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Linear Regression Linear classification

Linear regression

Motivations:

I Simple approach (essential to understand more sophisticated ones)

I Interpretable description of the relations inputs ↔ outputs

I Can outperform nonlinear models, in the case of few training data/high
noise/sparse data

I Extended applicability when combined with basis-function methods (see Lab)

Applications: Prediction of

I Sale of products in the future based on past buying behaviour.

I Economic growth of a country or state.

I How much houses it would sell in the coming months and at what price.

I Number of goals a player would score in coming matches based on previous
performances.

I Hours of study a student puts in, with respect to the exam results.

:



Linear Regression Linear classification

Linear regression

Motivations:

I Simple approach (essential to understand more sophisticated ones)

I Interpretable description of the relations inputs ↔ outputs

I Can outperform nonlinear models, in the case of few training data/high
noise/sparse data

I Extended applicability when combined with basis-function methods (see Lab)

Applications: Prediction of

I Sale of products in the future based on past buying behaviour.

I Economic growth of a country or state.

I How much houses it would sell in the coming months and at what price.

I Number of goals a player would score in coming matches based on previous
performances.

I Hours of study a student puts in, with respect to the exam results.

:



Linear Regression Linear classification

Linear model

Training data: xi ∈ Rd , yi ∈ R, i = 1, . . . , n
(xi )1≤i≤n are inputs / transformed version of inputs (eg, through log) /
basis expansions.

Fitting model:
yi ≈ f (xi ) (∀i = 1, . . . , n)

with, for every i ∈ {1, . . . , n},

f (xi ) = β01 + β1xi1 + . . .+ βdxid = x′>i β = [Xβ]i

with X ∈ Rn×d+1 whose i-th line is x′i = [1, xi1, . . . , xid ].
 [β1, . . . , βd ] defines a hyperplan in Rd , and β0 can be viewed as a bias
shifting function f perpendicularly to the hyperplan.
Goal: Using the training set, learn the linear function f (parametrized by
β) that predict a real value y from an observation x.
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Least Squares
Principle: Search for β that minimizes the sum of squares residuals

F (β) =
1

2

n∑
i=1

(yi − f (xi ))2 =
1

2
‖Xβ − y‖2 =

1

2
‖e‖2

with e = Xβ − y the residual vector.
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Optimization (reminders?)

We search for a solution to minβ F (β) where F : Rd+1 → R is convex.

β̂ is minimizer if and only if ∇F (β̂) = 0 where ∇F is the gradient of F ,
such that

[∇F (β)]j =
∂F (β)

∂βj
(∀j = 0, . . . , d).

Note that F also reads:

F (β) =
1

2
y>y − β>X>y +

1

2
β>X>Xβ

Its gradient is ∇F (β) = −X>y + X>Xβ. Assuming that X has full column
rank, then X>X is positive definite, the solution is unique and reads:

β̂ = (X>X)−1X>y

:
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White board
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Interpretation

The fitted values at the training inputs are

ŷ = Xβ̂ = X(X>X)−1X>y = Hy

where H is called the “hat matrix”. This matrix computes the orthogonal
projection of y onto the vectorial subspace spanned by the columns of X.
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Statistical properties

Variance:
Var(β̂) = (X>X)−1σ2

for uncorrelated observations yi with variance σ2, and deterministic xi .
Unbiased estimator:

σ̂2 =
1

n − (d + 1)

n∑
i=1

(yi − ŷi )
2

Inference properties: Assume that Y = β0 +
∑d

j=1 Xjβj + ε with

ε ∼ N (0, σ2). Then β̂ and σ̂ are independant and

I β̂ ∼ N (β, (X>X)−1σ2)

I (n − (d + 1))σ̂2 ∼ σ2χ2
n−(d+1)
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High dimensional linear regression

Problems with least squares regression if d is large:

I Accuracy : The hyperplan fits the data well but predicts (generalizes)
badly. (low bias / large variance)

I Interpretation: We want to identify a small subset of features
important/relevant for predicting the data.

Regularization: F (β) = 1
2‖y − Xβ‖2 + λR(β)

I ridge regression : R(β) = 1
2‖β‖

2

I shrinkage : R(β) = ‖β‖1

I subset selection : R(β) = ‖β‖0

∗ Explicit solution in the case of ridge. Otherwise, optimization method is
usually needed !

:
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Penalty functions

Contour plots for
∑

j |βj |q

When the columns of X are orthonormal, the estimators can be deduced
from the LS estimator β̂ according to:

I Ridge : β̂j/(1 + λ) weight decay

I Lasso : sign(β̂j)(|β̂j | − λ)+ soft tresholding

I Best subset : β̂j · δ
(
β̂2
j ≥ 2λ

)
hard tresholding
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Robust regression
Challenge: Estimation methods insensitive to outliers and possibly high
leverage points.
Approach: M-estimation

F (β) =
n∑

i=1

ρ(yi − x′>i β)

with ρ a potential function satisfying:
I ρ(e) ≥ 0 and ρ(0) = 0
I ρ(e) = ρ(−e)
I ρ(e) ≥ ρ(e ′) for |e| ≥ |e ′|

∗ Minimizer satisfies:

ρ̇(yi − x′>i β̂)x′i = 0, i = 1, . . . , n

⇒ IRLS algorithm.

:
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IRLS algorithm
Core idea: Let f be defined as

(∀x ∈ R) ρ(x) = φ(|x |)

where
(i) φ is differentiable on ]0,+∞[,

(ii) φ(
√
·) is concave on ]0,+∞[,

(iii) (∀x ∈ [0,+∞[) φ̇(x) ≥ 0,

(iv) limx→0
x>0

(
ω(x) := φ̇(x)

x

)
∈ R.

h(.,y)

f

y

Then, for all y ∈ R,

(∀x ∈ R) ρ(x) ≤ ρ(y) + ρ̇(y)(x − y) +
1

2
ω(|y |)(x − y)2.
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Examples of functions ρ

ρ(x) ω(x) (exercise)

|x | − δ log(|x |/δ + 1){
x2 if |x | < δ

2δ|x | − δ2 otherwise

C
o
n
ve
x

log(cosh(x))

(1 + x2/δ2)κ/2 − 1

1− exp(−x2/(2δ2))

x2/(2δ2 + x2){
1− (1− x2/(6δ2))3 if |x | ≤

√
6δ

1 otherwise

N
o
n
co
n
ve
x

tanh(x2/(2δ2))

log(1 + x2/δ2)

(λ, δ) ∈]0,+∞[2, κ ∈ [1, 2]
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White board
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IRLS algorithm:

(∀k ∈ N) βk+1 = (X>WkX)−1X>Wky.

with the IRLS weight matrix Wk = Diag(ω(y − Xβk)).

:
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Linear classification

Applications:

I Sentiment analysis from text features

I Handwritten digits recognition

I Gene expression data classification

I Object recognition in images

Goal: Learn linear functions fk(·) for dividing the input space into a
collection of K regions.

I Map a linear function on Pr(G = k |X = x) ∼ linear regression

I More generally, map a linear function to a transformation of
Pr(G = k |X = x)

:
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Logistic regression
Model:

log
Pr(G = 1|X = x)

Pr(G = K |X = x)
= β10 + β>1 x

log
Pr(G = 2|X = x)

Pr(G = K |X = x)
= β20 + β>2 x

...

log
Pr(G = K − 1|X = x)

Pr(G = K |X = x)
= β(K−1)0 + β>K−1x

Loss function:

F (Θ) =
n∑

i=1

− log Pr(G = gi |X = xi ; Θ)

where Θ gathers the whole parameters set, and gi the class label
associated to entry xi .

:
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Logistic regression
⇒ For every k = 1, . . . ,K − 1,

Pr(G = k |X = x) =
exp(βk0 + β>k x)

1 +
∑K−1

`=1 exp(β`0 + β>` x)

and

Pr(G = K |X = x) =
1

1 +
∑K−1

`=1 exp(β`0 + β>` x)

Loss function:

F (Θ) =
n∑

i=1

− log Pr(G = gi |X = xi ; Θ)

where Θ gathers the whole parameters set, and gi the class label
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White board
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Binary case

• Sign response: (∀i = 1, . . . , n) yi = −1 if gi = 1, and yi = +1 if gi = 2.

F (β) =
n∑

i=1

log(1 + exp(−yiβ>xi ))

I Function F is convex, differentiable.

I Useful inequality for f (x) = log(1 + ex):

(∀(x , y) ∈ R2) f (x) ≤ f (y) + ḟ (y)(x − y) +
1

2
ω(y)(x − y)2

with ḟ (y) = ey

1+ey and ω(y) = 1
y ( 1

1+e−y − 1
2 )⇒ IRLS algorithm.

I For large datasets (i.e. large n)  Need for regularization to avoid
over-fitting + online minimization technique (see next course!).
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