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Course 6.1

Mixture models
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What it is useful for?

Data-to-knowledge
Statistical models fitting ⇒ models learning
Features extraction for data, e.g. behavior, shapes...
Data characterisation ⇒ Complex modelling

Complex estimation problems, e.g. many parameters, non parametric
estimation...

Clustering / Classification: Modes ' clusters / classes

Dealing with missing (latent) data: unknown labels can be generalized
to unobserved data...
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I. Gaussian Mixture Model

II. Reminders in Bayesian probabilities/statistics

III. EM algorithm

IV. Model order selection: introduction

V. Test vs training data - Cross-validation

VI. Information criteria and Bayesian approaches

VII. Applications



Gaussian Mixture Model
Example: Weight of small animals coming from two different regions

Length 82 83 84 85 86 87 88 89
Observations 5 3 12 36 55 45 21 13

Length 90 91 92 93 94 95 96 98
Observations 15 34 59 48 16 12 6 1

Corresponding histogram
Gaussian Mixture Model F. Pascal 6 / 42



Gaussian Mixture Model with two components
To understand / intuite the process, continue with this simple example

Y1 ∼ N (µ1,σ2
1)

Y2 ∼ N (µ2,σ2
2)

Z ∼ B(1,p)

That is P(Z = 1) = p and P(Z = 0) = 1−p. In this context, the observations
are as follows: X = Z Y1 + (1−Z)Y2

Meanings
data follows the first distribution / belongs to the first cluster with a
probability p.

Denote φθ(x) the Gaussian PDF with parameters θ = (µ,σ2), one has the
following PDF for X : fX (x) = pφθ1 (x)+ (1−p)φθ2 (x) leading to the
log-likelihood for n observations (X1, . . . ,Xn)

l(θ;x) =
n∑

i=1
log

(
pφθ1 (xi)+ (1−p)φθ2 (xi)

)
Gaussian Mixture Model F. Pascal 7 / 42



Gaussian Mixture Model with two components
Difficult estimation problem for θ = (p,θ1,θ2), 5 unknown parameters
for the simplest case... Problem with the sum in the log.

Solution: consider unobserved latent variables (Z1, . . . ,Zn) where Zi = 1
when Xi comes from the first model and Zi = 0 when Xi comes from the
second model. Let us now assume we knew the value of each Zi. In that
case, MLEs can be trivially obtained...

l(θ;x,z) =
n∑

i=1

(
zi log(φθ1 (xi))+ (1−zi) log(φθ2 (xi))

)
+

n∑
i=1

(
zi log(p)+ (1−zi) log(1−p)

)
where x = (x1, . . . ,xn) and z = (z1, . . . ,zn).

Derive the MLEs pour θ = (p,µ1,σ2
1,µ2,σ2

2)!
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Gaussian Mixture Model with two components
In practice, the values of the Zi’s are unknown!

Idea: Replace for each Zi, its expected value (conditional to the observed
data Xi)

γi(θ) = E[Zi|θ,x] = P(Zi = 1|θ,x)

called the responsibility for model 1 of observation i. ⇒ iterative
algorithm, Expectation-Maximization (EM) algo

Algorithm (EM algo for two-component Gaussian Mixture)

Randomly initialization of θ(0)

Repeat until CV for t = 0,1, . . .

(a) E-Step: Compute the responsibilities γ̂i =
p̂φ

θ̂1
(xi)

p̂φ
θ̂1

(xi)+ (1− p̂)φ
θ̂2

(xi)
, i = 1, . . . ,n

(b) M-Step: Compute the parameters... µ̂1 =
∑

i γ̂i xi∑
i γ̂i

, σ̂2
1 =

∑
i γ̂i (xi − µ̂1)2∑

i γ̂i
,... and

p̂ =∑
i γ̂i/n.

Discussion
Gaussian Mixture Model F. Pascal 9 / 42



Gaussian Mixture Model

Idea: One aims at modelling the statistical behaviour from several
populations, groups or classes...
Notations:

n observations of i.i.d. random variables/vectors, denoted (X1, . . . ,Xn)

K different clusters containing nk observations. Of course, n =∑K
k=1 nk

pk the probability of belonging to the kth class and fk the PDF of r.v.
in this class.

e.g.,:
different objects in an image (or a patch) containing N pixels, denoted
xi

population of ducks: xi corresponds to the size of the ith duck.
Different classes corresponding to the animal age/sex/origin (young,
old, female, male).
...

Gaussian Mixture Model F. Pascal 10 / 42



Gaussian Mixture Model
Statistical modelling of a mixture: with previous notations, one can defined
the following PDF:

f (x) =
K∑

k=1
pk × fk(x)

Particular case of Gaussian Mixture Models:

f (x) =
K∑

k=1
pk ×

1√
2πσ2

k

exp

(
− (x−µk)2

2σ2
k

)

Problem: estimation of many unknown parameters

θ = (
pk,µk,σk

)
k=1,...,K

with
K∑

k=1
pk = 1 and ∀k ∈ {1, . . . ,K },µk ∈R,σk ∈R∗+.

What about K ? Known, unknown ?

Gaussian Mixture Model F. Pascal 11 / 42



Interest of GMM
GMM allow to model many various distributions

(a) 1
5N (0,1)+ 1

5N (1/2,(2/3)2)+ 3
5N (13/15,(5/9)2),

(b)
∑7

k=0 N (3((2/3)k −1), (2/3)2k)
(c) 1

2N (−1,(2/3)2)+ 1
2N (1, (2/3)2)

(d) 3
4N (0,1)+ 1

4N (3/2,(1/3)2)
(e) 9

2 0N (−6/5,(3/5)2)+ 9
2 0N (6/5,(3/5)2)+ 1

1 0N (0, (1/4)2)

(f) 1
2N (0,1)+∑2

k=−2
21−k

31 N (k+1/2,(2−k/10)2)

 

      (a) Asymmetric unimodal PDF  (b) Strongly asymmetric unimodal PDF  

 

          (c) Bimodal PDF      (d) Asymmetric bimodal PDF 

 

(e) Tri-modal PDF         (f) More complex PDF 
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I. Gaussian Mixture Model

II. Reminders in Bayesian probabilities/statistics
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Reminders in Bayesian probabilities/statistics

For two events (or r. v. ...), one has:
Conditional probabilities

P (A|B) = P (A∩B)

P (B)

Bayes rule

P (B|A) = P (A|B) P (B)

P (A)

if B1, . . . ,Bn is a partition of Ω, i.e.
n⋃

i=1
Bi =Ω and ∀i 6= j,Bi ∩Bj =;,

then

P (A) =
n∑

i=1
P (A∩Bi)

Reminders in Bayesian
probabilities/statistics F. Pascal 14 / 42



GMM simulations
To simulate the mixture f (x) =∑K

k=1 pk ×
1√

2πσ2
k

exp

(
− (x−µk)2

2σ2
k

)
, one

needs to introduce a latent variable Z (or missing data) that corresponds to
the class of the variable X .

Now, the complete data T = (X ,Z) is defined by:
Z follows a discrete distribution (p1, . . . ,pK ) on {1, . . . ,K } such that ∀k,
one has (Multinomial distribution)

P(Z = k) = pk, with
∑
k

pk = 1

∀k ∈ {1, . . . ,K }, conditionally to {Z = k}, X has a PDF fk:

L (x|Z = k) = fk(x)

Goal: estimation of θ = (
pk,µk,σk

)
k=1,...,K

2 cases for : one knows latent variables (unrealistic scenario) or not...
Reminders in Bayesian
probabilities/statistics F. Pascal 15 / 42
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EM algorithm - preliminaries

Simple case: Z is known

⇒ one observes (xi,zi)i=1,...,n instead of (only) (xi)i=1,...,n.
Maximum Likelihood approach

Theorem (ML estimates of θ)

Let the observations (xi,zi)i=1,...,n, then ∀k ∈ {1, . . . ,K }, one has

p̂k = 1

n

n∑
i=1

1lzi=k (1)

µ̂k = 1

np̂k

∑
i|zi=k

xi (2)

σ̂2
k = 1

np̂k

∑
i|zi=k

(
xi − µ̂k

)2 (3)

EM algorithm F. Pascal 16 / 42



General EM algorithm - k-means, SEM...

General idea: One only observes (x1, . . . ,xn) ⇒ analyse the log-likelihood

lobs(x1, . . . ,xn;θ) =
n∑

i=1
log

(
K∑

k=1
pk × fk(xi)

)
, where θ = (

pk,µk,σk
)

k=1,...,K

Difficult to maximize!!!

BUT one can make assumptions of the unobserved (Z1, . . . ,Zn):

Lemma (Conditional distribution of the Zi’s)
For θ ∈Θ,x ∈R and k ∈ {1, . . . ,K }, one has

Pθ (Z = k|X = x) = pk × fk(x)∑K
l=1 pl × fl(x)

(4)

Intuition: thanks to some θold, one can assign to each xi some zi (Lemma)
and thanks to previous theorem, one can compute a θnew...

EM algorithm F. Pascal 17 / 42



General EM algorithm - k-means, SEM...

Several possible approaches:

[k-means] Assign a class to each xi according to

zi = argmax
k

Pθold (Z = k|Xi = xi)

Natural approach but not flexible
[SEM] Randomly assign a class to each xi according to the distribution

Pθold (Z = .|Xi = xi)

More flexible
[N-SEM] Randomly assign N classes to each xi

[EM] Limit of N-SEM when N →∞ Very flexible and robust!

EM algorithm F. Pascal 18 / 42



k-means
One has to assume that (Very strong assumptions!)

p1 = . . . = pK = 1

K
and σ1 = . . . =σK .

Lemma
∀θ,∀x ∈R

argmax
k

Pθ (Z = k|X = x) = argmin
k

|x−µk|

Algorithm (k-means)
Randomly initialize (z1, . . . ,zK )

Repeat until CV:

for k ∈ {1, . . . ,K }, µk =
1

n

n∑
i=1

xi 1lzi=k

for i ∈ {1, . . . ,n}, zi = argmin
k

|x−µk|

Advantages / Drawbacks ...
EM algorithm F. Pascal 19 / 42



Stochastic EM

General idea: Stochastic version of the k-means algorithm...

Algorithm (SEM)
Randomly initialize (z1, . . . ,zK )

Repeat until CV:
(a) Compute

θ̂ = argmax
θ

lobs ((x1,z1), . . . , (xn,zn);θ)

thanks to Theorem (MLE)
(b) for i ∈ {1, . . . ,n}, randomly choose zi according to

Pθ̂ (Z = .|Xi = xi)

given by Eq. (4).

EM algorithm F. Pascal 20 / 42



Stochastic EM
	
	
	
	

Data  Step 1  Iteration 1, Step 2a 
	

 
	

Iteration 1, Step 2b  Iteration 2, Step 2a  Final Results 
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Stochastic EM - N trials
Algorithm (N-SEM (1))

Replicate N times, the observations (x1, . . . ,xn) →
(
x(j)

i

)
1≤i≤n,1≤j≤N

Apply SEM algo to this dataset.

Algorithm (N-SEM (2))

Randomly initialize N classes z1
i , . . . ,zN

i ∈ {1, . . . ,K },∀i

Repeat until CV
(a) Compute

θ̂ = argmax
θ

lobs
(
(xi,z1

i )i=1,...,n ∪ . . .∪ (xi,zN
i )i=1,...,n;θ

)
thanks to Theorem (MLE)

(b) for i ∈ {1, . . . ,n}, randomly choose z1
i , ...,zN

i (independently!)
according to

Pθ̂ (Z = .|Xi = xi)
given by Eq. (4).

EM algorithm F. Pascal 22 / 42



Expectation-Maximization algorithm
General idea: N-SEM with N →+∞ ...

Lemma
Given (xi)1≤i≤n and associated classes for N trials (zk

i )1≤i≤n,1≤k≤K , one has

∀θ, lobs

((
xi,z1

i

)
i=1,...,n ∪ . . .∪ (

xi,zN
i

)
i=1,...,n ;θ

)
=

N∑
j=1

lobs

((
xi,zj

i

)
i=1,...,n

;θ
)

Theorem (First part)
Given the observations (xi)1≤i≤n and θold ∈Θ.

(a) Let Z1, ...,Zn independent r.v. such that Zi ∼Lθold (Z|X = xi) . One has
∀θ = (pk,µk,σk)1≤k≤K ∈Θ,

E[l
(
(xi,zi)i=1,...,n ;θ

)
] =

n∑
i=1

K∑
k=1

Pθold (Z = k|X = xi) log
(
pk × fk(xi)

)
where Pθold (Z = .|X = xi) given by Eq. (4).

EM algorithm F. Pascal 23 / 42



Expectation-Maximization algorithm

Theorem (Second part)
Given the observations (xi)1≤i≤n and θold ∈Θ,

(b) One has that argmax
θ

E[l
(
(xi,zi)i=1,...,n ;θ

)
] is given by:

Classes probabilities: ∀k = 1, ...,K ,

pargmax
k = 1

n

n∑
i=1

Pθold (Z = k|X = xi)

Classes means: ∀k = 1, ...,K ,

µ
argmax
k = 1

npargmax
k

n∑
i=1

Pθold (Z = k|X = xi) xi

Classes variances: ∀k = 1, ...,K ,

(σargmax
k )2 = 1

npargmax
k

n∑
i=1

Pθold (Z = k|X = xi) (xi −µ
argmax
k )2

EM algorithm F. Pascal 24 / 42



Expectation-Maximization algorithm

Following previous theorem, one has the following theoretical algorithm:

Algorithm (Theory)
Randomly initialization of θ0

Repeat until CV for t = 0,1, . . .

(a) E-Step: Compute

Lt(θ) = E
[

l
((

Xi,Z t
i

)
i=1,...,n ;θ

)](⇐⇒ Q(θ,θt) = E (l(θ;t)|x,θt)
)

where Z t
1, . . . ,Z t

n are i.i.d. with Z t
i ∼Lθt (Z|X = xi)

(b) M-Step: Maximize Lt(θ) to obtain θt+1 = argmaxθ Lt(θ)

E for Expectation
M for Maximization

Outline of the proof...

EM algorithm F. Pascal 25 / 42



Expectation-Maximization algorithm
In practice, one has to implement the following algorithm...

Algorithm (Practice)
Randomly initialization of θ0

Repeat until CV for t = 0,1, . . .

(a) E-Step: Compute the matrix[
Pθt (Z = k|X = xi)

]
1≤i≤n,1≤k≤K =

[
pt

k × fk,t(xi)∑K
l=1 pt

l × fl,t(xi)

]
1≤i≤n,1≤k≤K

(b) M-Step: Compute θt+1, for all k = 1, . . . ,K ,

p̂t+1
k = 1

n

n∑
i=1

Pθt (Z = k|X = xi) , (5)

µ̂t+1
k = 1

np̂t+1
k

n∑
i=1

xi Pθt (Z = k|X = xi) (6)

(
σ̂t+1

k

)2 = 1

np̂t+1
k

n∑
i=1

Pθt (Z = k|X = xi)
(
xi − µ̂t+1

k

)2 (7)

EM algorithm F. Pascal 26 / 42



A different view - Maximization-Maximization
procedure

Consider the function F(θ,P) = EP[l0(θ;t)]−EP[log(P(z))]

P can be any distribution for the latent variables z.
Note that F evaluated at P(z) = P(z|x,θ) is the log-likelihood of the
observed data.
EM algo can be viewed as a joint maximization method for F over θ
and P(z). Maximizer over P(z) for fixed θ can be shown to be
P(z) = P(z|x,θ). (dist. computed at the E-step).
M-step: Maximize F(θ,P) over θ for fixed P(z),⇐⇒ maximizing
EP[l0(θ;t)|x,θ∗] (2nd term do not depend on θ).

Since F(θ,P) and the obs. data log-likelihood agree when P(z) = P(z|x,θ),
maximization of the former accomplishes maximization of the latter.

EM algorithm F. Pascal 27 / 42



Course 6.2

Model Order Selection
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What it is useful for?

Data-to-knowledge
Statistical models fitting ⇒ models learning
Features extraction for data, e.g. behavior, shapes...
Data characterisation ⇒ Complex modelling

Complex estimation problems, e.g. many parameters, non parametric
estimation...

Clustering / Classification: Modes ' clusters / classes

Dealing with missing (latent) data: unknown labels can be generalized
to unobserved data...

EM algorithm F. Pascal 29 / 42
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III. EM algorithm

IV. Model order selection: introduction

V. Test vs training data - Cross-validation

VI. Information criteria and Bayesian approaches

VII. Applications



Introduction / Motivations
Make high-level decisions about the model we want to use:

Number of components in a mixture model
Network architecture of (deep) neural networks
Type of kernel in a support vector machine
Degree of a polynomial in a regression problem
Others examples...4 1. INTRODUCTION

Figure 1.2 Plot of a training data set of N =
10 points, shown as blue circles,
each comprising an observation
of the input variable x along with
the corresponding target variable
t. The green curve shows the
function sin(2πx) used to gener-
ate the data. Our goal is to pre-
dict the value of t for some new
value of x, without knowledge of
the green curve.

x

t

0 1

−1

0

1

detailed treatment lies beyond the scope of this book.
Although each of these tasks needs its own tools and techniques, many of the

key ideas that underpin them are common to all such problems. One of the main
goals of this chapter is to introduce, in a relatively informal way, several of the most
important of these concepts and to illustrate them using simple examples. Later in
the book we shall see these same ideas re-emerge in the context of more sophisti-
cated models that are applicable to real-world pattern recognition applications. This
chapter also provides a self-contained introduction to three important tools that will
be used throughout the book, namely probability theory, decision theory, and infor-
mation theory. Although these might sound like daunting topics, they are in fact
straightforward, and a clear understanding of them is essential if machine learning
techniques are to be used to best effect in practical applications.

1.1. Example: Polynomial Curve Fitting

We begin by introducing a simple regression problem, which we shall use as a run-
ning example throughout this chapter to motivate a number of key concepts. Sup-
pose we observe a real-valued input variable x and we wish to use this observation to
predict the value of a real-valued target variable t. For the present purposes, it is in-
structive to consider an artificial example using synthetically generated data because
we then know the precise process that generated the data for comparison against any
learned model. The data for this example is generated from the function sin(2πx)
with random noise included in the target values, as described in detail in Appendix A.

Now suppose that we are given a training set comprising N observations of x,
written x ≡ (x1, . . . , xN )T, together with corresponding observations of the values
of t, denoted t ≡ (t1, . . . , tN )T. Figure 1.2 shows a plot of a training set comprising
N = 10 data points. The input data set x in Figure 1.2 was generated by choos-
ing values of xn, for n = 1, . . . , N , spaced uniformly in range [0, 1], and the target
data set t was obtained by first computing the corresponding values of the function

True data generated from a sinusoid (sin(2πx)) + (small) Gaussian noise
(Bishop, 2006)

Model order selection: introduction F. Pascal 30 / 42



Introduction / Motivations
Goal: predict the value of t for some new value of x, without knowledge of
the green curve → Model selection

Simple / natural approach: curve fitting

y(x,w) =
M∑

i=1
wix

i

where M is the polynomial order (unknown) and w = (w0, . . . ,wM ) are the
polynomial coefficients (unknown). For w, let’s minimize an error function,
e.g.,

e(w) =
N∑

n=1

(
ρ(y(xn,w)− tn)

)2 or eRMS =
√

e(w∗)/N

where N stands for the number of observed data. e(w) is a quadratic
function w.r.t w ⇒ unique solution w∗

Problem: choose M!!!
Discussion with mixture models / EM algo

Model order selection: introduction F. Pascal 31 / 42



Introduction / Motivations1.1. Example: Polynomial Curve Fitting 7

x

t

M = 0

0 1

−1

0

1

x

t

M = 1

0 1

−1

0

1

x

t

M = 3

0 1

−1

0

1

x

t

M = 9

0 1

−1

0

1

Figure 1.4 Plots of polynomials having various orders M , shown as red curves, fitted to the data set shown in
Figure 1.2.

(RMS) error defined by
ERMS =

√
2E(w�)/N (1.3)

in which the division by N allows us to compare different sizes of data sets on
an equal footing, and the square root ensures that ERMS is measured on the same
scale (and in the same units) as the target variable t. Graphs of the training and
test set RMS errors are shown, for various values of M , in Figure 1.5. The test
set error is a measure of how well we are doing in predicting the values of t for
new data observations of x. We note from Figure 1.5 that small values of M give
relatively large values of the test set error, and this can be attributed to the fact that
the corresponding polynomials are rather inflexible and are incapable of capturing
the oscillations in the function sin(2πx). Values of M in the range 3 � M � 8
give small values for the test set error, and these also give reasonable representations
of the generating function sin(2πx), as can be seen, for the case of M = 3, from
Figure 1.4.

Polynomial models fitting (Bishop, 2006)
How to evaluate the “best model”?

Model order selection: introduction F. Pascal 32 / 42



I. Gaussian Mixture Model

II. Reminders in Bayesian probabilities/statistics

III. EM algorithm

IV. Model order selection: introduction

V. Test vs training data - Cross-validation

VI. Information criteria and Bayesian approaches

VII. Applications



Test vs training dataTest vs Training Error

M

E
R

M
S

 

 

0 3 6 9
0

0.5

1
Training
Test

x

t

M = 3

0 1

−1

0

1

x

t

M = 9

0 1

−1

0

1

From PRML (Bishop, 2006)

General problem:
§ Model fits training data perfectly, but may not do well on test

data Overfitting (especially with MLE)

§ Training performance ‰ test performance, but we are largely
interested in test performance

§ Need mechanisms for assessing how a model generalizes to
unseen test data Model selection

Gaussian Mixture Models, EM, Model Selection IDAPI, Lecture 13 February 17, 2016 18

Different errors behavior between training and test datasets (Bishop, 2006)

Model fits training data perfectly, but may not do well on test data:
Overfitting (M = 9 ⇒ eRMS = 0, but poor estimation of sin(2πx)))
Training performance 6= test performance, but we are largely interested
in test performance
Need mechanisms for assessing how a model generalizes to unseen test
data: Model selection
Computational costs ...

Test vs training data - Cross-validation F. Pascal 33 / 42



Overfitting / Number of data / Computational
cost1.1. Example: Polynomial Curve Fitting 9

x

t

N = 15

0 1

−1

0

1

x

t

N = 100

0 1

−1

0

1

Figure 1.6 Plots of the solutions obtained by minimizing the sum-of-squares error function using the M = 9
polynomial for N = 15 data points (left plot) and N = 100 data points (right plot). We see that increasing the
size of the data set reduces the over-fitting problem.

ing polynomial function matches each of the data points exactly, but between data
points (particularly near the ends of the range) the function exhibits the large oscilla-
tions observed in Figure 1.4. Intuitively, what is happening is that the more flexible
polynomials with larger values of M are becoming increasingly tuned to the random
noise on the target values.

It is also interesting to examine the behaviour of a given model as the size of the
data set is varied, as shown in Figure 1.6. We see that, for a given model complexity,
the over-fitting problem become less severe as the size of the data set increases.
Another way to say this is that the larger the data set, the more complex (in other
words more flexible) the model that we can afford to fit to the data. One rough
heuristic that is sometimes advocated is that the number of data points should be
no less than some multiple (say 5 or 10) of the number of adaptive parameters in
the model. However, as we shall see in Chapter 3, the number of parameters is not
necessarily the most appropriate measure of model complexity.

Also, there is something rather unsatisfying about having to limit the number of
parameters in a model according to the size of the available training set. It would
seem more reasonable to choose the complexity of the model according to the com-
plexity of the problem being solved. We shall see that the least squares approach
to finding the model parameters represents a specific case of maximum likelihood
(discussed in Section 1.2.5), and that the over-fitting problem can be understood as
a general property of maximum likelihood. By adopting a Bayesian approach, theSection 3.4
over-fitting problem can be avoided. We shall see that there is no difficulty from
a Bayesian perspective in employing models for which the number of parameters
greatly exceeds the number of data points. Indeed, in a Bayesian model the effective
number of parameters adapts automatically to the size of the data set.

For the moment, however, it is instructive to continue with the current approach
and to consider how in practice we can apply it to data sets of limited size where we

Plots of the solutions obtained by minimizing the sum-of-squares error
function using the M = 9 polynomial for N = 15 data points (left plot) and
N = 100 data points (right plot).

Increasing the size of the data set reduces the over-fitting problem
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Model choice - Occam’s (Ockham) Razor

(PhD comics)

William of Ockham: “More things should not be used than are necessary”
(Wikipedia)

Test vs training data - Cross-validation F. Pascal 35 / 42



Model choice - Occam’s (Ockham) Razor164 3. LINEAR MODELS FOR REGRESSION

Figure 3.13 Schematic illustration of the
distribution of data sets for
three models of different com-
plexity, in which M1 is the
simplest and M3 is the most
complex. Note that the dis-
tributions are normalized. In
this example, for the partic-
ular observed data set D0,
the model M2 with intermedi-
ate complexity has the largest
evidence.

p(D)

DD0

M1

M2

M3

model can generate a variety of different data sets since the parameters are governed
by a prior probability distribution, and for any choice of the parameters there may
be random noise on the target variables. To generate a particular data set from a spe-
cific model, we first choose the values of the parameters from their prior distribution
p(w), and then for these parameter values we sample the data from p(D|w). A sim-
ple model (for example, based on a first order polynomial) has little variability and
so will generate data sets that are fairly similar to each other. Its distribution p(D)
is therefore confined to a relatively small region of the horizontal axis. By contrast,
a complex model (such as a ninth order polynomial) can generate a great variety of
different data sets, and so its distribution p(D) is spread over a large region of the
space of data sets. Because the distributions p(D|Mi) are normalized, we see that
the particular data set D0 can have the highest value of the evidence for the model
of intermediate complexity. Essentially, the simpler model cannot fit the data well,
whereas the more complex model spreads its predictive probability over too broad a
range of data sets and so assigns relatively small probability to any one of them.

Implicit in the Bayesian model comparison framework is the assumption that
the true distribution from which the data are generated is contained within the set of
models under consideration. Provided this is so, we can show that Bayesian model
comparison will on average favour the correct model. To see this, consider two
models M1 and M2 in which the truth corresponds to M1. For a given finite data
set, it is possible for the Bayes factor to be larger for the incorrect model. However, if
we average the Bayes factor over the distribution of data sets, we obtain the expected
Bayes factor in the form

∫
p(D|M1) ln

p(D|M1)

p(D|M2)
dD (3.73)

where the average has been taken with respect to the true distribution of the data.
This quantity is an example of the Kullback-Leibler divergence and satisfies the prop-Section 1.6.1
erty of always being positive unless the two distributions are equal in which case it
is zero. Thus on average the Bayes factor will always favour the correct model.

We have seen that the Bayesian framework avoids the problem of over-fitting
and allows models to be compared on the basis of the training data alone. However,

(Normalized) dist. of data sets for three models of different complexity, in
which M1 is the simplest and M3 is the most complex - D0: observed
dataset - M2 with intermediate complexity has the largest evidence
(Bishop, 2006)

Idea: choose the simplest model that explains “reasonably” well the data
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Cross-validationCross Validation

Training Test

§ Partition your training data into L subsets
§ Train the model on L ´ 1 subsets
§ Evaluate the model on the other subset
§ To reduce variability, multiple rounds of cross-validation are

performed using different partitions, and the validation results
are averaged over the rounds.

§ Train many models, compare test error
Number of training runs increases with the number of partitions

Gaussian Mixture Models, EM, Model Selection IDAPI, Lecture 13 February 17, 2016 21

Partition your training data into L subsets
Train the model on L−1 subsets
Evaluate the model on the remaining subset
To reduce variability, multiple rounds of cross-validation are performed
using different partitions, and the validation results are averaged over
the rounds.
Train many models, compare test error

Number of training runs increases with the number of partitions
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Information criteria (to be maximized)
Correct for the bias of MLE by addition of a penalty term to
compensate for the overfitting of more complex models (with lots of
parameters)
Akaike Information Criterion (AIC)1:

AIC(j) = ln(p(x|θ̂ML))−Mj

where Mj is the number of unknown parameters for model Mj.
Bayesian Information Criterion (BIC) / Minimum Description Length
(MDL)2:

BIC(j) = ln(p(x|θ̂ML))− 1

2
Mj N

where Mj is the number of unknown parameters for model Mj and N
the number of data.
BIC penalizes model complexity more heavily than AIC.

1 H. Akaike. A New Look at the Statistical Model Identification. IEEE Transactions on
Automatic Control, 19(6) : 716-723, 1974.
2 G. E. Schwarz. Estimating the Dimension of a Model. Annals of Statistics, 6(2) :
461-464, 1978.
Information criteria and Bayesian
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Bayesian Model Comparison

Place a prior p(M ) on the class of models
Given a training set D, we compute the posterior distribution over
models as

p(Mi|D) ∝ p(Mi)p(D|Mi)

which allows us to express a preference for different models
Model evidence (marginal likelihood):

p(D|Mi) =
∫

p(D|θi)p(θi|Mi)dθi

Bayes factor for comparing two models: p(D|M1)/p(D|M2)

Integral often intractable...

Information criteria and Bayesian
approaches F. Pascal 39 / 42



Bayesian Model Averaging

For predicting new observations...

Place a prior p(M ) on the class of models
Instead of selecting the “best” model, integrate out the corresponding
model parameters θM and average over all models Mi, i = 1, . . . ,L

p(D) =
L∑

i=1
p(Mi)p(D|θi)p(θi|Mi)dθi

=
L∑

i=1
p(Mi)p(D|Mi)

Computationally expensive
Integral often intractable

Information criteria and Bayesian
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On Model (Order) Selection ...
Many others techniques:

Minimum Message Length (see applications - Bayesian criterion)
Modified AIC accounting for small sample size:

mAIC(j) = ln(p(x|θ̂ML))−Mj −
Mj(Mj +1)

N −Mj −1
Hypothesis testing vs Bayesian model comparison
...

For estimating models mixture:
All previous techniques
Split and merge3(see applications + TP)
Reversible jump4(outside of the scope of this course)

Simple example...
1 Zhang, Z., Chen, C., Sun, J., Chan, K. L. (2003). EM algorithms for Gaussian
mixtures with split-and-merge operation. Pattern recognition, 36(9), 1973-1983.
2 Zhang, Z., Chan, K. L., Wu, Y., Chen, C. (2004). Learning a multivariate Gaussian
mixture model with the reversible jump MCMC algorithm. Statistics and Computing,
14(4), 343-355.
Information criteria and Bayesian
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Applications to image processing with Mixtures of
Asymmetric Generalized Gaussian distributions

Course 5

New slides
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