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Linear regression
Motivations:

» Simple approach (essential to understand more sophisticated ones)
» Interpretable description of the relations inputs <> outputs

» Can outperform nonlinear models, in the case of few training data/high
noise/sparse data

» Extended applicability when combined with basis-function methods (see Lab)
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Linear regression

Motivations:
» Simple approach (essential to understand more sophisticated ones)
» Interpretable description of the relations inputs <> outputs

» Can outperform nonlinear models, in the case of few training data/high
noise/sparse data

» Extended applicability when combined with basis-function methods (see Lab)
Applications: Prediction of

» Sale of products in the future based on past buying behaviour.

» Economic growth of a country or state.

» How much houses it would sell in the coming months and at what price.

» Number of goals a player would score in coming matches based on previous
performances.

» Hours of study a student puts in, with respect to the exam results. . .
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Linear model

Training data: x; € RY, y; €R, i=1,...,n

(xi)1<i<n are inputs / transformed version of inputs (eg, through log) /
basis expansions.
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Linear model

Training data: x; € RY, y; €R, i=1,...,n

(xi)1<i<n are inputs / transformed version of inputs (eg, through log) /
basis expansions.

Fitting model:
yi =~ f(X,‘) (Vi: 1,...,n)
with, for every i € {1,...,n},
f(x,-) = Bol + Bixi1 + ... + Baxig = X:-T,@ = [Xﬁ]i

with X € R™9*1 whose i-th line is x} = [1, X1, - - - , Xiq]-
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Linear model

Training data: x; € RY, y; €R, i=1,...,n

(xi)1<i<n are inputs / transformed version of inputs (eg, through log) /
basis expansions.
Fitting model:

yimf(x;)) (Vi=1,...,n)
with, for every i € {1,...,n},

f(x,-) = Bol + Bixi1 + ... + Baxig = X:-T,@ = [Xﬁ]i

with X € R™9*1 whose i-th line is x} = [1, X1, - - - , Xiq]-
~ [B1, ..., Bd] defines a hyperplan in RY, and 3y can be viewed as a bias
shifting function f perpendicularly to the hyperplan.
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Linear model

Training data: x; € RY, y; €R, i=1,...,n
(xi)1<i<n are inputs / transformed version of inputs (eg, through log) /
basis expansions.
Fitting model:
yi~f(x;)) (Vi=1,...,n)

with, for every i € {1,...,n},

f(x,-) = Bol + Bixi1 + ... + Baxig = X:-T,@ = [Xﬁ]i

with X € R™9*1 whose i-th line is x} = [1, X1, - - - , Xiq]-

~ [B1, ..., Bq] defines a hyperplan in RY, and Sy can be viewed as a bias
shifting function f perpendicularly to the hyperplan.

Goal: Using the training set, learn the linear function f (parametrized by

(3) that predict a real value y from an observation x.
=] =) = = = Al



Linear Regression Linear classification
00@00000000000000 000000

Least Squares
Principle: Search for 3 that minimizes the sum of squares residuals

n

F(B) = 33 (i~ F)2 = 31X6 — yI? = el

i=1

with e = X3 — y the residual vector.

v
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Optimization (reminders?)

We search for a solution to ming F(3) where F : RI*1 — R is convex.

B is minimizer if and only if VF(3) = 0 where VF is the gradient of F,
such that

[VE(B)]; = agga) (Vj=0,...,d).

Note that F also reads:

1 1
F(B)=5y'y—B"XTy+58'X'X3

Its gradient is VF(B) = —X Ty 4+ XTX3. Assuming that X has full column
rank, then XTX is positive definite, the solution is unique and reads:

B=(X"X)"'X"y
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Interpretation

The fitted values at the training inputs are
§=XB=X(X"X)"IX"y = Hy

where H is called the “hat matrix”. This matrix computes the orthogonal
projection of y onto the vectorial subspace spanned by the columns of X.

Y
'
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Statistical properties
Variance:
Var(B) = (X" X)"1o?

for uncorrelated observations y; with variance 02, and deterministic x;.
Unbiased estimator:

1 n
2 .+ 02
R CEY ;(yl 9i)
Inference properties: Assume that Y = 3y + 27:1 XjBj + € with
e ~N(0,0%). Then 3 and & are independant and
> B~ N(B,(XTX) 0%

> (n—(d+1))5% ~ azxi_(dﬂ)
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High dimensional linear regression

Problems with least squares regression if d is large:

» Accuracy: The hyperplan fits the data well but predicts (generalizes)
badly. (low bias / large variance)

» Interpretation: We want to identify a small subset of features
important/relevant for predicting the data.
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High dimensional linear regression
Problems with least squares regression if d is large:

badly. (low bias / large variance)

» Accuracy: The hyperplan fits the data well but predicts (generalizes)
» Interpretation: We want to identify a small subset of features
important/relevant for predicting the data.

Regularization: F(8) = |ly — XB|> + AR(B)

> ridge regression : R(8) = 3|8
» shrinkage : R(8) = ||8|11

» subset selection

R(B) = 118llo

usually needed !

 Explicit solution in the case of ridge. Otherwise, optimization method is
o> <5 = = = 9Dac
=
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- g=2 g=1 q=05
| | | |
| I |

Contour plots for Zj |B;19

When the columns of X are orthonormal, the estimators can be deduced
from the LS estimator B according to:
» Ridge : Bj/(l + A) weight decay

» Lasso : sign(Bj)(|Bj| — A)+ soft tresholding

» Best subset : ﬁAj -0 (Bf > 2)\> hard tresholding
=] = = = = Qv
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Robust regression

Challenge: Estimation methods insensitive to outliers and possibly high
leverage points.

Approach: M-estimation

n
F(B)=)_nlyi —x;' B)
i=1

with p a potential function satisfying:

> p(e) > 0and p(0) =0

> p(e) = p(—e)

> p(e) = p(€) for |e| = |€
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Robust regression

Challenge: Estimation methods insensitive to outliers and possibly high
leverage points.

Approach: M-estimation

Zp —X/T,B

with p a potential function satisfying:
» p(e) >0 and p(0) =0
> p(e) = p(—e)
> p(e) = p(€’) for |e| = [€]

* Minimizer satisfies:

= IRLS algorithm



Linear Regression

000000000000 0e000

IRLS algorithm

Linear classification
000000

Core idea: Let f be defined as

(WxeR)  p(x) = o(lx])
where

(i) ¢ is differentiable on ]0, +o0],
(ii) ¢(1/*) is concave on ]0, +o0],
(iii) (vx € [0, +00]) (x) >0,
(iv) ||mx_>0 ( (x) = MX)) eR.

h(.y)

Then, for all y € R

(X €R) p(x) < ply) + 50N — ¥) + selly])x — y)?

=] =)
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Examples of functions p

p(x) w(x) (exercise)
|x| — & log(|x]/d + 1)
{x2 if[x| <&

20|x| — 8% otherwise
log(cosh(x))
(1+x2/82)/2 —1
1 — exp(—x?/(26%))
xz/(2(52 + x2)
{1 —(1—x%/(66%)° if|x| < V60

1 otherwise

Convex

Nonconvex

tanh(x?/(26%))
log(1 + x*/6%)
(A, 6) €]0,+oo[, k€ [1,2]

5 =
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IRLS algorithm:

(Vk €N) Brir = (XTWEX) X TW,y.

with the IRLS weight matrix Wy = Diag(w(y — XBy)).

huber
~ 2
o
w © S
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Linear classification

Applications:
» Sentiment analysis from text features
» Handwritten digits recognition
» Gene expression data classification

» Object recognition in images
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Linear classification

Applications:

» Sentiment analysis from text features

» Handwritten digits recognition

» Gene expression data classification

» Object recognition in images
Goal: Learn linear functions f(-) for dividing the input space into a
collection of K regions.

» Map a linear function on Pr(G = k|X = x) ~ linear regression

» More generally, map a linear function to a transformation of
Pr(G = k|X = x)
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Logistic regression

Model:
Pr(G=1|X=x) T
8 B (G KX =x) 0TI
Pr(G =2|X =x
jog £\ | ) = Bao + B3 x

€ Pr(G = K|X = x)

PG=K—1X=x) .
8 B G =KX =x) ko TPk
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= Forevery k=1,... K -1,

Pr(G = k|X = x)
and

exp(Bro + By X)

1+ R exp(Bro + By x)
Pr(G =K|X =x)=

1

14+ 355 exp(Bro + B x)
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= Forevery k=1,... K -1,

Pr(G = ) exp(Bro + By x)
and

1+ 305" exp(Bro + B/ x)
Pr(G =K|X =x)=
Loss function:

1

14+ 355 exp(Beo + B x)

n

F(©) = Z —log Pr(G = gi| X = x;; ©)
i=1
associated to entry x;.

where © gathers the whole parameters set, and g; the class label

=] =)
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e Sign response: (Vi=1,...,n) y;

—lifgi=1 and y; =

+lifg =2
i=1

F(B) = log(1+ exp(—yiB"x))
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e Sign response: (Vi
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n) yi=-lifgi=1andy,=+1if g =2
i=1

Zlog(l—i-exp( yiB ' x;))

» Function F is convex, differentiable
» Useful inequality for f(x)

= log(1 + &%)
(V0x,y) €R?) F(x) < F(y) +F(¥)(x —y) + S0(¥)(x —y)*
with f(y) 1+ey and w(y) = (1+e —

— 2) = IRLS algorithm.
=] = = = = HA
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Binary case

e Sign response: (Vi
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n) yi=-lifgi=1andy,=+1if g =2
i=1

Zlog(l—i-exp( yiB ' x;))

» Function F is convex, differentiable
» Useful inequality for f(x) = log(1 + &)
with f(y)

(V0x,y) €R?) F(x) < F(y) +F(¥)(x —y) + S0(¥)(x —y)*
1+ey and w(y) = (

1+e y

— 2) = IRLS algorithm.
» For large datasets (i.e. Iarge n) ~» Need for regularization to avoid
over-fitting + online minimization technique (see next course!).
=} =) = = = Al
—
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