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Motivation

Matrix factorization: Given a set of data entries xj ∈ Rp, 1 ≤ j ≤ n, and
a dimension r < min(p, n), we search for r basis elements wk , 1 ≤ k ≤ r
such that

xj ≈
r∑

k=1

wkhj(k)

with some weights hj ∈ Rr .
Equivalent form:

X ≈WH

I X ∈ Rp×n s.t. X (:, j) = xj for 1 ≤ j ≤ n,

I W ∈ Rp×r s.t. W (:, k) = wk for 1 ≤ k ≤ r ,

I H ∈ Rr×n s.t. H(:, j) = hj for 1 ≤ j ≤ n.
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Motivation

X ≈WH

⇒ low-rank approximation / linear dimensionality reduction

Two key aspects:

1. Which loss function to assess the quality of the approximation ?
Typical examples: Frobenius norm, KL-divergence, logistic,
Itakura-Saito.

2. Which assumptions on the structure of the factors W and H ?
Typical examples: Independency, sparsity, normalization,
non-negativity.

NMF: find (W ,H) s.t. X ≈WH, W ≥ 0,H ≥ 0.
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Example: Facial feature extraction

Decomposition of the CBCL face database [Lee and Seung, 1999]

⇒ Some of the features look like parts of nose or eye. Decomposition of a
face as having a certain weight of a certain nose type, a certain amount of
some eye type, etc.

:



Example: Spectral unmixing

Decomposition of the Urban hyperspectral image [Ma et al., 2014]

⇒ NMF is able to compute the spectral signatures of the endmembers and
simultaneously the abundance of each endmember in each pixel.
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Example: Topic modeling in text mining
Goal: Decompose a term-document matrix, where each column represents
a document, and each element in the document represents the weight of a
certain word (e.g., term frequency - inverse document frequency). The
ordering of the words in the documents is not taken into account (=
bag-of-words).

Topic decomposition model [Blei, 2012]

⇒ The NMF decomposition of the term-document matrix yields
components that could be considered as “topics”, and decomposes each
document into a weighted sum of topics.
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Multiplicative algorithms for NMF
Challenges: NMF is NP-hard and ill-posed. Most algorithms are only
guaranteed to converge to stationary point, and may be sensitive to
initialization.
We present here a popular class of methods introduced in [Lee and Seung,

1999], relying on simple multiplicative updates. (Assumption: X ≥ 0).
∗ Frobenius norm: ‖X −WH‖2

F

W ←W ◦ XH>

WHH>

H ← H ◦ W>X
W>WH

∗ KL-divergence: KL(X ,WH)

Wik ←Wik

∑n
`=1(Hk`Xi`/[WH]i`)∑n

`=1 Hk`

Hkj ← Hkj

∑p
i=1(WikXij/[WH]ij )∑p

i=1 Wik

:



Sketch of proof
The multiplicative schemes rely on the use of separable surrogate
functions, majorizing the loss w.r.t. W and H, respectively:
∗ Frobenius norm: For every (X ,W ,H, H̄) ≥ 0, and 1 ≤ j ≤ n,

‖Whj − xj‖2
2 ≤

p∑
i=1

1

[Wh̄j ]i

r∑
k=1

WikH̄kj

(
Xij −

Hkj

H̄kj
[Wh̄j ]i

)2

∗ KL-divergence: For every (X ,W ,H, H̄) ≥ 0, and 1 ≤ j ≤ n,

KL(xj ,Whj) ≤
p∑

i=1

(Xij logXij − Xij + [Whj ]i

−
Xij

[Wh̄j ]i

r∑
k=1

WikH̄kj log

(
Hkj

H̄kj
[Wh̄j ]i

))

:
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Weighted NMF
∗ Weigthed Frobenius norm: ‖Σ ◦ (X −WH)‖2

F

W ←W ◦ (Σ◦X )H>

(Σ◦WH)H>

H ← H ◦ W>(Σ◦X )
W>(Σ◦(WH))

∗ Weigthed KL-divergence: KL(X ,Diag(p)WHDiag(q))

Wik ←Wik

∑n
`=1(Hk`Xi`/(pi [WH]i`))∑n

`=1 q`Hk`

Hkj ← Hkj

∑p
i=1(WikXij/(qj [WH]ij ))∑p

i=1 piWik

X A typical application is matrix completion to predict unobserved data,
for instance in user-rating matrices. In that case, binary weights are used,
signaling the position of the available entries in X .
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Regularized NMF

∗ Regularized Frobenius norm:

1

2
‖X −WH‖2

F +
µ

2
‖H‖2

F + λ‖H‖1 +
ν

2
‖W ‖2

F

W ←W ◦ XH>

W (HH>+νIr )

H ← H ◦ W>X−λ1r×n

(W>W+µIr )H

X The ambiguity due to rescaling of (W ,H) and to rotation is frozen by
the penalty terms.
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Other NMF algorithms

Multiplicative updates (MU) are simple to implement but they can be slow
to converge, and are sensitive to initialization. Other strategies are listed
below (for the Least-Squares case):

I Alternating Least Squares: First compute the unconstrained solution w.r.t.
W or H and project onto nonnegative orthant. Easy to implement but
oscillations can arise (no convergence guarantee). Rather powerful for
initialization purposes.

I Alternating Nonnegative Least Squares: Solve constrained problem exactly,
w.r.t. W and H, in alternate manner, using inner solver (e.g., projected
gradient, Quasi-Newton, active set). Expensive. Useful as refinement step of
a cheap MU.

I Hierarchical Alternative Least Squares: Exact coordinate descent method,
updating one column of W (resp. one line of H) at a time. Simple to
implement, and similar performance than MU.
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