète + Dual-Tree
 « Riesz ⇔ Radon + Hilbert »
 (Ridgelets?)

- Version non redondante : Définir un banc de filtres à *échantillonage critique* dyadique H_0, H_1, H_2, H_3 tel que « $(H_2, H_3) = \text{Riesz}\{H_1\}$ » (impasse?)

Extension couleur
 Algèbres géométriques

Ondelettes Monogènes Couleur

-> Signal monogène couleur (Demarcq 2010) : Extension dans G_5 du signal monogène de M. Felsberg Généralisation des équations de Cauchy-Riemann (fonctions holomorphes)

Signal monogène 2D couleur ($\mathcal{G}_{\scriptscriptstyle{5}}$)

- 1 Phase paramétrée

Ondelettes Monogènes Couleur

- Non-marginal (pas strictement...)
- Redondance 20:9 (~2.2)
- Analyse directionelle

Riesz part

Original image R. Soulard – XLim-SIC

CR

CG

24

Ondelettes Monogènes Couleur

Conclusion

- QWT : **amélioration de DWT** / traitement du signal dans H
 - → Notion de **phase** + **invariance** / translation
- Validation pratique : classification, compression
 - \rightarrow Analyse locale des **structures** grâce à la phase
 - → Représentation cohérente grâce à l'invariance
- MWT : Amélioration de la QWT / traitement du signal dans G3
- Ondelettes couleur non marginales

PERSPECTIVES

- Compression MWT
- Signal analytique couleur
- Analytique non redondant?
- Analytique discret? Hilbert/Riesz discret?

Merci de votre attention 😳