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Motivation
Linear regression/classification:

◮ Dataset with n entries: xi ∈ R
d , yi ∈ R, i = 1, . . . , n

◮ Prediction of y as a linear model x⊤β

◮ Minimization of a penalized cost function:

(∀β ∈ R
d) F (β) =

1

n

n∑

i=1

ℓ(yi , x
⊤
i β) + λR(β)

Examples of loss/regularizers:

◮ Quadratic loss: ℓ(y , x) = 1
2(x − y)2

◮ Logistic loss: ℓ(y , x) = log(1 + exp(−yx))

◮ Ridge penalty R(β) = 1
2‖β‖

2

◮ Lasso penalty R(β) = ‖β‖1

:



Motivation

Large n - Small d ⇒ Minimization of F assuming that, at each iteration,
only a subset of the data is available.
Loss for single observation:

(∀β ∈ R
d) fi (β) = ℓ(yi , x

⊤
i β) + λR(β)

so that F = 1
n

∑n
i=1 fi (β).

Loss for a subset of observation: (mini-batch)

(∀β ∈ R
d) Fj(β) =

∑

i∈Bj

ℓ(yi , x
⊤
i β) + λR(β)

with (Bj)1≤j≤k forming a partition of {1, . . . , n}.
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Stochastic gradient descent
We assume that F is differentiable on R

d . For every t ∈ N, we sample
uniformly an index it ∈ {1, . . . , n} and update:

β(t+1) = β(t) − γt∇fit (β
(t))

◮ The randomly chosen gradient ∇fit (β
(t)) yields an unbiased estimate

of the true gradient ∇F (β(t))
◮ γt > 0 is called the stepsize or learning rate. Its choice has an

influence on the convergence properties of the algorithm. Typical
choice: γt = Ct−1.

◮ More stable results using averaging:

β
(t)

=
1

t

t∑

k=1

β(k) ⇔ β
(t)

= (1−
1

t
)β

(t−1)
+

1

t
β(t)

New choice: γt = Ct−α with α ∈ [1/2, 1].
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Accelerated variants
There are a large variety of approaches available to accelerate the
convergence of SG methods. We list the most famous ones here:

◮ Momentum:

β(t+1) = β(t) − γt∇fit (β
(t)) + θt(β

(t) − β(t−1))

◮ Gradient averaging: (see also SAG/SAGA)

β(t+1) = β(t) −
γt
t

t∑

k=1

∇fik (β
(k))

◮ ADAGRAD:
β(t+1) = β(t) − γtWt∇fit (β

(t))

with a specific diagonal matrix Wt related to ℓ2 norm of past
gradients.
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