Data Sciences – CentraleSupelec Advance Machine Learning Course II - Linear regression/Linear classification

Emilie Chouzenoux

Center for Visual Computing CentraleSupelec emilie.chouzenoux@centralesupelec.fr

900

Linear regression

Motivations:

- Simple approach (essential to understand more sophisticated ones)
- Interpretable description of the relations inputs \leftrightarrow outputs
- Can outperform nonlinear models, in the case of few training data/high noise/sparse data
- Extended applicability when combined with basis-function methods (see Lab)

Linear regression

Motivations:

- ► Simple approach (essential to understand more sophisticated ones)
- Interpretable description of the relations inputs \leftrightarrow outputs
- Can outperform nonlinear models, in the case of few training data/high noise/sparse data
- Extended applicability when combined with basis-function methods (see Lab)

Applications: Prediction of

- ► Sale of products in the future based on past buying behaviour.
- Economic growth of a country or state.
- ▶ How much houses it would sell in the coming months and at what price.
- Number of goals a player would score in coming matches based on previous performances.

Training data: $\mathbf{x}_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$, i = 1, ..., n

 $(\mathbf{x}_i)_{1 \le i \le n}$ are inputs / transformed version of inputs (eg, through log) / basis expansions.

Training data:
$$\mathbf{x}_i \in \mathbb{R}^d$$
, $y_i \in \mathbb{R}$, $i = 1, \dots, n$

 $(\mathbf{x}_i)_{1 \le i \le n}$ are inputs / transformed version of inputs (eg, through log) / basis expansions.

Fitting model:

$$y_i \approx f(\mathbf{x}_i) \quad (\forall i = 1, \ldots, n)$$

with, for every $i \in \{1, \ldots, n\}$,

$$f(\mathbf{x}_i) = \beta_0 1 + \beta_1 x_{i1} + \ldots + \beta_d x_{id} = \mathbf{x}_i^{\prime \top} \boldsymbol{\beta} = [\mathbf{X} \boldsymbol{\beta}]_i$$

with $\mathbf{X} \in \mathbb{R}^{n \times d+1}$ whose *i*-th line is $\mathbf{x}'_i = [1, x_{i1}, \dots, x_{id}]$.

Training data:
$$\mathbf{x}_i \in \mathbb{R}^d$$
, $y_i \in \mathbb{R}$, $i = 1, ..., n$

 $(\mathbf{x}_i)_{1 \le i \le n}$ are inputs / transformed version of inputs (eg, through log) / basis expansions.

Fitting model:

$$y_i \approx f(\mathbf{x}_i) \quad (\forall i = 1, \dots, n)$$

with, for every $i \in \{1, \ldots, n\}$,

$$f(\mathbf{x}_i) = \beta_0 1 + \beta_1 x_{i1} + \ldots + \beta_d x_{id} = \mathbf{x}_i^{\prime \top} \boldsymbol{\beta} = [\mathbf{X} \boldsymbol{\beta}]_i$$

with $\mathbf{X} \in \mathbb{R}^{n \times d+1}$ whose *i*-th line is $\mathbf{x}'_i = [1, x_{i1}, \dots, x_{id}]$. $\rightarrow [\beta_1, \dots, \beta_d]$ defines a hyperplan in \mathbb{R}^d , and β_0 can be viewed as a bias shifting function f perpendicularly to the hyperplan.

Training data:
$$\mathbf{x}_i \in \mathbb{R}^d$$
, $y_i \in \mathbb{R}$, $i = 1, \dots, n$

 $(\mathbf{x}_i)_{1 \le i \le n}$ are inputs / transformed version of inputs (eg, through log) / basis expansions.

Fitting model:

$$y_i \approx f(\mathbf{x}_i) \quad (\forall i = 1, \ldots, n)$$

with, for every $i \in \{1, \ldots, n\}$,

$$f(\mathbf{x}_i) = \beta_0 1 + \beta_1 x_{i1} + \ldots + \beta_d x_{id} = \mathbf{x}_i^{\top} \boldsymbol{\beta} = [\mathbf{X} \boldsymbol{\beta}]_i$$

with $\mathbf{X} \in \mathbb{R}^{n \times d+1}$ whose *i*-th line is $\mathbf{x}'_i = [1, x_{i1}, \dots, x_{id}]$. $\rightsquigarrow [\beta_1, \dots, \beta_d]$ defines a hyperplan in \mathbb{R}^d , and β_0 can be viewed as a bias shifting function f perpendicularly to the hyperplan. **Goal:** Using the training set, learn the linear function f (parametrized by β) that predict a real value y from an observation \mathbf{x} .

Least Squares

Principle: Search for β that minimizes the sum of squares residuals

$$F(\beta) = \frac{1}{2} \sum_{i=1}^{n} (y_i - f(\mathbf{x}_i))^2 = \frac{1}{2} \|\mathbf{X}\beta - \mathbf{y}\|^2 = \frac{1}{2} \|\mathbf{e}\|^2$$

with $\mathbf{e} = \mathbf{X}\boldsymbol{\beta} - \mathbf{y}$ the residual vector.

Optimization (reminders?)

We search for a solution to $\min_{\beta} F(\beta)$ where $F : \mathbb{R}^{d+1} \to \mathbb{R}$ is convex. $\hat{\beta}$ is minimizer if and only if $\nabla F(\hat{\beta}) = 0$ where ∇F is the gradient of F, such that

$$[\nabla F(\boldsymbol{\beta})]_j = rac{\partial F(\boldsymbol{\beta})}{\partial \beta_j} \quad (\forall j = 0, \dots, d).$$

Note that F also reads:

$$F(oldsymbol{eta}) = rac{1}{2} \mathbf{y}^{ op} \mathbf{y} - oldsymbol{eta}^{ op} \mathbf{X}^{ op} \mathbf{y} + rac{1}{2} oldsymbol{eta}^{ op} \mathbf{X}^{ op} \mathbf{X} oldsymbol{eta}$$

Its gradient is $\nabla F(\beta) = -\mathbf{X}^{\top}\mathbf{y} + \mathbf{X}^{\top}\mathbf{X}\beta$. Assuming that **X** has full column rank, then $\mathbf{X}^{\top}\mathbf{X}$ is positive definite, the solution is unique and reads:

$$\hat{oldsymbol{eta}} = (\mathbf{X}^{ op}\mathbf{X})^{-1}\mathbf{X}^{ op}\mathbf{y}$$

<ロ> < 部> < E> < E> = のへの

Interpretation

The fitted values at the training inputs are

$$\hat{\mathbf{y}} = \mathbf{X} \hat{oldsymbol{eta}} = \mathbf{X} (\mathbf{X}^{ op} \mathbf{X})^{-1} \mathbf{X}^{ op} \mathbf{y} = \mathbf{H} \mathbf{y}$$

where H is called the "hat matrix". This matrix computes the orthogonal projection of y onto the vectorial subspace spanned by the columns of X.

Linear classification 000000

Statistical properties

Variance:

$$\mathsf{Var}(\hat{oldsymbol{eta}}) = (\mathbf{X}^{ op}\mathbf{X})^{-1}\sigma^2$$

for uncorrelated observations y_i with variance σ^2 , and deterministic \mathbf{x}_i . Unbiased estimator:

$$\hat{\sigma}^2 = \frac{1}{n - (d + 1)} \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

Inference properties: Assume that $Y = \beta_0 + \sum_{j=1}^d X_j \beta_j + \epsilon$ with $\epsilon \sim \mathcal{N}(0, \sigma^2)$. Then $\hat{\beta}$ and $\hat{\sigma}$ are independent and $\blacktriangleright \hat{\beta} \sim \mathcal{N}(\beta, (\mathbf{X}^\top \mathbf{X})^{-1} \sigma^2)$ $\blacktriangleright (n - (d + 1))\hat{\sigma}^2 \sim \sigma^2 \chi^2_{n-(d+1)}$

High dimensional linear regression

Problems with least squares regression if d is large:

- Accuracy: The hyperplan fits the data well but predicts (generalizes) badly. (low bias / large variance)
- Interpretation: We want to identify a small subset of features important/relevant for predicting the data.

High dimensional linear regression

Problems with least squares regression if d is large:

- Accuracy: The hyperplan fits the data well but predicts (generalizes) badly. (low bias / large variance)
- Interpretation: We want to identify a small subset of features important/relevant for predicting the data.

Regularization:
$$F(\beta) = \frac{1}{2} \|\mathbf{y} - \mathbf{X}\beta\|^2 + \lambda R(\beta)$$

- ridge regression : $R(\beta) = \frac{1}{2} ||\beta||^2$
- shrinkage : $R(\beta) = \|\beta\|_1$
- subset selection : $R(\beta) = \|\beta\|_0$

* Explicit solution in the case of ridge. Otherwise, optimization method is usually needed !

Penalty functions

When the columns of **X** are orthonormal, the estimators can be deduced from the LS estimator $\hat{\beta}$ according to:

- Ridge : $\hat{\beta}_j/(1+\lambda)$ weight decay
- Lasso : sign $(\hat{\beta}_j)(|\hat{\beta}_j| \lambda)_+$ soft tresholding

• Best subset :
$$\hat{\beta}_j \cdot \delta\left(\hat{\beta}_j^2 \ge 2\lambda\right)$$
 hard tresholding

Robust regression

Challenge: Estimation methods insensitive to outliers and possibly high leverage points.

Approach: M-estimation

$$F(oldsymbol{eta}) = \sum_{i=1}^n
ho(y_i - \mathbf{x}_i'^{ op}oldsymbol{eta})$$

with ρ a potential function satisfying:

•
$$\rho(e) \ge 0$$
 and $\rho(0) = 0$

$$\bullet \ \rho(e) = \rho(-e)$$

•
$$\rho(e) \ge \rho(e')$$
 for $|e| \ge |e'|$

Robust regression

Challenge: Estimation methods insensitive to outliers and possibly high leverage points.

Approach: M-estimation

$$F(\boldsymbol{eta}) = \sum_{i=1}^n
ho(y_i - \mathbf{x}_i'^{ op} \boldsymbol{eta})$$

with ρ a potential function satisfying:

•
$$\rho(e) \ge 0$$
 and $\rho(0) = 0$
• $\rho(e) = \rho(-e)$
• $\rho(e) \ge \rho(e')$ for $|e| \ge |e'|$

* Minimizer satisfies:

$$\dot{\rho}(\mathbf{y}_i - \mathbf{x}_i^{\prime \top} \hat{\boldsymbol{\beta}}) \mathbf{x}_i^{\prime} = 0, \quad i = 1, \dots, n$$

 \Rightarrow IRLS algorithm.

Linear classification 000000

IRLS algorithm Core idea: Let f be defined as

$$(\forall x \in \mathbb{R}) \qquad \rho(x) = \phi(|x|)$$

where (i) ϕ is differentiable on $]0, +\infty[$, (ii) $\phi(\sqrt{\cdot})$ is concave on $]0, +\infty[$, (iii) $(\forall x \in [0, +\infty[) \quad \dot{\phi}(x) \ge 0,$ (iv) $\lim_{\substack{x \to 0 \\ x > 0}} \left(\omega(x) := \frac{\dot{\phi}(x)}{x} \right) \in \mathbb{R}.$

V

Then, for all $y \in \mathbb{R}$, $(\forall x \in \mathbb{R}) \quad \rho(x) \le \rho(y) + \dot{\rho}(y)(x-y) + \frac{1}{2}\omega(|y|)(x-y)^2.$

Examples of functions ρ

	$\rho(x)$	$\omega(x)$ (exercise)
Convex	$ x - \delta \log(x /\delta + 1)$	
	$\int x^2 \qquad \text{if } x < \delta$	
	$2\delta x - \delta^2$ otherwise	
	$\log(\cosh(x))$	
	$(1+x^2/\delta^2)^{\kappa/2}-1$	
Nonconvex	$1-\exp(-x^2/(2\delta^2))$	
	$x^2/(2\delta^2+x^2)$	
	$\int 1 - (1 - x^2/(6\delta^2))^3$ if $ x \le \sqrt{6}\delta$	
	1 otherwise	
	$ anh(x^2/(2\delta^2))$	
	$\log(1+x^2/\delta^2)$	
$(\lambda,\delta)\in]0,+\infty[^2,\ \kappa\in [1,2]_{{\scriptscriptstyle (\Box)}},\ {\scriptscriptstyle (\Box)},\ {\scriptscriptstyle (\Box)},\ {\scriptscriptstyle (\Xi)},\ {\scriptscriptstyle (\Xi$		

IRLS algorithm:

$$(\forall k \in \mathbb{N}) \quad \boldsymbol{eta}_{k+1} = (\mathbf{X}^{ op} \mathbf{W}_k \mathbf{X})^{-1} \mathbf{X}^{ op} \mathbf{W}_k \mathbf{y}.$$

with the IRLS weight matrix $\mathbf{W}_k = \text{Diag}(\omega(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}_k))$.

Linear classification

Applications:

- Sentiment analysis from text features
- Handwritten digits recognition
- Gene expression data classification
- Object recognition in images

Linear classification

Applications:

- Sentiment analysis from text features
- ► Handwritten digits recognition
- Gene expression data classification
- Object recognition in images

Goal: Learn linear functions $f_k(\cdot)$ for dividing the input space into a collection of K regions.

- Map a linear function on $Pr(G = k | X = x) \sim linear$ regression
- ► More generally, map a linear function to a transformation of Pr(G = k|X = x)

Linear classification $0 \bullet 0000$

Logistic regression Model:

÷

$$\log \frac{\Pr(G=1|X=x)}{\Pr(G=K|X=x)} = \beta_{10} + \beta_1^\top x$$
$$\log \frac{\Pr(G=2|X=x)}{\Pr(G=K|X=x)} = \beta_{20} + \beta_2^\top x$$

$$\log \frac{\Pr(G = K - 1 | X = x)}{\Pr(G = K | X = x)} = \beta_{(K-1)0} + \beta_{K-1}^{\top} x$$

<ロ> < 部> < 目> < 目> < 目> < 目> < 目</p>

Logistic regression \Rightarrow For every $k = 1, \dots, K - 1$,

$$\Pr(G = k | X = x) = \frac{\exp(\beta_{k0} + \beta_k^\top x)}{1 + \sum_{\ell=1}^{K-1} \exp(\beta_{\ell 0} + \beta_\ell^\top x)}$$

and

$$\Pr(G = K | X = x) = \frac{1}{1 + \sum_{\ell=1}^{K-1} \exp(\beta_{\ell 0} + \boldsymbol{\beta}_{\ell}^{\top} x)}$$

Logistic regression \Rightarrow For every $k = 1, \dots, K - 1$,

$$\Pr(G = k | X = x) = \frac{\exp(\beta_{k0} + \beta_k^\top x)}{1 + \sum_{\ell=1}^{K-1} \exp(\beta_{\ell 0} + \beta_\ell^\top x)}$$

and

$$\Pr(G = K | X = x) = \frac{1}{1 + \sum_{\ell=1}^{K-1} \exp(\beta_{\ell 0} + \beta_{\ell}^{\top} x)}$$

Loss function:

$$F(\Theta) = \sum_{i=1}^{n} -\log \Pr(G = g_i | X = \mathbf{x}_i; \Theta)$$

where Θ gathers the whole parameters set, and g_i the class label associated to entry \mathbf{x}_i .

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへぐ

Binary case

• Sign response: $(\forall i = 1, \dots, n)$ $y_i = -1$ if $g_i = 1$, and $y_i = +1$ if $g_i = 2$.

$$F(\boldsymbol{\beta}) = \sum_{i=1}^{n} \log(1 + \exp(-y_i \boldsymbol{\beta}^{\top} \mathbf{x}_i))$$

Binary case

• Sign response: $(\forall i = 1, \dots, n)$ $y_i = -1$ if $g_i = 1$, and $y_i = +1$ if $g_i = 2$.

$$F(\boldsymbol{\beta}) = \sum_{i=1}^{n} \log(1 + \exp(-y_i \boldsymbol{\beta}^{\top} \mathbf{x}_i))$$

- ► Function *F* is convex, differentiable.
- Useful inequality for $f(x) = \log(1 + e^x)$:

 $(orall (x,y)\in \mathbb{R}^2) \quad f(x)\leq f(y)+\dot{f}(y)(x-y)+rac{1}{2}\omega(y)(x-y)^2$

with
$$\dot{f}(y) = rac{e^y}{1+e^y}$$
 and $\omega(y) = rac{1}{y}(rac{1}{1+e^{-y}} - rac{1}{2}) \Rightarrow$ IRLS algorithm.

Binary case

• Sign response: $(\forall i = 1, \dots, n)$ $y_i = -1$ if $g_i = 1$, and $y_i = +1$ if $g_i = 2$.

$$F(\boldsymbol{\beta}) = \sum_{i=1}^{n} \log(1 + \exp(-y_i \boldsymbol{\beta}^{\top} \mathbf{x}_i))$$

- ► Function *F* is convex, differentiable.
- Useful inequality for $f(x) = \log(1 + e^x)$:

$$f(\forall(x,y)\in\mathbb{R}^2) \quad f(x)\leq f(y)+\dot{f}(y)(x-y)+rac{1}{2}\omega(y)(x-y)^2$$

with $\dot{f}(y) = \frac{e^y}{1+e^y}$ and $\omega(y) = \frac{1}{y}(\frac{1}{1+e^{-y}} - \frac{1}{2}) \Rightarrow IRLS$ algorithm.

► For large datasets (i.e. large n) ~ Need for regularization to avoid over-fitting + online minimization technique (see next course!).