Data Sciences – CentraleSupelec Advance Machine Learning Course VII - Inference on Graphical Models

Emilie Chouzenoux

Center for Visual Computing CentraleSupelec emilie.chouzenoux@centralesupelec.fr

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト … 臣

900

Graphical models

* A graph G consists of a pair (V, \mathcal{E}) , with V the set of vertices and \mathcal{E} the set of edges.

* In graphical models, each vertex represents a random variable, and the graph gives a visual way of understanding the joint distribution P of a set of random variables X:

 $X = (X^{(1)}, \ldots, X^{(p)}) \sim P$

Graphical models

* A graph ${\cal G}$ consists of a pair $({\cal V},{\cal E}),$ with ${\cal V}$ the set of vertices and ${\cal E}$ the set of edges.

* In graphical models, each vertex represents a random variable, and the graph gives a visual way of understanding the joint distribution P of a set of random variables X:

 $X = (X^{(1)}, \ldots, X^{(p)}) \sim P$

* In an **undirected** graph, the edges have no directional arrows. We say that the **pairwise Markov property** holds if, for every $(j, k) \in \mathcal{V}^2$, the absence of an edge between $X^{(j)}$ and $X^{(k)}$ is equivalent to the conditionally independence of the corresponding random variables, given the other variables:

 $X^{(j)} \perp X^{(k)} | X^{(\mathcal{V} \setminus \{j,k\})}.$

* Undirected + pairwise Markov = conditional independence graph model.

* A **Gaussian graphical model** (GGM) is a conditional independence graph with a multivariate Gaussian distribution:

 $X = (X^{(1)}, \ldots, X^{(p)}) \sim \mathcal{N}(0, \Sigma)$

with positive definite covariance matrix $\Sigma \in \mathbb{R}^{p \times p}$.

* A **Gaussian graphical model** (GGM) is a conditional independence graph with a multivariate Gaussian distribution:

$$X = (X^{(1)}, \ldots, X^{(p)}) \sim \mathcal{N}(0, \Sigma)$$

with positive definite covariance matrix $\Sigma \in \mathbb{R}^{p \times p}$.

* The partial correlation between $X^{(j)}$ and $X^{(k)}$ given $X^{(\mathcal{V}\setminus\{j,k\})}$ equals:

$$\rho_{jk|\mathcal{V}\setminus\{j,k\}} = -\frac{K_{jk}}{\sqrt{K_{jj}K_{kk}}} \quad \text{with} \quad K = \Sigma^{-1}$$

* A **Gaussian graphical model** (GGM) is a conditional independence graph with a multivariate Gaussian distribution:

$$X = (X^{(1)}, \ldots, X^{(p)}) \sim \mathcal{N}(0, \Sigma)$$

with positive definite covariance matrix $\Sigma \in \mathbb{R}^{p \times p}$.

* The partial correlation between $X^{(j)}$ and $X^{(k)}$ given $X^{(\mathcal{V}\setminus\{j,k\})}$ equals:

$$ho_{jk|\mathcal{V}ackslash\{j,k\}} = -rac{K_{jk}}{\sqrt{K_{jj}K_{kk}}} \quad ext{with} \quad K = \Sigma^{-1}$$

* Consider the linear regression: $X^{(j)} = \beta_k^{(j)} X^{(k)} + \sum_{r \in \mathcal{V} \setminus \{j,k\}} \beta_r^{(j)} X^{(r)} + \epsilon^{(j)}$ with $\epsilon^{(j)}$ zero-mean and independant from $X^{(r)}$, $r \in \mathcal{V} \setminus \{j\}$. Then,

$$eta_k^{(j)} = - \mathcal{K}_{jk}/\mathcal{K}_{jj}, \quad eta_j(k) = - \mathcal{K}_{jk}/\mathcal{K}_{kk}$$

* A **Gaussian graphical model** (GGM) is a conditional independence graph with a multivariate Gaussian distribution:

$$X = (X^{(1)}, \ldots, X^{(p)}) \sim \mathcal{N}(0, \Sigma)$$

with positive definite covariance matrix $\Sigma \in \mathbb{R}^{p \times p}$.

* The partial correlation between $X^{(j)}$ and $X^{(k)}$ given $X^{(V \setminus \{j,k\})}$ equals:

$$ho_{jk|\mathcal{V}ackslash\{j,k\}} = -rac{K_{jk}}{\sqrt{K_{jj}K_{kk}}} \quad ext{with} \quad K = \Sigma^{-1}$$

* Consider the linear regression: $X^{(j)} = \beta_k^{(j)} X^{(k)} + \sum_{r \in \mathcal{V} \setminus \{j,k\}} \beta_r^{(j)} X^{(r)} + \epsilon^{(j)}$ with $\epsilon^{(j)}$ zero-mean and independant from $X^{(r)}$, $r \in \mathcal{V} \setminus \{j\}$. Then,

$$eta_k^{(j)} = - \mathcal{K}_{jk}/\mathcal{K}_{jj}, \quad eta_j(k) = - \mathcal{K}_{jk}/\mathcal{K}_{kk}$$

* The edges in a GGM are then related to Σ , K and β through:

 $(j,k) \operatorname{and} (k,j) \in \mathcal{E} \Leftrightarrow \Sigma_{jk}^{-1} \neq 0 \Leftrightarrow \rho_{jk|\mathcal{V} \setminus \{j,k\}} \neq 0 \Leftrightarrow \beta_k^{(j)} \neq 0 \operatorname{and} \beta_j^{(k)} \neq 0$

Nodewise regression

* We aim at **inferring the presence of edges** in a GGM. **Nodewise regression** consists in performing many regressions [Meinshausen et al., 2006], relying on the fact that:

$$X^{(j)} = \sum_{r \neq j} \bar{eta}_r^{(j)} X^{(r)} + \epsilon^{(j)}, \quad j = 1, \dots, p$$

1) For $j=1,\ldots,p$, apply a variable selection method providing an estimate $\hat{S}^{(j)}$ of

$$ar{S}^{(j)} = \left\{ r | ar{eta}_r^{(j)}
eq 0, r = 1, \dots, p, r
eq j
ight\}$$

→ Lasso regression of $X^{(j)}$ versus $\{X^{(r)}, r \neq j\}$ yields $\hat{\beta}^{(j)}$, which then yields the support estimate $\hat{S}^{(j)} = \{r | \hat{\beta}^{(j)} \neq 0\}$. 2) Build an estimate of the graph structure, using AND/OR rule: Edge present between nodes j and $k \Leftrightarrow k \in \hat{S}^{(j)}$ AND/OR $j \in \hat{S}^{(k)}$

Graphical LASSO

* We aim at **inferring GGM parameters** (μ, Σ) from *n* i.i.d realizations: X_1, \ldots, X_n of $\mathcal{N}(\mu, \Sigma)$ with $\mu \in \mathbb{R}^p$ and $\Sigma \in \mathbb{R}^{p \times p}$ sdp. We introduce the sample mean and the empirical covariance matrix:

$$\hat{\mu} = n^{-1} \sum_{i=1}^{n} X_i, \quad S = n^{-1} \sum_{i=1}^{n} (X_i - \hat{\mu}) (X_i - \hat{\mu})^{\top}.$$

Then, the negative Gaussian log-likelihood reads

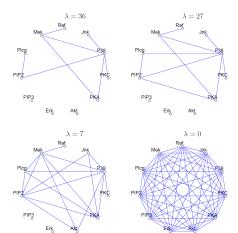
 $-n^{-1}\ell(\Sigma^{-1}|X_1,\ldots,X_n) = -\log \det \Sigma^{-1} + \operatorname{trace}(S\Sigma^{-1}) + \operatorname{constant}.$

* GLASSO is an estimator of Σ^{-1} based on the use of ℓ_1 penalty:

$$\hat{\Sigma}^{-1} = \mathsf{argmin}_{\Sigma^{-1}\succ 0} - \mathsf{log}\,\mathsf{det}\,\Sigma^{-1} + \mathsf{trace}(S\Sigma^{-1}) + \lambda \|\Sigma^{-1}\|_1$$

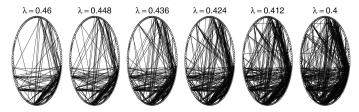
with $\|\Sigma^{-1}\|_1 = \sum_{j < k} |\Sigma_{jk}^{-1}|$, and $\lambda > 0$ regularization parameter. * Convex optimization problem. Several solvers available. Example: ADMM algorithm.

Example



Four different GLASSO solutions for the flow-cytometry data with p = 11 proteins measured on n = 7466 cells [Sachs et al., 2003].

Example



Six different GLASSO solutions for the genomic dataset about riboflavin production with *Bacillus subtilis*, p = 160 and n = 115. [Meinshausen et al., 2010].

Whiteboard

Whiteboard

Whiteboard