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Introduction - Reminders of probability theory and
mathematical statistics
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What is Machine Learning?

Statistical machine learning is concerned with the development of
algorithms and techniques that learn from observed data by constructing
stochastic models that can be used for making predictions and decisions.

Topics covered include Bayesian inference and maximum likelihood
modeling; regression, classification, density estimation, clustering, principal
component analysis; parametric, semi-parametric, and non-parametric
models; basis functions, neural networks, kernel methods, and graphical
models; deterministic and stochastic optimization; overfitting,
regularization, and validation.
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From data to processing - robustness, dimension...

Big Picture
Data driven Model driven

n > p (n > p) (n > p)
n < p (n < p)

R < n,p
Classical Regularization Structure

Processing a priori
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General context

Statistical Signal Processing
Signals z : multivariate random complex observations (vectors).

Example : z ∈Cp Signal corrupted by an additive noise:

z =βd(θ)+n

with n ∼C N (0,Σ), θ and β unknown.

Several processes
PCA and dimension reduction
Parameter estimation
Detection / Filtering
Clustering / Classification
...
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Covariance & Subspace

Two quantities common to all these processes
“Optimal” processes rely on the second order statistics of z, notably on:

The covariance matrix (assume circularity):

Σ= E[
zzH]

Information on the variance and correlations between elements of z.
The principal subspace (of rank R)

ΠR =PR
{
E
[
zzH]}

Rank R orthogonal subspace where most of the information lies in.
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Examples
Estimation (MLE, GMM...)
Parameter θ of the signal d(θ) to be estimated from observations
Example : Maximum Likelihood Estimator (MLE)

min
θ

(d(θ)−z)HΣ−1(d(θ)−z)

Low rank version (e.g. MUSIC): replace Σ−1 by Π⊥

Applications: DoA, inverse problems, source separation...

Detection (ACE, GLRT, ANMF, MSD...)
Binary hypothesis test: is d(θ0) present?
Example : Adaptive Cosine Estimator (ACE, or ANMF):

ΛACE = |d(θ0)HΣ−1z|2
(d(θ0)HΣ−1d(θ0))(zHΣ−1z)

H1

≷
H0

η

Low rank version: replace Σ−1 by Π⊥

Applications : RADAR, imaging, audio...
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Filtering (MF, AMF, Projection...)
Maximizing the output signal to noise ratio (SNR):
Example : Adaptive Matched Filter

y = |dH (θ)Σ−1z|2
d(θ0)HΣ−1d(θ0)

Low rank version: replace Σ−1 by Π⊥

Applications : De-noising, interference cancellation (telecom)...

Classification (SVM, K-means, KL divergence...)
Select a class for the observations: covariance and subspace are descriptors
Example : KL divergence between two distributions (or other divergences,
Wasserstein, Riemanian ...)

KL(Z 1,Z 2) = 1
2 [Tr(Σ2

−1Σ1)+Tr(Σ1
−1Σ2)−2k]

W 2
2 (Z 1,Z 2) = Tr(Σ1)+Tr(Σ2)−2Tr

((
Σ1

1/2Σ2Σ1
1/2

)1/2
)

Applications : Machine learning, segmentation, profile determination...
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Example of non Gaussianity (1/3): High
Resolution SAR images

HR SAR images

SMDS Data
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Example of non Gaussianity (2/3): Hyperspectral
data

NASA Hyperion sensor
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Example of non Gaussianity (3/3): Financial data

Nasdaq-100, SP 500

Courtesy of E. Ollila [Ollila18]
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Menu - Probabilities and statistics basics

Example: Fair Six-Sided Die:
Sample space: Ω= {1,2,3,4,5,6}

Events: Even= {2,4,6}, Odd= {1,3,5} ⊆Ω

Probability: P(6) = 1

6
, P(Even) = P(Odd) = 1

2
Outcome: 6 ∈ E.

Conditional probability: P(6|Even) = P(6∩Even)

P(Even)
= 1/6

1/2
= 1

3
General Axioms:

P(;) = 0 ≤ P(A) ≤ 1 = P(Ω),
P(A∪B)+P(A∩B) = P(A)+P(B),
P(A∩B) = P(A|B)P(B).
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Menu - Probabilities and statistics basics
Example: (Un)fair coin: Ω= {Tail,Head} ' {0,1} with P(1) = θ ∈ [0,1]:

Likelihood: P(1101|θ) = θ×θ× (1−θ)×θ
Maximum Likelihood (ML) estimate: θ̂ = argmaxθ P(1101|θ) = 3

4

Prior: If we are indifferent, then P(θ) = const.

Evidence: P(1101) =∑
θ P(1101|θ)P(θ) = 1

20 (actually
∫
)

Posterior: P(θ|1101) = P(1101|θ)P(θ)

P(1101)
∝ θ3(1−θ)(Bayes rule).

Maximum a Posterior (MAP) estimate: θ̂ = argmaxθ P(θ|1101) = 3
4

Predictive distribution: P(1|1101) = P(11011)

P(1101)
= 2

3

Expectation: E[f |...] =∑
θ f (θ)P(θ|...), e.g. E[θ|1101] = 2

3

Variance: V (θ|1101) = E[(θ−E[θ])2|1101] = 2
63

Probability density: P(θ) = 1

ε
P([θ,θ+ε]) for ε→ 0
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Random Variables (r.v.) / Vectors (r.V.)
Notations

Let X (resp. x) a random variable (resp. vectors). Denote by P or Pθ its
probability :

P(X = x) or Pθ(X = x) for the discrete case
f (x) or fθ(x) for the continuous case (with PDF)

Some other notations:
E[.] or Eθ[.] (resp. V [.] / Vθ[.]) stands for the statistical expectation
(resp. the variance)
i.i.d. → Independent (denoted ⊥) and Identically Distributed, i.e.
same distribution and X ⊥ Y ⇐⇒ for any measurable functions h and
g, E[g(X)h(Y )] = E[g(X)]E[h(Y )] .
n-sample (X1, . . . ,Xn) ⇐⇒ X1, . . . ,Xn are i.i.d.
PDF, CDF and iff resp. means Probability Density Function,
Cumulative Distribution Function and “ if and only if’ ’
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Convergences
Multivariate case

Let (x)n∈N ∈Rd a sequence of r.V. and (x) ∈Rd defined on the same
probability space (Ω,A ,P), then

Almost Sure CV: xn
a.s−−−−→

n→∞ x ⇐⇒ ∃N ∈A such that P(N) = 0 and
∀ω ∈ Nc, lim

n→∞xn(ω) = x(ω)

CV in probability: xn
P−−−−→

n→∞ x ⇐⇒ ∀ε> 0, lim
n→∞P(‖xn−x‖ ≥ ε) = 0 where

‖x‖ = (∑d
i=1 x2

i

)1/2 for x ∈Rd.

xn
P−−−−→

n→∞ x ⇐⇒ each component converges in probability.

CV in L p: Let p ∈N∗,xn
L p

−−−−→
n→∞ x ⇐⇒ (x)n∈N, x ∈L p and

E
[‖xn −x‖p

L p

]−−−−→
n→∞ 0.
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Convergence in distribution
CV in distribution: xn

dist.−−−−→
n→∞ x if for any continuous and bounded

function g, one has lim
n→∞E

[
g(xn)

]= E
[
g(x)

]
.

B The CV in distribution of a sequence of r.V. is stronger than the CV
of each component!

How to characterise the CV in distribution?

Theorem (Levy continuity Theorem)

Let ϕn(u) = E
[
exp(iut xn)

]
and ϕ(u) = E

[
exp(iut x)

]
the characteristic

functions of xn and x. Then,

xn
dist.−−−−→

n→∞ x ⇐⇒ ∀u ∈Rd ,ϕn(u) −−−−→
n→∞ ϕ(u) .

Proposition (a.s., P, dist. convergences )
xn −−−−→

n→∞ x =⇒ h(xn) −−−−→
n→∞ h(x), if h is a continuous function

Discussion on the cv hierarchy...
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SLLN and CLT

Theorem (Strong (Weak) Low of Large Numbers)

Let (xn)n∈N∗ a sequence of i.i.d. r.V. in Rd s.t. E[|x1|] <+∞. Let µ= E[x1]
the expectation of x1. Then,

xn = 1

n

n∑
i=1

xi
a.s,P−−−−→

n→∞ µ.

Theorem (Central Limit Theorem)

Let (xn)n∈N∗ a sequence of i.i.d. r.V. in Rd s.t. E[|x1|2] <+∞. Let µ= E[x1]
and Σ= E

[
x1xt

1

]−E[x1]E[x1]t the covariance matrix of x1. Let
xn = 1

n

∑n
i=1 xi the empirical mean. Then,

p
n

(
xn −µ

) dist.−−−−→
n→∞ N (0,Σ) .
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Slutsky theorem

Theorem (Slutsky theorem)

Let (xn)n∈N∗ a sequence of r.V. in Rd that cv in dist. to x. Let (yn)n∈N∗ a
sequence of r.V. in Rm (defined on the same proba. space as (xn)n∈N∗) that
cv a.s. (or in P, or in dist.) towards a constant a. Thus, the sequence
(xn,yn)n∈N∗ cv in dist. towards (x,a), (xn,yn)

dist.−−−−→
n→∞ (x,a)

Remark (Important Applications of Slutsky (IAS))
Under previous assumptions, one has:

1 xn +yn
dist.−−−−→

n→∞ x+a if m = d

2 xnyn
dist.−−−−→

n→∞ ax if m = 1

3 xn/yn
dist.−−−−→

n→∞ x/a if m = 1,a 6= 0
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Delta-method

Theorem (Delta-method)

Let (xn)n∈N∗ a sequence of r.V. in Rd and θ a (deterministic) vector of Rd.
Let h :Rd 7→Rm a function that is differentiable (at least) at point θ.

Let us denote
∂h

∂θt (θ) the m×d matrix s.t.

(
∂hi

∂θj
(θ)

)
1≤i≤m
1≤j≤d

and

∂ht

∂θ
(θ) =

(
∂h

∂θt (θ)

)t

its transpose. Assume that
p

n(xn −θ)
dist.−−−−→

n→∞ x. Then

p
n (h(xn)−h(θ))

dist.−−−−→
n→∞

∂h

∂θt (θ)x.

Particular case:

If x ∼N (0,Σ), then
p

n (h(xn)−h(θ))
dist.−−−−→

n→∞ N

(
0,
∂h

∂θt (θ)Σ
∂ht

∂θ
(θ)

)
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Gamma and Beta distributions
Definition (Gamma distribution)
Let p > 0 et λ> 0. A real-valued r.v. X ∼ Γ(p,λ) if its PDF is defined as

f (x) = λp

Γ(p)
xp−1 exp(−λx)1lR+(x),

where Γ(x) = ∫ +∞
0 tx−1 exp(−t)dt for x ∈C s.t. Re(x) > 0. Also

Γ(x+1) = xΓ(x) (n ∈N∗,Γ(n) = (n−1)!).
If X ∼ Γ(p,λ) and a > 0, then aX ∼ Γ(p,λ/a)

Proposition (Beta distributions)
1 Let Y ∼ Γ(q,λ) and X ∼ Γ(p,λ) 2 independent r.v. Thus,

• X +Y ∼ Γ(p+q,λ),
• X +Y and X

X+Y (resp. X +Y and X
Y ) are independent

• Distributions of X
X+Y and X

Y do NOT depend on λ. It resp.
corresponds to Beta distributions of 1st and 2nd kind, denoted
β1(p,q) and β2(p,q). PDF...
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Gamma and Beta distributions

Definition (Beta PDFs)
β1(p,q) : f (x) = xp−1(1−x)q−1

β(p,q)
1l[0,1](x),

β2(p,q) : f (x) = xp−1

(1+x)p+qβ(p,q)
1lR+(x),

with β(p,q) = Γ(p)Γ(q)

Γ(p+q)
.

Proposition

• If U ∼β1(p,q), U
1−U ∼β2(p,q),

• If V ∼β2(p,q), V
1+V ∼β1(p,q),

• If V ∼β2(p,q), 1
V ∼β2(q,p).
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χ2, Student-t and Fisher (or F) distributions
Definition (χ2 dist.)
Let (Xn)n∈N∗ a sequence of i.i.d. real-valued r.v. ∼N (0,1). Thus,

k∑
i=1

X 2
i follows a χ2-distribution with k d.o.f., (denoted χ2(k)).

X 2
1 ∼ Γ

(
1

2
,

1

2

)
and

k∑
i=1

X 2
i ∼ Γ

(
k

2
,

1

2

)

Definition (Student-t and F- distributions)

1 If X ∼N (0,1), Y ∼χ2(k), and X , Y independent, then T = X
p

(Y /k)
follows a Student-t dist. with k d.o.f. (denoted t(k)).

2 If p and q are integers, if X ∼χ2(p), Y ∼χ2(q), and X , Y are

independent, then F = X/p

Y /q
follows a F-dist. with p and q d.o.f.,

(denoted F(p,q)).
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Student Theorem

Theorem (Student theorem)

Let (Xn)n∈N∗ a sequence a real-valued i.i.d. r.v. ∼N (µ,σ2). Then, one
has:

1 X n = 1

n

n∑
i=1

Xi ∼N

(
µ,
σ2

n

)
.

2 Rn =
n∑

i=1

(
Xi −X n

)2 ∼σ2χ2(n−1).

3 X n and Rn are independent.

4 If Sn =
√

Rn

n−1
, then Tn =

p
n

(
X n −µ

)
Sn

∼ t(n−1).

Proof
Some elements...
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Some applications

Estimate unknown parameters??

A1 Mean estimation: (X1, · · · ,Xn) iid∼ N (µ,σ2)

σ2 known
σ2 unknown

A2 Variance estimation: (X1, · · · ,Xn) iid∼ N (µ,σ2)

µ known
µ unknown

A3 Variance comparison (test) between two independent samples:
(X1, · · · ,Xn) iid∼ N (µX ,σ2

X ) and (Y1, · · · ,Yn) iid∼ N (µY ,σ2
Y )

µX and µY known
µX and µY unknown
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Possible answers with confidence intervals
A1 Based on µ̂= X̄n...

In =
[

X̄n ± 1,96σp
n

]
is an exact 95%-confidence interval

Ĩn =
[

X̄n ± 1,96σ̂np
n

]
is an asymptotic 95%-confidence interval.

OR use

Tn =
p

n(X̄n −µ)

Sn
∼ t(n−1) ⇒ În =

[
X̄n ± an−1Snp

n

]
is an exact 95%-confidence interval

tn−1

an−1−an−1

1−α
α
2

α
2
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Possible answers with confidence intervals

A2 Based on ...

R∗
n =

n∑
i=1

(Xi −µ)2 ∼σ2χ2(n) ⇒ In =
[

nσ̂2
n

bn
,

nσ̂2
n

an

]
is an exact 95%-confidence interval with σ̂2

n = R∗
n/n.

Rn =
n∑

i=1
(Xi − X̄n)2 ∼σ2χ2(n−1) ⇒ În =

[
(n−1)σ̂2

n

bn−1
,

(n−1)σ̂2
n

an−1

]

is an exact 95%-confidence interval with σ̂2
n = Rn/(n−1)

 Loss when unknowns are present..., i.e. length of CI increases...
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Possible answers with confidence intervals

A3 Based on ...
R∗

n,X =∑n
i=1(Xi −µX )2 ∼σ2

Xχ
2(n) ,R∗

m,Y =∑m
i=1(Yi −µY )2 ∼σ2

Yχ
2(m)

R∗
n,X

R∗
m,Y

∼ F(n,m) ⇒ σ2
X

σ2
Y

∈
[

1

bn,m

σ̂2
n,X

σ̂2
m,Y

,
1

an,m

σ̂2
n,X

σ̂2
m,Y

]

with σ̂2
n,X = R∗

n,X /n and σ̂2
m,Y = R∗

m,Y /m

an,m

0,025

bn,m

0,025

F(n,m)

Same thing for µX and µY unknown...
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Statistical modelling
Generalities

n-sample x = (x1, . . . ,xn)

Dominated models  Likelihood Function (LF), denoted L(x,θ)

Parametric models, i.e. θ ∈Θ⊂Rd

Definition (Identifiability conditions)
A model (X ,A , {Pθ,θ ∈Θ}) is said identifiable if the mapping from Θ onto
the probabilities space (X ,A ), which to θ gives Pθ is injective.

Definition (Statistic)
In a statistical model {X ,A , {Pθ,θ ∈Θ}}, one said statistic, for any
(measurable or σ-finite) mapping S from (X ,A ) onto an arbitrary space.
Let’s say a statistic is a function of r.V. S(x1, . . . ,xn).

e.g., X̄n,Rn,X , σ̂2
n, or even X,...
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Statistical modelling
Sufficient statistics

Very important concept! for high-dimensional data, dimension reduction
without reducing the information brought by the data.
Main idea: Where is contain the information of interest (i.e. related to the
unknowns) in the data?
Example: Coin toss -> Head and Tails - One want to know the probability
of Head or if the coin is biased ... No need to keep the whole dataset...

Definition (Sufficient statistic)
A statistic S is said to be sufficient iff the conditional distribution
Lθ(X |S(X)) does not depend on θ.

Remark (Pros and cons)
Difficulty to use the definition
Dimension of S has to be minimal! (x1, . . . ,xn) is always a sufficient
stat.

Statistical modelling Sufficiency F. Pascal 31 / 85



Statistical modelling
Sufficient statistics characterization

Theorem (Factorisation Criterion (FC))
A statistic S is sufficient iff the likelihood function can be written as:

L(x;θ) =ψ(S(x);θ)λ(x) .

This is a sort of separability theorem...
Example: let (X1, . . . ,Xn) i.i.d following a non-centred exponential dist., i.e.
with PDF

f (xi,θ) = 1

θ2
exp

(
− 1

θ2
(xi −θ1)

)
1l{xi≥θ1} with θ = (θ1,θ2)t .

⇒ S(X) =
(

min
i=1,...,n

(Xi),
n∑

i=1
Xi

)
is sufficient!
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Exponential family

Definition (Complete statistics)
A statistic S is said to be complete if for any measurable real-valued
function φ, one has{∀θ ∈Θ , Eθ

[
φ◦S(X)

]= 0
}⇒ {∀θ ∈Θ , φ◦S(X) = 0 a.s. [Pθ]

}
.

Purely theoretical... for optimal unbiased estimation...

Definition (Exponential family)
A model is said to be exponential iff its LF can be written as:

L(x;θ) = h(x)φ(θ)exp

{
r∑

i=1
Qi(θ)Si(x)

}
. (1)

where S(.) = (S1(.), . . . ,Sr(.)) is the canonical statistic.

Discussion: r, large family (discrete and continuous models),...
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Exponential family
Some very useful properties in the class of models...

Proposition
The canonical statistic is sufficient.

trivial with FC...

Proposition
For exponential family, if the Si(.) are linearly independent (affine sense),
i.e.,

∀x ∈X ,
r∑

i=1
aiSi(x) = a0 =⇒ a0 = aj = 0∀j

Thus Pθ1 = Pθ2 ⇐⇒ Qj(θ1) = Qj(θ2).

Corollary
For exponential family, if the Si(.) are linearly independent,
θ is identifiable ⇐⇒ θ 7→ Q(θ) is injective.
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Exponential family
Some very useful properties in the class of models...

Theorem
If Q(Θ) contains a non-empty set of Rr, the canonical statistic is complete.

Proposition
Of course, the canonical statistic follows an exponential model.

Models examples:
Exponential dist.!
Gaussian
Poisson
Binomial dist.
...
Exhaustive list on Wikipedia

Statistical modelling Exponential family F. Pascal 35 / 85



Fisher Information (FI) Matrix (FIM)
Definition (Score)
The score function is the r.V. sθ(x) defined by:

sθ(x) = ∂

∂θ
l(x;θ) ,

where l(x;θ) = log(L(x;θ)) is the log-likelihood function.

Proposition
The score is zero-mean, i.e. E [sθ(x)] = 0 .

Definition (FIM)
If one has (A5) the score is square-integrable, the FIM is the variance
(covariance matrix in multidimensional case) of the score:

I(θ) = varθ(sθ(x)) = Eθ
[
sθ(x)sθ(x)t] .
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FIM
Remark
In case of a n-sample, (x1, . . . ,xn), the score can be written as:

sn,θ(x) = ∂

∂θ
ln(x1, . . . ,xn;θ) =

n∑
i=1

∂

∂θ
l(xi;θ) ,

where ln(x1, . . . ,xn;θ) is the log-likelihood function of the n-sample.
In such case, the FIM, In(θ) can be written (by independence) as

In(θ) = nI(θ) .

Proposition
Let’s assume a regular model, plus (A5), then for a real θ, one has:

I(θ) =−Eθ

[
∂2

∂θ∂θt l(x;θ)

]
.
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FIM

Some examples...

Let us consider a n-sample of r.v. Prove the following results:
1 If Pθ ∼ B(θ,1),θ ∈ ]0,1[, thus In(θ) = n

θ(1−θ) .

2 If Pθ ∼Poisson(θ),θ > 0, thus In(θ) = n
θ .

3 If Pθ ∼N (µ,σ2), (µ,σ2) ∈R×R+, thus:

In(θ) = n


1

σ2 0

0
1

2σ4

 .
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Unbiased estimation - Decision theory
Main idea: give an answer d regarding the data...
Define a loss function ρ(d,θ) between d and the (true) value of the
unknowns θ or g(θ). Generally,

Definition (quadratic loss)

ρ(d,θ) = (d−g(θ))t A(θ)(d−g(θ))

where A(.) is positive-definite

Use A(θ) = I leads to ρ(d,θ) = (d−g(θ))2...

Definition (Estimator)
An estimator of g(θ) is a statistic δ(x) mapping X into D = g(Θ).

Definition (Mean Square Error (MSE))

Rδ(θ) = Eθ
[
ρ(θ,δ(x))

]= Eθ
[
(g(θ)−δ(x))2] .
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Cramer-Rao lower bound

Theorem (Cramer-Rao lower Bound (CRB) - FDCR
inequality)

Let δ an unbiased, regular estimator of g(θ) ∈Rk where θ ∈Θ⊂Rp. The
function g is of class C1. Let’s also assume that I(θ) is positive-definite.
Thus, for a n-sample, and for all θ ∈Θ , one has:

Rδ(θ) = varθ(δ) ≥ 1

n

∂g

∂θt (θ) I(θ)−1
∂gt

∂θ
(θ),

with
∂g

∂θt (θ) the p×k-matrix defined by

(
∂gi

∂θj
(θ)

)
1≤i≤p,1≤j≤k

and

∂gt

∂θ
(θ) =

(
∂g

∂θ′
(θ)

)t

its transpose.
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Cramer-Rao lower bound

Definition (Efficiency)
An unbiased estimator is said to be efficient iff its variance is the CRB.

Proposition
If T is an efficient estimator of g(θ), then the affine transform AT +b is an
efficient estimator of Ag(θ)+b (for A and b with appropriate dimensions)

Proposition
An efficient estimator is optimal.
The converse is (obviously) wrong.

Think about the students grades in a given course
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Link with exponential family
Consider an exponential model (1), L(x;θ) = h(x)φ(θ)exp

{
r∑

i=1
Qi(θ)Si(x)

}
and make the change of variable λj = Qj(θ). Then, one obtains:

Definition (Exponential model under a natural form...)
... when the LR is

L(x,λ) = K (λ)h(x)exp

[
r∑

j=1
λjSj(x)

]
(2)

The new parameters (λ1, · · · ,λr) ∈Λ= Q(Θ) ⊂Rr

Theorem (Regularity)
Let an exponentiel model (2). If Λ is a non-empty open set of Rr, then the
model is regular and (A5) is verified, ⇒ I(λ) exists. Furthermore

I(λ) =−Eλ

[
∂2 lnL(x,λ)

∂λ∂λt

]
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Link with exponential family

Theorem (Identifiability)
Let us consider the exponential model (2) where Λ is a (non-empty) open
set of Rr. Then, the model is identifiable, i.e., (Pλ1 = Pλ2 =⇒ λ1 =λ2) iff
the FIM I(λ) is invertible ∀λ ∈Λ.

Theorem (Necessary condition)
Let us consider the exponential model (1). Let us assume that the model is
regular et let δ an unbiased regular estimator of g(θ). Moreover, let us
assume that g is of class C1 and that I(θ) is invertible ∀θ ∈Θ. Thus, if δ is
efficient, it is necessary an affine function of S(x) = (S1(x), · · · ,Sr(x))t .

Remark
Previous theorem is useful for proving the NON efficiency of an estimator...
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Theorem (Converse of the CRB - Equality)

Given a regular model where Θ⊂Rd is a non-empty open set, let g :Θ 7→Rp

of class C1 s.t.
∂g

∂θt(θ) is a square invertible matrix ∀θ ∈Θ so that p = d.
Assume that I(θ) exists and is invertible ∀θ ∈Θ.
Thus δ(x) is a regular and EFFICIENT (unbiased) estimator of g(θ)
iff L(x,θ) can be written as:

L(x,θ) = C(θ)h(x)exp

[
d∑

j=1
Qj(θ)Sj(x)

]

where functions Q and C are s.t.
Q and C are differentiable ∀θ ∈Θ
∂Q

∂θt(θ) is invertible ∀θ ∈Θ

g(θ) =−
(
∂Q

∂θt(θ)

)−1
∂lnC

∂θt (θ).
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Basics

Let us denote Tn(x1, . . . ,xn) or θ̂n an estimator of θ (or the true value θ0 if
needed).

Definition (Consistancy)

An estimator θ̂n of g(θ) is strongly (resp. weakly) consistant if it Pθ0-almost
surely (resp. in proba.) converges towards g(θ0), with g :Θ→Rp.

Definition (Asymptotically unbiased)

An estimator θ̂n of g(θ) is asymptotically unbiased if its limiting
distribution is zero-mean, i.e.,

∃cn →∞ s.t. cn
(
θ̂n −g(θ0)

) dist.−−−−→
n→∞ z with Eθ0 [z] = 0.

Remark: Different from “unbiased at the limit”: Eθ0

[
θ̂n

]−−−−→
n→∞ g(θ0).
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Basics
Definition (Asymptotically normal)

θ̂n is asymptotically normal if

p
n

(
θ̂n −g(θ0)

) dist.−−−−→
n→∞ N (0,Σ(θ0))

where Σ(θ0) (PDS) is the asymptotic CM of θ̂n.
Remark: This implies that θ̂n is asymptotically unbiased.

Definition (Asymptotically efficient)
An estimator is asymptotically efficient if it is asymptotically normal and
if:

Σ(θ0) = ∂g

∂θt (θ0) I(θ0)−1
∂gt

∂θ
(θ0)
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Method of Moment
Let a n-sample (x1, . . . ,xn) i.i.d. with x1 ∼ Pθ where θ ∈Θ⊂Rd s.t.
E[|x1|]d) <∞. Let us assume that:

m =

m1
...

md

=

φ1(θ1, · · · ,θd)
...

φd(θ1, · · · ,θd)

=φ

θ1
...
θd


where mk = Eθ[xk]. If function φ is invertible (with inverse ψ), one has:

θ =

θ1
...
θd

=

ψ1(m1, · · · ,md)
...

ψd(m1, · · · ,md)

=ψ

m1
...

md


Theorem

Up
a.s−−−−→

n→∞ mp where ∀p, Up = 1
n

n∑
i=1

xp
i

p
n (U−m)

dist.−−−−→
n→∞ N (0,Z) where U = (U1, · · · ,Up)t , m = (m1, · · · ,mp)t .
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Method of Moment
The estimator of the Method of Moment (MME) is defined as

θ̂n =

θ̂n1
...
θ̂nd

=

ψ1(U1, · · · ,Ud)
...

ψd(U1, · · · ,Ud)

=ψ

U1
...

Ud


where ∀p, Up = 1

n

n∑
i=1

xp
i with xi are i.i.d.

Theorem (Asymptotics of the MM estimator)
If function ψ is differentiable, then

θ̂n
a.s−−−−→

n→∞ θ

p
n

(
θ̂n −θ

) dist.−−−−→
n→∞ N (0,A(θ)) where A(θ) = ∂ψ

∂θt(m)Σ(θ)
∂ψt

∂θ
(m) with

m =φ(θ).

MME strongly consistant, asymptotically normal BUT generally
NOT asymptotically efficient!
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Method of Maximum Likelihood
Assume a regular model + (A5) +
(A6) ∀x ∈∆, for θ close to θ0, log(f (x;θ)) is 3× differentiable w.r.t. θ and∣∣∣∣∣ ∂3

∂θj∂θk∂θl
log

(
f (x;θ)

)∣∣∣∣∣≤ M(x)

with Eθ0 [M(x)] <+∞.

Proposition
Assume the model is identifiable, then ∀θ 6= θ0, one has

Pθ0 (L(x1, . . . ,xn;θ0) > L(x1, . . . ,xn;θ)) −−−−−→
n→=∞ 1

where L (x1, . . . ,xn;θ) is the LF.

The LF is maximum at the point θ0...
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Method of Maximum Likelihood
Definition (Maximum Likelihood Estimator (MLE))
The MLE is defined by

T : (x1, . . . ,xn) −→ θ̂n ∈ argmax
θ∈Θ

L(x1, . . . ,xn;θ) .

The MLE has to verified the following likelihood equations!
∂

∂θ
l(x1, . . . ,xn;θ) = 0

∂2

∂θ∂θt l(x1, . . . ,xn;θ) ≤ 0,

where l(x1, . . . ,xn;θ) = log(L(x1, . . . ,xn;θ))

Definition
Let g :Θ 7→Rp. If θ̂n is a MLE of θ, then g(θ̂n) is also a MLE of g(θ).

B the MLE is not necessary unique...
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MLE asymptotics

Theorem
Assume: identifiable model, (A1), (A2), θ0 ∈Θ 6=∅, compact, and

x1 7→ L(x1,θ) is bounded ∀θ ∈Θ;
θ 7→ L(x1,θ) is continuous ∀x1 ∈∆;

Thus, θ̂ML
n

a.s−−−−→
n→∞ θ0 (Existence from a given n0)

Theorem (Classical asymptotics)

Assume: identifiable model, Θ open set of Rd and (A1)− (A6).
Thus, ∃ θ̂ML

n (from a given n0) solution to the likelihood equations s.t. θ̂ML
n

a.s−−−−→
n→∞ θ0

p
n

(
θ̂ML

n −θ0
) dist.−−−−→

n→∞ N
(
0, I1(θ0)−1

)

Theory of Point Estimation Method of Maximum Likelihood F. Pascal 51 / 85



MLE asymptotics

Theorem (Classical asymptotics)

Assume: identifiable model, Θ open set of Rd and (A1)− (A6) AND
g : Rd →Rp differentiable
Thus, ∃ θ̂ML

n (from a given n0) solution to the likelihood equations s.t.
g

(
θ̂ML

n

) a.s−−−−→
n→∞ g (θ0)

p
n

(
g

(
θ̂ML

n

)−g (θ0)
) dist.−−−−→

n→∞ N

(
0,
∂g

∂θt(θ0) I1(θ0)−1
∂gt

∂θ
(θ0)

)

Conclusions
The MLE is strongly consistant, asymptotically normal and asymptotically
efficient.
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Come back on exponential models

Theorem
Let an exponential model (2) (under natural form)

L(x,λ) = K (λ)h(x)exp

(
r∑

i=1
λjSj(x)

)

where λ ∈Λ and Λ is a non-empty open-setof Rr. Moreover, let us assume
that I(λ) is invertible ∀λ ∈Λ (identifiable model).

Thus, the MLE exists (from a given n0), is unique, strongly consistant and
asymptotically efficient (which includes asymptotically normal).

Proof
Up to you ...
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Bayesian estimation

Principles: Philosophy is different from previous MM/ML estimation
approaches (frequentist methods). The purpose is the same:
estimating an unknown parameter θ ∈R or Rp thanks to the
sample (x1, . . . ,xn) likelihood (parameterized by θ) and an a priori
distribution p(θ).
So, θ is assumed to random...
Ideas: To that end, one has to minimize a cost function c(θ, θ̂) that
represents the error between θ and its estimator θ̂.
Reminders: A posteriori distribution / posterior distribution

p(θ|x1, . . . ,xn) = L(x1, . . . ,xn;θ)p(θ)

f (x1, . . . ,xn)
= L(x1, . . . ,xn;θ)p(θ)∫

Rp
L(x1, . . . ,xn;θ)p(θ)dθ

∝ L(x1, . . . ,xn;θ)p(θ)
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MMSE estimator
MMSE estimator (mean of the posterior PDF) is the estimator that
minimizes the MSE as the cost function: c(θ, θ̂) = E

[(
θ− θ̂)2

]
.

θ ∈R
E

[(
θ− θ̂MMSE(x)

)2
]
= min

π
E

[
(θ−π(x))2]

with x = (x1, . . . ,xn), hence the MMSE estimator is

θ̂MMSE(x) = E [θ|x]

θ ∈Rp

The MMSE estimator θ̂MMSE(x) = E [θ|x] minimizes the quadratic cost

E
[
(θ−π(x))t Q (θ−π(x))

]
for any symmetric definite positive matrix Q (and in particular for Q = Ip,
the identity matrix).
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MAP estimator
θ ∈R
The MAP estimator θ̂MAP(x) minimizes the average of a “uniform” cost
function

c((θ−π(x))) =
{

0 if |θ−π(x)| ≤Λ/2
1 if |θ−π(x)| >Λ/2

and is defined by
c(

(
θ− θ̂MAP(x)

)
) = min

π
c((θ−π(x)))

If Λ is arbitrary small, θ̂MAP(x) is the value of π(x) which maximizes the
posterior p(θ|x) hence its name MAP estimator. θ̂MAP(x) is computed by
setting to zero the derivative of p(θ|x) (or of its log) with respect to θ.

θ ∈Rp

Determine the values of θi which make the partial derivatives of p(θ|x) (or
of its logarithm) with respect to θi equal to zero.
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Generalities
Let a n-sample (x1, . . . ,xn) i.i.d. ∼ Pθ, θ ∈Θ. Let H0 and H1, 2 non-empty
disjoint subsets of Θ s.t. H0 ∪H1 =Θ.
H0 is the null hypothesis while H1 is called the alternative hypothesis.
Remember: no symmetry!
Goal: To find a procedure that allows to decide whether θ belongs
to H0 or not, regarding the datasets x = (x1, . . . ,xn) ∈X n.

Definition
An hypothesis is said simple if it is reduced to a single element. Else, it is
called composite.

Definition
A (pure) test is a mapping δ from X n onto {0,1} s.t.:
If δ(x) = 0, one decides H0, while if δ(x) = 1, one rejects H0.
The region W = {x ∈X n | δ(x) = 1} is called the rejection region or the
critical region. Its complement is called the acceptance region.
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Generalities
Remark
A test is characterized (and will be identified) by its rejection region W .

Definition (Different errors)
For a test, there are two possible errors:

rejecting H0 when it is true: type-I error or error of 1st kind.
accepting H0 when it is false: type-II error or error of 2nd kind.

Definition (Type-I and Type-II errors)
For a test δ with critical region W , one has

• Type-I error: αW :

{
H0 → [0,1]
θ 7→ Pθ(W );

• Type-II error: βW :

{
H1 → [0,1]
θ 7→ Pθ(W c) = 1−Pθ(W ).
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Generalities

Definition (Power of the test)
The power of a test W is defined as:

ρW :

{
H1 → [0,1]
θ 7→ Pθ(W ) = 1−βW (θ).

Definition (Randomized test (more general))
A random test is a mapping ϕ from X n into [0,1] where ϕ(x) is the
probability of rejecting H0 for the dataset x = (x1, · · · ,xn) ∈X n.

Remark
For ϕ= 1lW , one retrieves the simple test!
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Generalities

Definition (Type-I and Type-II errors, power for a test ϕ)

• Type-I error: αϕ :

{
H0 → [0,1]
θ 7→ Eθ

[
ϕ(x)

]
;

• Type-II error: βϕ :

{
H1 → [0,1]
θ 7→ 1−Eθ

[
ϕ(x)

]
;

• Power of the test: ρϕ = 1−βϕ = EH1

[
ϕ(x)

]
.

Definition (Level of significance (ls))
The level of significance α (typically 0.01 or 0.05 as for the IC) for a test
ϕ is:

α= sup
θ∈H0

αϕ(θ) = sup
θ∈H0

Eθ
[
ϕ(x)

]
.
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Neyman Principle

Goal: one wants to control (or fix) the type-I error, i.e. the probability of
rejecting H0 when it is true.

The Neyman principle consists in considering all tests with a ls ≤ to a fixed
α, and then, in finding (among these tests) the one with the smallest
Type-II error.

Since ρϕ = 1−βϕ, such test will said to be UMP.

Definition (Uniformly Most Powerful (UMP))
ϕ is UMP at the threshold α if its ls ≤α and if ∀ϕ′ with a ls ≤α, one has:

∀θ ∈ H1 , Eθ
[
ϕ(x)

]≥ Eθ
[
ϕ′(x)

]
.
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Simple hypothesis testing

In this part, for the n-sample (x1, . . . ,xn), one considers,

H0 : {θ = θ0} versus H1 : {θ = θ1},

which means that Θ= {θ0,θ1}.

So, 2 probabilities Pθ0 (or P0) and Pθ1 (or P1), that implies 2 LF
L0(x) = L(x;θ0) and L1(x) = L(x;θ1), for x = (x1, . . . ,xn) ∈X n.

Definition (Neyman test or Likelihood Ratio Test (LRT))
A Neyman test is a test ϕ s.t. ∃k ∈R∗+ , and

ϕ(x) =
{

1 if L(x;θ1) > k L(x;θ0)
0 if L(x;θ1) < k L(x;θ0)

The value of ϕ is not specified for
{
x ∈X n|L1(x) = k L0(x)

}
.
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Neyman-Pearson Lemma
Remark
L1(x)

/
L0(x) is called the Likelihood Ratio (LR). The Neyman test

consists in accepting the most likely hypothesis for a given observation x.

Proposition (Neyman-Pearson Lemma)
1 Existence ∀α ∈ (0,1), it exists a Neyman test s.t. Eθ0 (ϕ) =α.

Moreover, k is the quantile of order (1−α) of the LR distribution L1(x)
L0(x)

under P0 and one can impose that ϕ is constant for x ∈X n s.t.
L1(x) = kL0(x). If the LR CDF under P0 evaluated in k is (1−α)
(continuous CDF), thus one can choose this constant = 0 (pure test).

2 S. cond. ∀α ∈ (0,1), a Neyman test s.t. Eθ0 (ϕ) =α is UMP at level α.
3 N. cond. ∀α ∈ (0,1), a UMP test at level α is necessarily a Neyman
test.

Proof
Essential to built the Neyman test...
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Neyman-Pearson Lemma

Remark
1 Conclusion: the only UMP tests at level α are the Neyman tests of

level of significance α.
2 If the LR CDF under H0 is continuous, one obtains the test of critical

region W = {
x ∈X n | L1(x) > k L0(x)

}
where k is defined by

P0(L1(X) > k L0(X)) =α.
3 The power E1(ϕ) of a UMP test at level α is necessarily ≥α. Indeed,
ϕ is preferable to the constant test ψ=α (which is of ls α), thus
E1(ϕ) ≥ E1(ψ) =α.
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Neyman-Pearson Lemma

Example 1: Let us consider the exponential model (1)

L(x,θ) = C(θ)h(x)exp

[
d∑

j=1
Qj(θ)Sj(x)

]

where θ ∈ {θ0,θ1}, with θ1 > θ0. Assume an identifiable model:
Q(θ0) 6= Q(θ1) (e.g., Q(θ1) > Q(θ0)).
Goal: test H0 : {θ = θ0} versus H1 : {θ = θ1}.

Example 2: Let us consider (X1, · · · ,Xn) iid∼ N (µ,σ2) with σ2 known.
Goal: test H0 : {µ=µ0} versus H1 : {µ=µ1}, with µ0 <µ1.

Example 3: Let us consider (X1, · · · ,Xn) iid∼ Poisson(θ).
Goal: test H0 : {θ = θ0} versus H1 : {θ = θ1}, with θ0 < θ1.
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Composite tests - One-sided hypotheses
Now, let us consider a model with only 1 parameter and where Θ is an
interval of R. One assume L(x,θ) > 0,∀x ∈X n,∀θ ∈Θ.

Goal: test H0 : {θ ≤ θ0} versus H1 : {θ > θ0}.
More general problem!

Let us consider the family having monotone likelihood ratio:

Definition (Monotone LR)
The family {P⊗n

θ
,θ ∈Θ} is said to have monotone likelihood ratio if it

exists a real-valued statistic U(x) s.t. ∀θ′ < θ′′, L(x,θ′′)
L(x,θ′) is a strictly increasing

(or decreasing) function of U.

Remark
By changing U into −U, one can always assume strictly increasing in
previous definition.
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Lehman Theorem

Theorem (Lehman theorem)
Let α ∈ (0,1). If the family (Pθ,θ ∈Θ) has monotone (increasing)
likelihood ratio, there exists a UMP test at level α for testing H0 : {θ ≤ θ0}
versus H1 = {θ > θ0}. This test is defined by:

ϕ(x) = 1 if U(x) > c
ϕ(x) = γ if U(x) = c
ϕ(x) = 0 if U(x) < c

where c and γ are obtained with Eθ0 [ϕ] =α. The same test is UMP at level
α for testing:

1 H0 : {θ = θ0} versus H1 : {θ > θ0}

2 H0 : {θ = θ0} versus H1 : {θ = θ1}

where θ1 > θ0.
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Lehman Theorem

Remark
If the inequalities are reversed in the test, i.e. H0 : {θ ≥ θ0} and H1 : {θ < θ0},
then the UMP test is obtained by reversing the inequalities (in the test).

Example: The exponential model with LF L(x,θ) = C(θ)h(x)exp
(
Q(θ)S(x)

)
where Q(θ) is strictly increasing, has increasing LR with U(X) = S(X).

Remark (Important)
In general, it does NOT exist UMP test for testing H0 : {θ = θ0} versus
H1 : {θ 6= θ0} (even for monotone LR).
For instance, let’s consider the Gaussian model, σ2 known. The UMP test

for H0 : {µ=µ0} versus H1 : {µ>µ0} is
{
ρ(x) = 1 if

∑
xi > c

ρ(x) = 0 if
∑

xi ≤ c
while the

UMP test for H0 : {µ=µ0} versus H1 : {µ<µ0} is
{
ρ(x) = 1 if

∑
xi < c

ρ(x) = 0 if
∑

xi ≥ c
⇒ no UMP test for testing µ=µ0 versus µ 6=µ0.
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Student test
Let (X1, · · · ,Xn) iid∼ N (µ,σ2) with µ and σ2 unknown.

Goal: test H0 :
{
µ=µ0

}
versus H1 :

{
µ 6=µ0

}
at level α ∈ (0,1).

General methodology

1 From the Student theorem, one has

Tn =
p

n(X̄n −µ)

Sn
∼ t(n−1)

where X̄n = 1
n

∑n
i=1 Xi and S2

n = 1
n−1

∑n
i=1(Xi − X̄n)2.

2 Under H0:

ξn =
p

n(X̄n −µ0)

Sn
∼ t(n−1)

3 Under H1: From the SLLN, X̄n −µ0
a.s−−−−→

n→∞ µ−µ0 and Sn
a.s−−−−→

n→∞ σ.

Thus ξ a.s−−−−→
n→∞ +∞ if µ>µ0 and ξ a.s−−−−→

n→∞ −∞ if µ<µ0

4 Critical region:
Wn = {|ξn| > a}
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Student test
Let tn−1,r the quantile of order r of the t-distribution tn−1:

tn−1

tn−1,1− α
2

−tn−1,1− α
2

1−α
α
2

α
2

Thus, under H0,P(|ξn| > tn−1,1− α
2

) =α.

Previously, one have seen that In =
[

X̄n −
tn−1,1−α/2Snp

n
, X̄n +

tn−1,1−α/2Snp
n

]
is

a (1−α)-CI for µ0. Here is the link between CI and Student (bilateral) test
µ0 ∈ In iff |ξn| ≤ tn−1,1− α

2
. Finally, the associated p-value is

p = P(|T | > |ξobs
n |) where T ∼ t(n−1) and ξobs

n is the observed value of ξn.
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Generalities

As for estimators, in many situations, one CANNOT find the distribution of
the LR (or the statistic of the monotone LR). As a consequence, one
cannot set the parameters k and γ for the test.

A solution (like in point estimation theory) is to rely on asymptotic
properties!

Now, instead of considering a test W , we will consider a sequence of tests
(Wn)n∈N∗ .

Definition (Asymptotic level)
An asymptotic test Wn is at asymptotic level α if

lim
n→∞ sup

θ∈H0

Pθ(Wn) =α .
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Generalities

Definition (Uniform asymptotic level)
An asymptotic test Wn is at uniform asymptotic level α if

sup
θ∈H0

lim
n→∞Pθ(Wn) =α .

Definition (Consistant (or convergent) test)
An asymptotic test Wn is said to be consistant (or convergent) if its
power tends towards 1, i.e.,

∀θ ∈ H1 , lim
n→∞Pθ(Wn) = 1.

This means that the Type-II error tends to 0!

Example: the t-test is consistant...

Hypothesis testing - Decision theory Asymptotic Tests F. Pascal 72 / 85



Asymptotic tests

Implicit constraint: H0 :
{
θ|g(θ) = 0

}
where g a mapping from Rd into Rr, of class C1 s.t. the r×d matrix

∂g

∂θt =
(
∂gi

∂θj

)
1≤i≤r,1≤j≤d

is of rank r (so r ≤ d).

Goal: test H0 : {θ ∈Θ,g(θ) = 0} versus the alternative hypothesis
H1 : {θ ∈Θ,g(θ) 6= 0}

More general than H0 : {θ = θ0} versus H1 : {θ 6= θ0}

To answer such problems, there exist (at least) 3 asymptotic tests:
Wald test
Rao (score) test
Likelihood Ratio Test (LRT)
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Wald test
Proposition (Wald test)

Let θ̂ML
n the MLE of θ. Under H0, the sequence of r.V., one has:(p

ng(θ̂ML
n )

) dist.−−−−→
n→∞ N (0,Σ(θ0)), where θ0 ∈ H0 is the true value of the

parameter θ and where Σ(θ0) = ∂g

∂θt (θ0)I1(θ0)−1 ∂gt

∂θ
(θ0).

Furthermore, the test statistic ξW
n = ng

(
θ̂ML

n

)t
Σ

(
θ̂ML

n

)−1
g

(
θ̂ML

n

)
converges

in distribution under H0 towards a χ2-distribution with r d.o.f.:

ξW
n

dist.−−−−→
n→∞ χ2(r)

The Wald tests are defined by the following critical region:
Wn = {

ξW
n > qr(1−α)

}
where qr(1−α) is the quantile of order (1−α) of the χ2-distribution with r
d.o.f. This test is strongly convergent at asymptotic level
α= P(χ2(r) > qr(1−α)).
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Wald test
Definition (p-value)
The asymptotic p-value of the Wald test is defined by

p = P
(
χ2(r) > ξW

n (x1, . . . ,xn)
)

where χ2(r) is a r.v. following a χ2-dist. with r d.o.f. and ξW
n (x1, . . . ,xn) is

the observed test statistic. One rejects H0 if p <α...

Remark
If one cannot compute I1(θ). One can estimate I1(θ) by the MM and
replace it in the Wald test WITHOUT changing the results!:

Î1(·) = 1

n

n∑
i=1

∂ lnL(xi, ·)
∂θt

∂ lnL(xi, ·)t

∂θ
ou Î1(·) =− 1

n

n∑
i=1

∂2 lnL(xi, ·)
∂θ∂θt .

Proof (Wald test)
Allows to understand the methodology...
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Wald test

Example: Let a Gaussian n-sample
(
Xi

Yi

)
i∈{1,...,n}

∼N

((
µ1

µ2

)
,

(
σ2

1 0
0 σ2

2

))
with

σ1 and σ2 known. Let θ =
(
µ1

µ2

)
.

Goal: test µ1 =µ2, i.e., H0 : {µ1 −µ2 = 0} versus H1 : {µ1 −µ2 6= 0}.

Let us set g(θ) =µ2 −µ1 and show that the Wald test statistic is

ξW
n = n(µ̂1 − µ̂2)2

σ2
1 +σ2

2

where µ̂1 = 1

n

n∑
i=1

Xi and µ̂2 = 1

n

n∑
i=1

Yi. One has

ξW
n

dist.−−−−→
n→∞ χ2(1)
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Rao-score test and Likelihood Ratio test (LRT)
Let θ̂c

n the MLE of θ under the constraint g(θ) = 0, i.e. under H0.

Theorem (Rao test and LRT)
The test statistics are defined by:

ξR
n = 1

n

∂ lnL(xi, . . . ,xn; θ̂c
n)

∂θt I1(θ̂c
n)−1

∂ lnL(xi, . . . ,xn; θ̂c
n)t

∂θ

ξLR
n = 2(lnL(xi, . . . ,xn; θ̂n)− lnL(xi, . . . ,xn; θ̂c

n))

Rao test and the LRT are defined by the following critical region

Wn = {ξi
n > qr(1−α)}

where qr(1−α) is the quantile of order (1−α) of the χ2-distribution with r
d.o.f. These tests are strongly convergent at asymptotic level
α= P(χ2(r) > qr(1−α)). Furthermore, under H0, one has:

ξW
n −ξR

n
P−−−−→

n→∞ 0 and ξW
n −ξLR

n
P−−−−→

n→∞ 0
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Rao-score test and Likelihood Ratio test (LRT)
Example Testing H0 : {λ=λ0} versus H1 : {λ 6=λ0} in case of a Poisson
distribution with parameter λ...

. . .

E(L(X1, θ)) en fonction de θ

       λ 0
λλ̂

Figure 3 – Vraisemblance en fonction de λ

– Test du score :

Soit S(λ) =
∑T

i=1
∂ ln f
∂λ (Yi, λ) le score en λ. Sous l’hypothèse nulle on a E

(
∂ ln f
∂λ (Yi, λ0)

)
= 0, de

sorte que d’après le théorème central limite

1√
T
S(λ0)

L−−−−−→
T→+∞

N
(
0,V

(
∂ ln f

∂λ
(Y1, λ0)

))

Or V
(
∂ ln f
∂λ (Y1, λ0)

)
= I1(λ0). Donc :

1√
T
I1(λ0)

− 1
2S(λ0)

L−−−−−→
T→+∞

N (0, Ik)

Donc
1

T
S(λ0)

′I1(λ0)
−1S(λ0)

L−−−−−→
T→+∞

χ2
k

On définit donc ξS = 1
T S(λ0)

′I1(λ0)−1S(λ0) et, comme précédemment, la région critique s’écrit
W S = {ξS ≥ qk(1− α)}.

– Test du rapport de vraisemblance :
Sous réserve que la vraisemblance soit suffisamment régulière, on a sous H0, en développant à l’ordre
deux

lnLY1,...,YT
(y1, . . . , yT ;λ0) = lnLY1,...,YT

(
y1, . . . , yT ; λ̂

)
+

∂ lnLY1,...,YT

∂λ

(
y1, . . . , yT ; λ̂

) (
λ0 − λ̂

)

+
1

2

(
λ0 − λ̂

)′ ∂2 lnLY1,...,YT

∂λ2

(
y1, . . . , yT ; λ̂

) (
λ0 − λ̂

)
+ oPλ0

(
||λ0 − λ̂||2

)

= lnLY1,...,YT

(
y1, . . . , yT ; λ̂

)

+
1

2
T
(
λ̂− λ0

)′ 1
T

∂2 lnLY1,...,YT

∂λ2

(
y1, . . . , yT ; λ̂

) (
λ̂− λ0

)
+ oPλ0

(1)

66

Likelihood Ratio

Rao

Wald
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χ2 test: Goodness-of-Fit to a given distribution

Goal: test the goodness of fit of r.V. to a discrete and finite distribution
(e.g., binomial, ...)

Quite restrictive but it CAN be extended to all distributions!

Let the n-sample (X1, . . . ,Xn) i.i.d. with values in {a1, · · · ,am} and
distribution P, where P is characterized by its weights P = (p1, · · ·pm) (it is a

PMF) with
m∑

i=1
pi = 1 and ∀j = 1, . . . ,n,∀i = 1, . . . ,m,pi = P(Xj = ai).

One wants to test H0 : {P = Pp0 }, where p0 = (p0
1, · · · ,p0

m) is given (no

unknown parameter) with
m∑

i=1
p0

i = 1,p0
i > 0,∀i = 1, . . . ,m.

Let Ni the counting statistic and pi is the empirical frequency of {Xk = ai}:

Ni =
n∑

k=1
1l{Xk=ai} and p̂i = Ni

n
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χ2 test: Goodness-of-Fit to a given distribution

Theorem (χ2- test)
Under H0

ξn =
m∑

i=1

(Ni −np0
i )2

np0
i

= n
m∑

i=1

(p̂i −p0
i )2

p0
i

And ξn converges in distribution towards a χ2-distribution with (m−1)
d.o.f. when n →+∞.
The test is defined by the critical region:

Wn = {ξn > qm−1(1−α)}

where qm−1(1−α) is the quantile of order (1−α) of the χ2-distribution with
(m−1) d.o.f. This test is strongly convergent at asymptotic level
α= P(χ2(m−1) > qm−1(1−α)).

Example: Toss a coin...
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χ2 test: Goodness-of-Fit to a given distribution
Now, let us test H0 : {p = p(θ)} versus H1 : {p 6= p(θ)} where θ ∈Θ⊂Rd, Θ
open-set and θ is unknown!

Theorem (General χ2- test)
Under H0

ξn =
m∑

i=1

(Ni −npi(θ̂n))2

npi(θ̂n)
= n

m∑
i=1

(p̂i −pi(θ̂n))2

pi(θ̂n)

where θ̂n is the MLE of θ.
And ξn converges in distribution towards a χ2-distribution with (m−1−d)
d.o.f. when n →+∞.
The test is defined by the critical region:

Wn = {ξn > qm−1−d(1−α)}

where qm−1−d(1−α) is the quantile of order (1−α) of the χ2-distribution
with (m−1−d) d.o.f. This test is strongly convergent at asymptotic level
α= P(χ2(m−1−d) > qm−1−d(1−α)).
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χ2 test: Goodness-of-Fit to a given distribution

How to generalized those χ2 tests to continuous distribution or infinite
discrete distribution?

Remark (On the use of χ2 tests!)

It is an asymptotic test. In practice, it works if npi(θ̂n) > 5, ∀i and if
Ni ≥ 5, ∀i. Else, one regroups classes (cf exercise in the problems).
In case of continuous r.v. with unknown distribution, one wants to
test if it belongs to the family {Pθ,θ ∈Θ}. The idea is to partition R
into m intervals (Ai)i=1,...,m. The choice of m is a tradeoff:

m should be sufficiently large so that the discrete dist.
{πi =π(Ai)} and {pθ,i = Pθ(Ai)} be sufficiently close to π and Pθ (if
m is small, the test will be less powerful).
One the other hand, m should not be too large so that the pθ,i be
sufficiently large to satisfy npi(θ̂n) > 5.
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χ2 test for independence

Let (Xk,Yk),k = 1, ...,n i.i.d. with values in {a1, · · · ,al}× {b1, · · · ,br}. Let us
denote pi,j = P(X1 = ai,Y1 = bj) and

pi,· = P(X1 = ai) =
r∑

j=1
pi,j and p·,j = P(Y1 = bj) =

l∑
i=1

pi,j

One wants to know if X1 and Y1 are independent, i.e. if

H0 :
{
pi,j = pi,·p·,j,∀i, j

}
Let Ni,j =

n∑
k=1

1l{Xk=ai,Yk=bj} the counting statistic and

Ni,· =
n∑

k=1
1l{Xk=ai} and N·,j =

n∑
k=1

1l{Yk=bj}
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χ2 test for independence

Theorem (χ2- test for independence)
Under H0

ξn =
l∑

i=1

r∑
j=1

(
Ni,j − Ni,·N·,j

n

)2

Ni,·N·,j
n

And ξn converges in distribution towards a χ2-distribution with (r−1)(l−1)
d.o.f.
The test is defined by the critical region:

Wn = {ξn > q(r−1)(l−1)(1−α)}

where q(r−1)(l−1)(1−α) is the quantile of order (1−α) of the χ2-distribution
with (r−1)(l−1)) d.o.f. This test is strongly convergent at asymptotic level
α= P(χ2((r−1)(l−1)) > q(r−1)(l−1)(1−α)).
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χ2 test for independence

Example A study on 592 women: is there a correlation between eyes color
and hairs color?

Eyes
Hairs

Dark Light-brown Red Blond

Black 68 119 26 7
Brown 15 54 14 10
Green 5 29 14 16
Blue 20 84 17 94

One obtains ξn = 138,29, dof = 9, P(χ2
q ≤ 16,91) = 0,95. Since

138,29 À 16,91, one rejects H0.

Hypothesis testing - Decision theory Asymptotic Tests F. Pascal 85 / 85


	Introduction in stat. signal processing
	Random Variables / Vectors / CV
	Essential theorems
	SLLN and CLT
	Slutsky theorem and the Delta-method
	Gaussian-related distributions

	Statistical modelling
	Generalities
	Sufficiency
	Exponential family
	Fisher information
	Optimality
	Cramer-Rao bound

	Theory of Point Estimation
	Basics
	Method of Moment
	Method of Maximum Likelihood
	Bayesian estimation - MAP and MMSE

	Hypothesis testing - Decision theory
	Generalities
	UMP tests
	Student-t test
	Asymptotic Tests


