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Graphical models
∗ A graph G consists of a pair (V, E), with V the set of vertices and E the
set of edges.
∗ In graphical models, each vertex represents a random variable, and the
graph gives a visual way of understanding the joint distribution P of a set
of random variables X :

X = (X (1), . . . ,X (p)) ∼ P

∗ In an undirected graph, the edges have no directional arrows. We say
that the pairwise Markov property holds if, for every (j , k) ∈ V2, the
absence of an edge between X (j) and X (k) is equivalent to the
conditionally independence of the corresponding random variables, given
the other variables:

X (j)⊥X (k)|X (V\{j ,k}).

∗ Undirected + pairwise Markov = conditional independence graph model.

:
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Gaussian graphical model
∗ A Gaussian graphical model (GGM) is a conditional independence graph with
a multivariate Gaussian distribution:

X = (X (1), . . . ,X (p)) ∼ N (0,Σ)

with positive definite covariance matrix Σ ∈ Rp×p.

∗ The partial correlation between X (j) and X (k) given X (V\{j,k}) equals:

ρjk|V\{j,k} = − Kjk√
KjjKkk

with K = Σ−1

∗ Consider the linear regression: X (j) = β
(j)
k X (k) +

∑
r∈V\{j,k} β

(j)
r X (r) + ε(j)

with ε(j) zero-mean and independant from X (r), r ∈ V \ {j}. Then,

β
(j)
k = −Kjk/Kjj , βj(k) = −Kjk/Kkk

∗ The edges in a GGM are then related to Σ, K and β through:

(j , k) and (k, j) ∈ E ⇔ Σ−1
jk 6= 0⇔ ρjk|V\{j,k} 6= 0⇔ β

(j)
k 6= 0 andβ

(k)
j 6= 0

:
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Nodewise regression
∗ We aim at inferring the presence of edges in a GGM. Nodewise
regression consists in performing many regressions [Meinshausen et al.,
2006], relying on the fact that:

X (j) =
∑
r 6=j

β̄
(j)
r X (r) + ε(j), j = 1, . . . , p

1) For j = 1, . . . , p, apply a variable selection method providing an
estimate Ŝ (j) of

S̄ (j) =
{
r |β̄(j)

r 6= 0, r = 1, . . . , p, r 6= j
}

 Lasso regression of X (j) versus
{
X (r), r 6= j

}
yields β̂(j), which then

yields the support estimate Ŝ (j) =
{
r |β̂(j) 6= 0

}
.

2) Build an estimate of the graph structure, using AND/OR rule:
Edge present between nodes j and k ⇔ k ∈ Ŝ (j) AND/OR j ∈ Ŝ (k)
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Graphical LASSO
∗ We aim at inferring GGM parameters (µ,Σ) from n i.i.d realizations:
X1, . . . ,Xn of N (µ,Σ) with µ ∈ Rp and Σ ∈ Rp×p sdp. We introduce the
sample mean and the empirical covariance matrix:

µ̂ = n−1
n∑

i=1

Xi , S = n−1
n∑

i=1

(Xi − µ̂)(Xi − µ̂)>.

Then, the negative Gaussian log-likelihood reads

−n−1`(Σ−1|X1, . . . ,Xn) = − log det Σ−1 + trace(SΣ−1) + constant.

∗ GLASSO is an estimator of Σ−1 based on the use of `1 penalty:

Σ̂−1 = argminΣ−1�0 − log det Σ−1 + trace(SΣ−1) + λ‖Σ−1‖1

with ‖Σ−1‖1 =
∑

j<k |Σ
−1
jk |, and λ > 0 regularization parameter.

∗ Convex optimization problem. Several solvers available.
Example: ADMM algorithm.
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Example

Four different GLASSO solutions for the flow-cytometry data with p = 11
proteins measured on n = 7466 cells [Sachs et al., 2003].
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Example

Six different GLASSO solutions for the genomic dataset about riboflavin
production with Bacillus subtilis, p = 160 and n = 115. [Meinshausen et

al., 2010].
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