
Advanced Machine Learning
Course IV - (Hierarchical) Clustering

L. Omar Chehab(1) and Frédéric Pascal(2)

(1) Parietal Team, Inria
(2) Laboratory of Signals and Systems (L2S), CentraleSupélec, University Paris-Saclay

l-emir-omar.chehab@inria.fr, frederic.pascal@centralesupelec.fr,

http://fredericpascal.blogspot.fr

Dominante MDS (Mathématiques, Data Sciences)
Sept. - Dec., 2020

http://fredericpascal.blogspot.fr

Contents

1 Introduction - Reminders of probability theory and mathematical
statistics (Bayes, estimation, tests) - FP

2 Robust regression approaches - EC / OC
3 Hierarchical clustering - FP / OC
4 Stochastic approximation algorithms - EC / OC
5 Nonnegative matrix factorization (NMF) - EC / OC
6 Mixture models fitting / Model Order Selection - FP / OC
7 Inference on graphical models - EC / VR
8 Exam

Key references for this course

Tan, P. N., Steinbach, M., Kumar V., Data mining cluster analysis:
basic concepts and algorithms. Introduction to data mining. 2013.

Bishop, C. M. Pattern Recognition and Machine Learning. Springer,
2006.

Hastie, T., Tibshirani, R. and Friedman, J. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Second edition.
Springer, 2009.

James, G., Witten, D., Hastie, T. and Tibshirani, R. An Introduction
to Statistical Learning, with Applications in R. Springer, 2013

F. Pascal 3 / 48

Course 4

(Hierarchical) Clustering

F. Pascal 4 / 48

I. Introduction to clustering

II. Clustering algorithms

III. Clustering algorithm performance

What is Clustering?

Divide data into groups (clusters) that are meaningful and / or useful, i.e.
that capture the natural structure.

Purposes of the clustering is either understanding or utility:
Clustering for understanding e.g., in Biology, Information retrieval
(web...), Climate, Psychology and Medicine, Business...
Clustering for utility:

Summarization : dimension reduction → PCA, regression on high
dimensional data. Work on clusters characteristics instead of all
data
Compression, a.k.a vector quantization
Efficiently finding nearest neighbors.

It is an unsupervised learning contrary to (supervised) classification!

Introduction to clustering F. Pascal 5 / 48

Hierarchical vs Partitional
Partitional clustering: Division of the sets of data objects into
non-overlapping subsets (clusters) s.t. each data is in exactly one subset.

If clusters can have sub-clusters ⇒ Hierarchical clustering: set of nested
clusters, organized as a tree. Each node (cluster) in the tree (except the
leaf nodes) is the union of its children (subclusters).The root of the tree is
the cluster containing all objects.

	
	
	
	
	
	
	
	
	
	
	
	
 P1

 P2
 P4

 P3

 dqdsqddsqdqdqdqdqdsqdezffer

 (a) Hierarchical Clusters

	
	
	
	
	
	
	
	
	
	
	
	
 P1

 P2
 P4

 P3

 dqdsqddsqdqdqdqdqdsqdezffer

 P1 P2 P3 P4

 (b) Dendrogram

Introduction to clustering F. Pascal 6 / 48

Distinctions between sets of clusters

Exclusive vs non-exclusive (overlapping): separate clusters vs points
may belong to more than one cluster

Fuzzy vs non-fuzzy: each observation xi belongs to every cluster Ck

with a given weight wk ∈ [0,1] and
∑K

k=1 wk = 1 (Similar to probabilistic
clustering).

Partial vs Complete: all data are clustered vs there may be
non-clustered data, e.g., outliers, noise, “uninteresting background”...

Homogeneous vs Heterogeneous: Clusters with 6= size, shape, density...

Introduction to clustering F. Pascal 7 / 48

Type of clusters

Well-separated: Any point in a cluster is closer (or more similar) to
every other point in the cluster than to any point not in the cluster.

Prototype-Based: an object in a cluster is closer (more similar) to the
“center” of a cluster, than to the center of any other cluster.
Center = centroid (average) or medoid (most representative)

Density-based: dense region of points, which is separated by
low-density regions, from other regions of high density. Used when the
clusters are irregular or intertwined, and when noise and outliers are
present.

Others... graph-based...

Introduction to clustering F. Pascal 8 / 48

Data set
The objective is to cluster the noisy data for a segmentation application in
image processing.

(c) Tree data (d) Noisy tree data

Figure: Data on which the clustering algorithms are evaluated

Should be easy...
Introduction to clustering F. Pascal 9 / 48

I. Introduction to clustering

II. Clustering algorithms
K-means
Hierarchical clustering
DBSCAN
HDBSCAN

III. Clustering algorithm performance

Clustering algorithms

K-means

Clustering algorithms F. Pascal 10 / 48

K-means

It is a prototype-based clustering technique.

Notations: n unlabelled data vectors of Rp denoted as x = (x1, ...,xn) which

should be split into K classes C1, ...,CK , with Card(Ck) = nk,
K∑

k=1
nk = n.

Centroid of Ck is denoted mk.

Optimal solution
Number of partitions of x into K subsets:

P(n,K) = 1

K !

K∑
k=0

kn (−1)K−k Ck
K for K < n

where Ck
K = K !

k! (K −k)!
.

Example: P(100,5) ≈ 1068 !!!!

Clustering algorithms K-means F. Pascal 11 / 48

K-means algorithm
Partitional clustering approach where K of clusters must be specified
Each observation is assigned to the cluster with the closest centroid
Minimizes the intra-cluster variance V =∑

k
∑

i|xi∈Ck
1

nk
||xi −mk||2

The basic algorithm is very simple

Algorithm 1 K -means algorithm
Input : x observation vectors and the number K of clusters
Output : z = (z1, . . . ,zN), the labels of (x1, . . . ,xN)
Initialization : Randomly select K points as the initial centroids
Until convergence (define a criterion, e.g. error, changes, centroids estima-
tion...) Repeat

1 Form K clusters by assigning xi to the closest centroid mk

Ck = {xi, ∀i ∈ {1, ...,n} | d(xi,mk) ≤ d(xi −mj) ,∀j ∈ {1, ...,K } }
2 Recompute the centroids

∀k ∈ {1, ...,K } : mk = 1
nk

∑
xi∈Ck

xi.

Clustering algorithms K-means F. Pascal 12 / 48

K-means drawbacks...

Random initialization
Empty clusters
Used for clusters with convex shape
sensitive to noise and outliers
Computational cost
...

Several alternatives
K-means++: Seeding algorithm to initialize clusters with centroids
“spread-out” throughout the data
K-medoids: To address the robustness aspects
Kernel K-means: For overcoming the convex shape
Many others ...

Clustering algorithms K-means F. Pascal 13 / 48

Correct initilization

Importance of Choosing Initial Centroids

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 6

02/14/2018 Introduction to Data Mining, 2nd Edition 34

Importance of Choosing Initial Centroids

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x
y

Iteration 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x
y

Iteration 6

Clustering algorithms K-means F. Pascal 14 / 48

Correct initilization

Importance of Choosing Initial Centroids

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y
Iteration 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y
Iteration 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y
Iteration 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y
Iteration 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y
Iteration 5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y
Iteration 6

02/14/2018 Introduction to Data Mining, 2nd Edition 34

Importance of Choosing Initial Centroids

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 6

Clustering algorithms K-means F. Pascal 15 / 48

Bad initialization

Importance of Choosing Initial Centroids …

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 5

02/14/2018 Introduction to Data Mining, 2nd Edition 36

Importance of Choosing Initial Centroids …

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 5

Clustering algorithms K-means F. Pascal 16 / 48

Results on the data set

(a) K-means++ (b) “Clusters”

Figure: Clustering obtained with two different initialization techniques

Comments...

Clustering algorithms K-means F. Pascal 17 / 48

Clustering algorithms

Hierarchical clustering

Clustering algorithms K-means F. Pascal 18 / 48

Hierarchical clustering

Two types of Hierarchical clustering:
Agglomerative: Bottom-up - Start with as much clusters as
observations and iteratively aggregate observations thanks to a given
distance
Divise: Top-down - Start with one cluster containing all observations
and iteratively split into smaller clusters

Principles:
Produces a set of nested clusters organized as a hierarchical tree
Can be visualized as a dendrogram: A tree like diagram that records
the sequences of merges or splits with branch length corresponding to
cluster distance

Clustering algorithms Hierarchical clustering F. Pascal 19 / 48

Hierarchical clustering

02/14/2018 Introduction to Data Mining, 2nd Edition 49

Bisecting K-means Example

02/14/2018 Introduction to Data Mining, 2nd Edition 50

Hierarchical Clustering

● Produces a set of nested clusters organized as a
hierarchical tree

● Can be visualized as a dendrogram
– A tree like diagram that records the sequences of
merges or splits

1 3 2 5 4 6
0

0.05

0.1

0.15

0.2

1

2

3

4

5

6

1

2
3 4

5

Figure: General principles

Clustering algorithms Hierarchical clustering F. Pascal 20 / 48

Inter-Cluster distance

Most popular clustering techniques

Algorithm 2 Agglomerative hierarchical clustering
Input : x observation vectors and “cutting” threshold λ
Output : all merged clusters set (at each iteration) and “inter-cluster”
distances (between clusters)
Initialization : n = sample size = number of clusters.

While Number of clusters > 1

1 Compute distances between clusters
2 Merged the two nearest clusters

Clustering algorithms Hierarchical clustering F. Pascal 21 / 48

Inter-Cluster distances
MIN → Single Linkage: d(Ci,Cj) = min

x∈Ci,y∈Cj

d(x,y)

MAX → Complete Linkage: d(Ci,Cj) = max
x∈Ci,y∈Cj

d(x,y)

Group Average → Average Linkage: d(Ci,Cj) =
1

ni nj

∑
x∈Ci

∑
y∈Cj

d(x,y)

Between centroid → Centroid Linkage: d(Ci,Cj) = d(mi,mj), with

mi =
1

ni

∑
x∈Ci

x

Objective function → Objective Linkage:

Ward distance d(Ci,Cj) =
√

2ni nj

ni +nj
d(mi,mj)

WPGMA (Weighted Pair Group Method with Arithmetic Mean)

recursive distance d(Ci,Cj) ==
d(C 1

i ,Cj)+d(C 2
i ,Cj)

2
where

C 1
i ,C 2

i are the child clusters of Ci

...
Clustering algorithms Hierarchical clustering F. Pascal 22 / 48

Different distances ⇒ different results

02/14/2018 Introduction to Data Mining, 2nd Edition 63

MIN or Single Link

● Proximity of two clusters is based on the two
closest points in the different clusters
– Determined by one pair of points, i.e., by one link in the
proximity graph

● Example:
Distance Matrix:

02/14/2018 Introduction to Data Mining, 2nd Edition 64

Hierarchical Clustering: MIN

Nested Clusters Dendrogram

1

2

3

4

5

6

1
2

3

4

5

3 6 2 5 4 1
0

0.05

0.1

0.15

0.2

(a) MIN

02/14/2018 Introduction to Data Mining, 2nd Edition 67

MAX or Complete Linkage

● Proximity of two clusters is based on the two
most distant points in the different clusters
– Determined by all pairs of points in the two clusters

Distance Matrix:

02/14/2018 Introduction to Data Mining, 2nd Edition 68

Hierarchical Clustering: MAX

Nested Clusters Dendrogram

3 6 4 1 2 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1

2

3

4

5

6
1

2 5

3

4

(b) MAX

Clustering algorithms Hierarchical clustering F. Pascal 23 / 48

Different distances ⇒ different results

02/14/2018 Introduction to Data Mining, 2nd Edition 71

Group Average

● Proximity of two clusters is the average of pairwise proximity
between points in the two clusters.

● Need to use average connectivity for scalability since total
proximity favors large clusters

||Cluster||Cluster

)p,pproximity(

)Cluster,Clusterproximity(
ji

Clusterp
Clusterp

ji

ji
jj
ii

×
=

∑
∈
∈

Distance Matrix:

02/14/2018 Introduction to Data Mining, 2nd Edition 72

Hierarchical Clustering: Group Average

Nested Clusters Dendrogram

3 6 4 1 2 5
0

0.05

0.1

0.15

0.2

0.25

1

2

3

4

5

6
1

2

5

3

4

Figure: Group average

Ward: very similar results.
MIN : can handle non-elliptical shape BUT sensitive to outliers, noise...
MAX: less sensitive to outliers BUT can break large clusters and
biased towards globular clusters
Average: don’t break large clusters BUT biased towards globular
clusters
Ward: Hierarchical analogue of K-means

Clustering algorithms Hierarchical clustering F. Pascal 24 / 48

Results on the data set - Single Linkage

(a) Noisy Tree (b) Single Linkage

(c) Dendrogram (d) Cutting Threshold
Clustering algorithms Hierarchical clustering F. Pascal 25 / 48

Results on the data set - Complete Linkage

(e) Noisy Tree (f) Complete Linkage

(g) Dendrogram (h) Cutting Threshold
Clustering algorithms Hierarchical clustering F. Pascal 26 / 48

Results on the data set - Average Linkage

(i) Noisy Tree (j) Average Linkage

(k) Dendrogram (l) Cutting Threshold
Clustering algorithms Hierarchical clustering F. Pascal 27 / 48

Results on the data set - Ward Linkage

(m) Noisy Tree (n) Average Linkage

(o) Dendrogram (p) Cutting Threshold
Clustering algorithms Hierarchical clustering F. Pascal 28 / 48

Results on the data set - WPGMA Linkage

(q) Noisy Tree (r) Average Linkage

(s) Dendrogram (t) Cutting Threshold
Clustering algorithms Hierarchical clustering F. Pascal 29 / 48

Hierarchical clustering - Pros and cons

Pros
Simple and intuitive
Unsupervised: no a priori assumptions
Interpretable: number of clusters, used distance...

Cons
Computational cost: single linkage (O(n3),O(n2) or O(n)),
complete linkage (O(n3) or O(n2)), average (O(n3)), Ward’s
method (O(n3)), ...
Cutting threshold: challenging choice!
Lack of robustness: sensitivity to outliers and noise
No global objective function to optimize
Handle heterogeneous data (clusters of 6= size, non-globular
shapes...)

Clustering algorithms Hierarchical clustering F. Pascal 30 / 48

Clustering algorithms

DBSCAN

Clustering algorithms Hierarchical clustering F. Pascal 31 / 48

DBSCAN

Principles: Density-based algorithm: for an observation xi, find a
sufficiently (MinPts) large neighborhood (ε) and aggregate the new
observations (neighbors) to the cluster Ck of xi. Else xi is an isolated
observation (outlier).

Key parameters:
ε and ε-neighborhood: Nε(xi) = {z|d(xi,z) < ε}

MinPts nmin for defining core points xi s.t. card(Nε(xi)) ≥ nmin

Also, a border points is not a core point, but is in the neighborhood of a
core point and a noise point is any point that is not a core or a border
point.

Clustering algorithms DBSCAN F. Pascal 32 / 48

DBSCAN

02/14/2018 Introduction to Data Mining, 2nd Edition 81

DBSCAN: Core, Border, and Noise Points

MinPts = 7

02/14/2018 Introduction to Data Mining, 2nd Edition 82

DBSCAN Algorithm

● Eliminate noise points
● Perform clustering on the remaining points

Figure: Different points

Clustering algorithms DBSCAN F. Pascal 33 / 48

DBSCAN algorithm

Algorithm 3 DBSCAN algorithm
Input: x observations, ε, MinPts
Output: Z , labels of x
For all xi

1 Verify that xi has not been visited by the algo, else xi is marked “as
visited”

2 Identify the ε-neighborhood of xi, Nε(xi).
3 If card(Nε(xi)) ≤ nmin, then mark P as an isolated point.

Else Create a cluster Ck containing xi and run
class_extension(Ck,xi,ε,nmin)

Clustering algorithms DBSCAN F. Pascal 34 / 48

Cluster extension

Algorithm 4 Extension class function
Input: Cluster Ck to increase, observation xi of Ck, nmin, ε.

Output : Z labels of observations in Nε(xi)

Forall xj, i 6= j of Nε(xi)

1 Verify that xj has not been visited by the algo, else xi is marked “as
visited”

2 Identify the ε-neighborhood of xj, Nε(xj).
3 If card(Nε(xj)) ≥ nmin

Nε(xi) =Nε(xi)+Nε(xj)

4 If xj is not clustered, add to Ck.

Clustering algorithms DBSCAN F. Pascal 35 / 48

Illustration of DBSCAN principles

Figure: Clustering results obtained with DBSCAN algorithm.

Clustering algorithms DBSCAN F. Pascal 36 / 48

Results on the data set - DBSCAN

(a) MinPts = 256 (b) MinPts = 4

Figure: Influence of MinPts and ε

Discussion: ε, number of clusters, MinPts...
Pros: Resistant to Noise, can handle clusters of different shapes and
sizes
Cons: Interpretable parameters (estimation), Varying densities,
High-dimensional data

Clustering algorithms DBSCAN F. Pascal 37 / 48

Algorithms comparison

Figure: From Scikits learn: https://ogrisel.github.io/scikit-learn.org/
sklearn-tutorial/modules/clustering.html

Clustering algorithms DBSCAN F. Pascal 38 / 48

https://ogrisel.github.io/scikit-learn.org/sklearn-tutorial/modules/clustering.html
https://ogrisel.github.io/scikit-learn.org/sklearn-tutorial/modules/clustering.html

Clustering algorithms

Hierarchical DBSCAN

Campello, R.J., Moulavi, D. and Sander, J., “Density-based clustering
based on hierarchical density estimates”. In Pacific-Asia conference on
knowledge discovery and data mining (pp. 160-172). Springer, Berlin,

Heidelberg, April 2013.

Clustering algorithms DBSCAN F. Pascal 39 / 48

HDBSCAN

General (Intuitive) Idea: Convert DBSCAN into a hierarchical clustering
algorithm.

Main steps:
1 Transform the space according to the density/sparsity
2 Build the minimum spanning tree of the distance weighted graph
3 Construct a cluster hierarchy of connected components.
4 Condense the cluster hierarchy based on minimum cluster size.
5 Extract the stable clusters from the condensed tree.

Clustering algorithms HDBSCAN F. Pascal 40 / 48

Data examplehdbscan Documentation, Release 0.8.1

Now, the best way to explain HDBSCAN is actually just use it and then go through the steps that occurred along the
way teasing out what is happening at each step. So let’s load up the hdbscan library and get to work.

import hdbscan

clusterer = hdbscan.HDBSCAN(min_cluster_size=5, gen_min_span_tree=True)
clusterer.fit(test_data)

HDBSCAN(algorithm='best', alpha=1.0, approx_min_span_tree=True,
gen_min_span_tree=True, leaf_size=40, memory=Memory(cachedir=None),
metric='euclidean', min_cluster_size=5, min_samples=None, p=None)

So now that we have clustered the data – what actually happened? We can break it out into a series of steps

1. Transform the space according to the density/sparsity.

2. Build the minimum spanning tree of the distance weighted graph.

3. Construct a cluster hierarchy of connected components.

4. Condense the cluster hierarchy based on minimum cluster size.

5. Extract the stable clusters from the condensed tree.

2.1.1 Transform the space

To find clusters we want to find the islands of higher density amid a sea of sparser noise – and the assumption of noise
is important: real data is messy and has outliers, corrupt data, and noise. The core of the clustering algorithm is single

38 Chapter 2. Background on Clustering with HDBSCAN

Figure: Data

Clustering algorithms HDBSCAN F. Pascal 41 / 48

Transform the space

Goal: Finds “islands” of higher density amid a sea of sparser noise
(important for real data!).
Behind there is a single linkage algorithm Remember: not robust to
outliers, SO identify/evaluate the outliers, “sea” points, initial step.

Intuition: Make “sea” points more distant from each other and from the
“land”.

Practically (theoretically): need inexpensive density estimate ⇒ distance
of the kNN is the simplest. Call it the core distance for parameters k and
point xi, corek(xi). Now to spread apart points with low density, new
distance metric, called the mutual reachability distance:

dmreach−k(xi,xj) = max(corek(xi),corek(xj),d(xi,xj))

where d(., .) is the original metric.

Clustering algorithms HDBSCAN F. Pascal 42 / 48

Build the minimum spanning treehdbscan Documentation, Release 0.8.1

2.1.3 Build the cluster hierarchy

Given the minimal spanning tree, the next step is to convert that into the hierarchy of connected components. This
is most easily done in the reverse order: sort the edges of the tree by distance (in increasing order) and then iterate
through, creating a new merged cluster for each edge. The only difficult part here is to identify the two clusters each
edge will join together, but this is easy enough via a union-find data structure. We can view the result as a dendrogram
as we see below:

clusterer.single_linkage_tree_.plot(cmap='viridis', colorbar=True)

2.1. How HDBSCAN Works 41

Clustering algorithms HDBSCAN F. Pascal 43 / 48

Build the cluster hierarchyhdbscan Documentation, Release 0.8.1

This brings us to the point where robust single linkage stops. We want more though; a cluster hierarchy is good, but
we really want a set of flat clusters. We could do that by drawing a a horizontal line through the above diagram and
selecting the clusters that it cuts through. This is in practice what DBSCAN effectively does (declaring any singleton
clusters at the cut level as noise). The question is, how do we know where to draw that line? DBSCAN simply leaves
that as a (very unintuitive) parameter. Worse, we really want to deal with variable density clusters and any choice of
cut line is a choice of mutual reachability distance to cut at, and hence a single fixed density level. Ideally we want to
be able to cut the tree at different places to select our clusters. This is where the next steps of HDBSCAN begin and
create the difference from robust single linkage.

2.1.4 Condense the cluster tree

The first step in cluster extraction is condensing down the large and complicated cluster hierarchy into a smaller tree
with a little more data attached to each node. As you can see in the hierarchy above it is often the case that a cluster
split is one or two points splitting off from a cluster; and that is the key point – rather than seeing it as a cluster splitting
into two new clusters we want to view it as a single persistent cluster that is ‘losing points’. To make this concrete
we need a notion of minimum cluster size which we take as a parameter to HDBSCAN. Once we have a value for
minimum cluster size we can now walk through the hierarchy and at each split ask if one of the new clusters created by
the split has fewer points than the minimum cluster size. If it is the case that we have fewer points than the minimum
cluster size we declare it to be ‘points falling out of a cluster’ and have the larger cluster retain the cluster identity of
the parent, marking down which points ‘fell out of the cluster’ and at what distance value that happened. If on the
other hand the split is into two clusters each at least as large as the minimum cluster size then we consider that a true
cluster split and let that split persist in the tree. After walking through the whole hierarchy and doing this we end up
with a much smaller tree with a small number of nodes, each of which has data about how the size of the cluster at
that node decreases over varying distance. We can visualize this as a dendrogram similar to the one above – again we
can have the width of the line represent the number of points in the cluster. This time, however, that width varies over

42 Chapter 2. Background on Clustering with HDBSCAN

Clustering algorithms HDBSCAN F. Pascal 44 / 48

Condense the cluster tree

hdbscan Documentation, Release 0.8.1

the length of the line as points fall out of the cluster. For our data using a minimum cluster size of 5 the result looks
like this:

clusterer.condensed_tree_.plot()

This is much easier to look at and deal with, particularly in as simple a clustering problem as our current test dataset.
However we still need to pick out clusters to use as a flat clustering. Looking at the plot above should give you some
ideas about how one might go about doing this.

2.1.5 Extract the clusters

Intuitively we want the choose clusters that persist and have a longer lifetime; short lived clusters are probably merely
artifacts of the single linkage approach. Looking at the previous plot we could say that we want to choose those clusters
that have the greatest area of ink in the plot. To make a flat clustering we will need to add a further requirement that,
if you select a cluster, then you cannot select any cluster that is a descendant of it. And in fact that intuitive notion of
what should be done is exactly what HDBSCAN does. Of course we need to formalise things to make it a concrete
algorithm.

First we need a different measure than distance to consider the persistence of clusters; instead we will use 𝜆 = 1
distance .

For a given cluster we can then define values 𝜆birth and 𝜆death to be the lambda value when the cluster split off and
became it’s own cluster, and the lambda value (if any) when the cluster split into smaller clusters respectively. In turn,
for a given cluster, for each point p in that cluster we can define the value 𝜆𝑝 as the lambda value at which that point
‘fell out of the cluster’ which is a value somewhere between 𝜆birth and 𝜆death since the point either falls out of the
cluster at some point in the cluster’s lifetime, or leaves the cluster when the cluster splits into two smaller clusters.
Now, for each cluster compute the stability as
∑︀

𝑝∈cluster(𝜆𝑝 − 𝜆birth).

2.1. How HDBSCAN Works 43

Clustering algorithms HDBSCAN F. Pascal 45 / 48

Extract the clusters

hdbscan Documentation, Release 0.8.1

Declare all leaf nodes to be selected clusters. Now work up through the tree (the reverse topological sort order). If the
sum of the stabilities of the child clusters is greater than the stability of the cluster, then we set the cluster stability to
be the sum of the child stabilities. If, on the other hand, the cluster’s stability is greater than the sum of its children
then we declare the cluster to be a selected cluster and unselect all its descendants. Once we reach the root node we
call the current set of selected clusters our flat clustering and return that.

Okay, that was wordy and complicated, but it really is simply performing our ‘select the clusters in the plot with the
largest total ink area’ subject to descendant constraints that we explained earlier. We can select the clusters in the
condensed tree dendrogram via this algorithm, and you get what you expect:

clusterer.condensed_tree_.plot(select_clusters=True, selection_palette=sns.color_
→˓palette())

Now that we have the clusters it is a simple enough matter to turn that into cluster labelling as per the sklearn API. Any
point not in a selected cluster is simply a noise point (and assigned the label -1). We can do a little more though: for
each cluster we have the 𝜆𝑝 for each point p in that cluster; If we simply normalize those values (so they range from
zero to one) then we have a measure of the strength of cluster membership for each point in the cluster. The hdbscan
library returns this as a probabilities_ attribute of the clusterer object. Thus, with labels and membership
strengths in hand we can make the standard plot, choosing a color for points based on cluster label, and desaturating
that color according the strength of membership (and make unclustered points pure gray).

palette = sns.color_palette()
cluster_colors = [sns.desaturate(palette[col], sat)

if col >= 0 else (0.5, 0.5, 0.5) for col, sat in
zip(clusterer.labels_, clusterer.probabilities_)]

plt.scatter(test_data.T[0], test_data.T[1], c=cluster_colors, **plot_kwds)

44 Chapter 2. Background on Clustering with HDBSCAN

Clustering algorithms HDBSCAN F. Pascal 46 / 48

Results hdbscan Documentation, Release 0.8.1

And that is how HDBSCAN works. It may seem somewhat complicated – there are a fair number of moving parts
to the algorithm – but ultimately each part is actually very straightforward and can be optimized well. Hopefully
with a better understanding both of the intuitions and some of the implementation details of HDBSCAN you will
feel motivated to try it out. The library continues to develop, and will provide a base for new ideas including a near
parameterless Persistent Density Clustering algorithm, and a new semi-supervised clustering algorithm.

2.2 Comparing Python Clustering Algorithms

There are a lot of clustering algorithms to choose from. The standard sklearn clustering suite has thirteen different
clustering classes alone. So what clustering algorithms should you be using? As with every question in data science
and machine learning it depends on your data. A number of those thirteen classes in sklearn are specialised
for certain tasks (such as co-clustering and bi-clustering, or clustering features instead data points). Obviously an
algorithm specializing in text clustering is going to be the right choice for clustering text data, and other algorithms
specialize in other specific kinds of data. Thus, if you know enough about your data, you can narrow down on the
clustering algorithm that best suits that kind of data, or the sorts of important properties your data has, or the sorts of
clustering you need done. All well and good, but what if you don’t know much about your data? If, for example, you
are ‘just looking’ and doing some exploratory data analysis (EDA) it is not so easy to choose a specialized algorithm.
So, what algorithm is good for exploratory data analysis?

2.2.1 Some rules for EDA clustering

To start, lets’ lay down some ground rules of what we need a good EDA clustering algorithm to do, then we can set
about seeing how the algorithms available stack up.

2.2. Comparing Python Clustering Algorithms 45

Interests: Varying densities, confidence information on the observation
cluster, robust to outliers, interpretability...

Clustering algorithms HDBSCAN F. Pascal 47 / 48

I. Introduction to clustering

II. Clustering algorithms

III. Clustering algorithm performance

How to evaluate the quality of of clustering
results?

To be updated

Clustering algorithm performance F. Pascal 48 / 48

	Introduction to clustering
	Clustering algorithms
	K-means
	Hierarchical clustering
	DBSCAN
	HDBSCAN

	Clustering algorithm performance

