Clustering
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General Information

Assignment : alone or in pairs, you will code the algorithms you learnt in ‘scikit-
learn formalism’, and apply them to images and text.

Due : the 5 lab assignments for lessons 3-7 are due a week from when they are
given, at aml.centralesupelec.2020@gmail.com

Grading : each assignment is worth 4 points — your 4 best labs out of the 5 will be
retained and will count for half of your final grade.

Questions : questions or feedback are welcome after class or by email at
l-emir-omar.chehab@inria.fr
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From a modelling standpoint

hierarchical ‘family’

- T » partitional ‘cut’

inter-cluster distance

A patrtitional clustering can sometimes be framed as the ‘cutoff’ of a hierarchical clustering, i.e. as the instance of
a relaxed problem in which it is embedded.

For e.g., DBSCAN (partitional) can be understood as the e-‘cut’ of HDBSCAN (hierarchical, top-down) without
steps 4 and 5, or of Agglomerative Single-Linkage (hierarchical, bottom-up) where the space is transformed s.t.
sparse points (‘not having a core-point eps-neighbor’) are farther away”.

*  transforming thusly the space is equivalent to keeping the original space but modifying the metric to that of Step 1 of HDBSCAN



Assignment: plan

1. K-Means (scikit-learn)

2. Agglomerative Single-Linkage (your own code)

3. DBSCAN (scikit-learn)

4. HDBSCAN (scikit-learn)

5. Applications : clustering observations on Mars and color-reduction (scikit-learn)



