Clustering

Lesson 3 : Lab Session Advanced Machine Learning, CentraleSupelec

Teacher's Assistant: Omar CHEHAB Professors : Emilie CHOUZENOUX, Frederic PASCAL

General Information

• Assignment : <u>alone or in pairs</u>, you will code the algorithms you learnt in 'scikitlearn formalism', and apply them to images and text.

• **Due :** the 5 lab assignments for lessons 3-7 are due <u>a week</u> from when they are given, at <u>aml.centralesupelec.2020@gmail.com</u>

 Grading : each assignment is worth <u>4 points</u> — your <u>4 best labs</u> out of the 5 will be retained and will count for <u>half of your final grade</u>.

 Questions : questions or feedback are welcome after class or by email at I-emir-omar.chehab@inria.fr

Lesson: recap

	type	n_clusters	Objective	Algorithm	Robust to	Clusters
K-Means	partitional	hardcoded	$ \min_{\substack{\delta_{ik}, c_k \\ \text{cluster sets}}} \sum_{k=1}^{K} \sum_{i=1}^{m} \left\ x^i - c_k \right\ ^2 $	alternatively assign points to clusters, recompute clusters as center-of-points		Points that are <u>near</u>
Agglomerative Single- Linkage	hierarchical (bottom- up: merge)	given by 'cutoff' ε	-	sequentially compute distance (e.g. min) between clusters and merge the two nearest clusters, until you end up with one cluster.	init	<u>nearest</u>
DBSCAN	partitional	given by 'cutoff' ε density minPts	_	Identify core points as having at least minPts in their ε-neighborhood. Their connected components on the ε- neighbor graph make the clusters. Non-core points either join an ε-nearby cluster, else are noise.	and outliers, noise	and in <u>dense</u> regions
HDBSCAN	<mark>hierarchical</mark> (top-down: split)	given by 'cutoff' ɛ density minPts	_	 Build complete graph weighted by specific metric that penalizes sparsity* Extract the minimum spanning tree Construct a cluster hierarchy of connected components by removing heaviest edges Condense the cluster hierarchy based on a min. cluster size before merge (less is noise) Extract the clusters with long antecedance (robust to cutoff) in the condensed tree : tunes ε for each cluster. 	and n_clusters	that are <u>not</u> <u>easily</u> <u>split</u>

From a modelling standpoint

A *partitional* clustering can sometimes be framed as the 'cutoff' of a *hierarchical* clustering, i.e. as the *instance* of a *relaxed* problem in which it is embedded.

For e.g., DBSCAN (**partitional**) can be understood as the ε -'cut' of HDBSCAN (**hierarchical, top-down**) without steps 4 and 5, or of Agglomerative Single-Linkage (**hierarchical, bottom-up**) where the space is transformed s.t. sparse points ('not having a core-point eps-neighbor') are farther away^{*}.

^{*} transforming thusly the space is equivalent to keeping the original space but modifying the metric to that of Step 1 of HDBSCAN

Assignment: plan

1. K-Means (scikit-learn)

2. Agglomerative Single-Linkage (vour own code)

3. DBSCAN (scikit-learn)

4. HDBSCAN (scikit-learn)

5. Applications : clustering observations on Mars and color-reduction (scikit-learn)