Linear Regression

Lesson 2 : Lab Session Advanced Machine Learning, CentraleSupelec

> Teacher's Assistant: Omar CHEHAB Professors : Emilie CHOUZENOUX, Frederic PASCAL

General Information

• Assignment : <u>alone or in pairs</u>, you will code the algorithms you learnt in 'scikitlearn formalism', and apply them to images and text.

Due: the 5 lab assignments for lessons 3-7 are due <u>a week</u> from when they are given, at aml.centralesupelec.2020@gmail.com (today's lab is <u>not</u> due)

 Grading : each assignment is worth <u>4 points</u> — your <u>4 best labs</u> out of the 5 will be retained and will count for <u>half of your final grade</u>.

 Questions : questions or feedback are welcome after class or by email at I-emir-omar.chehab@inria.fr

Lesson: recap

	Objective	Solution: closed-form	Solution: via algorithm	Effect
LS	$\min_{\beta} \ y - X\beta\ _2^2$	$\hat{\beta} = (X^T X)^{-1} X^T y$	gradient descent	vanilla
Ridge	$\min_{\beta} \left\ y - X\beta \right\ _{2}^{2} + \lambda \left\ \beta \right\ _{2}^{2}$	$\hat{\beta} = (X^T X + \lambda I)^{-1} X^T y$	gradient descent	shrinkage
LASSO	$\min_{\beta} \left\ y - X\beta \right\ _{2}^{2} + \lambda \left\ \beta \right\ _{1}^{1}$	unavailable	proximal gradient (ISTA): $\beta_{t+1} = \frac{ST_{\lambda\eta} \circ (\beta_t + \eta \cdot X^T (y - X\beta))}{\delta_t + \eta \cdot X^T (y - X\beta)}$	sparsity
Robust	$\min_{\beta} \rho(y - X\beta) \text{e.g. } \rho = . _1^1$	unavailable	IRLS: cf. cours $D_t = Diag(\omega(y - X\beta_t))$ $\beta_{t+1} = (X^T D_t X)^{-1} X^T D_t y$	robustness

Assignment: plan

1. Simple Linear Regression

2. Adding complexity via a nonlinear 'basis'

3. Managing complexity via regularization (L1, L2)

4. Incorporating robustness via the loss function

5. Application : predicting Bicycle Traffic