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Course 6.1

Mixture models
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What it is useful for?

Data-to-knowledge

m Statistical models fitting = models learning
m Features extraction for data, e.g. behavior, shapes...
m Data characterisation = Complex modelling

Complex estimation problems, e.g. many parameters, non parametric
estimation...

Clustering / Classification: Modes = clusters / classes

Dealing with missing (latent) data: unknown labels can be generalized
to unobserved data...
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Gaussian Mixture Model

Example: Weight of small animals coming from two different regions

a1

o

8

Length 82 83 84 85 86 87 88 89
Observations | 5 3 12 36 55 45 21 13
Length 90 91 92 93 94 95 96 98
Observations | 15 34 59 48 16 12 6 1
Corresi ondi;i histoi ram B
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Gaussian Mixture Model with two components
To understand / intuite the process, continue with this simple example
i o~ N(w,o?)
Yo ~ N(uz05)
Z ~ %BQ1p
That is P(Z=1)=p and P(Z=0) =1-p. In this context, the observations
are as follows: X=ZYi+(1-2) Y,

Meanings

data follows the first distribution / belongs to the first cluster with a
probability p.

Denote ¢pg(x) the Gaussian PDF with parameters 6 = (,u,az), one has the
following PDF for X: fx(x) = pgpg, (x) + (1 — p) g, (x) leading to the
log-likelihood for n observations (Xi,...,X,)

16;%) =Y _log(po, (xi) + (1 — p) Py, (x))
i=1

Gaussian Mixture Model F. Pascal 7/ 42



Gaussian Mixture Model with two components

Difficult estimation problem for 6 = (p,6,,0,), 5 unknown parameters

for the simplest case... Problem with the sum in the log.

Solution: consider unobserved latent variables (7, ...,2,) where Z;=1
when X; comes from the first model and Z; =0 when X; comes from the
second model. Let us now assume we knew the value of each Z;. In that

case, MLEs can be trivially obtained...

n

10;x,2) = )_ (2ilog(¢pg, (x) + (1 — ;) log(¢hg, (x))

i=1

+)_ (zilog(p) + (1 —z;) log(1-p))

—

~

where x=(x1,...,x,) and 2= (z1,...,2,).

Derive the MLEs pour 6 = ([),,ul,()'%,,ng,O'i)[

Gaussian Mixture Model

F. Pascal
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Gaussian Mixture Model with two components
In practice, the values of the Z;'s are unknown!

Idea: Replace for each Z;, its expected value (conditional to the observed

data X;
ata Xi) 7:(0) = E[Zi10,x] = P(Z; = 110,%)

called the responsibility for model 1 of observation i. = iterative
algorithm, Expectation-Maximization (EM) algo
Algorithm (EM algo for two-component Gaussian Mixture)

m Randomly initialization of §©

m Repeat until CV for t=0,1,...
by, (x)

a) E-Step: Compute the responsibilities 7;= — - ,i=1,...,n
(a) P P P Ti=3 95, )+ (L= Py, ()
XiTixi Zifla— )
(b) M-Step: Compute the parameters... i = —— 2= - ... and
e Yifi ! Yifi
p=Xivi/n. )

Discussion

Gaussian Mixture Model F. Pascal 9/ 42



Gaussian Mixture Model

Idea: One aims at modelling the statistical behaviour from several
populations, groups or classes...
Notations:

m 7 observations of i.i.d. random variables/vectors, denoted (X, ..., X,)

m K different clusters containing 7, observations. Of course, n= ZIk(:l Ny

m p; the probability of belonging to the k™ class and fi the PDF of r.v.
in this class.

e.g..:

m different objects in an image (or a patch) containing N pixels, denoted
Xi

m population of ducks: x; corresponds to the size of the i duck.

Different classes corresponding to the animal age/sex/origin (young,
old, female, male).

Gaussian Mixture Model F. Pascal 10 / 42



Gaussian Mixture Model

Statistical modelling of a mixture: with previous notations, one can defined
the following PDF:

K
f® =) prxfilx)
k=1

Particular case of Gaussian Mixture Models:

ool
exp |- ———
Znoi

2
209
Problem: estimation of many unknown parameters

K
f(x) = Z Pk X
k=1

0= (Pr bt Ok) oy k

K
with ) pr=1and Yke{l,...,K}, ur e R0 € RE.
k=1

What about K 7 Known, unknown ?

Gaussian Mixture Model F. Pascal 11 / 42



Interest of GMM

GMM allow to model many various distributions

(a) T/, 1)+ 1N (1/2,(2/3)%) + 24 (13/15,(5/9)%),
(b) XI_, N B(213)F-1),2/3)%k)
(c) 3N (=1,(2/3)%) + 3./ (1,(2/3)%)
(d) 34(0,1)+143/2,1/3)H)
(e) 304 (=6/5,(3/5)%) + 04 (6/5,(3/5)?) + 104 (0, (1/4)?)
(f) LD +X2_, 25 N (k+1/2,27%/10)%)

06 Densite unimodale dissymetrique 14 Densite fortement dissymetrique

(a) Asymmetric unimodal PDF (b) Strongly asymmetric unimodal PDF

Gaussian Mixture Model F. Pascal 12 / 42



Interest

Densite bimodale

of GMM

Densite bimodale asymetrique
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(c) Bimodal PDF (d) Asymmetric bimodal PDF
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(e) Tri-modal PDF

Gaussian Mixture Model

(f) More complex PDF

F. Pascal
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Reminders in Bayesian probabilities/statistics

For two events (or r. v. ...), one has:

m Conditional probabilities

P(AnB)
P(AB) = ———
P(B)
m Bayes rule
P(A|B) P(B)
P(BIA) = ———
P(A)

n
m if By,...,By is a partition of Q, i.e. | JBi=Q and Vi#jBinBj=9,

i=1
then

P(A =) P(ANB)
i=1

probabilities/statistics F. Pascal 14 / 42



GMM simulations

1 (x— pg)?
To simulate the mixture f(x) = X, px exp (— i) one

2
Znai Zak

needs to introduce a latent variable Z (or missing data) that corresponds to
the class of the variable X.

Now, the complete data T'= (X, Z) is defined by:

m Z follows a discrete distribution (p,..., px) on {1,...,K} such that Vk,
one has (Multinomial distribution)

P(Z=k) = px, with ) _pp=1
k

m Vke{l,...,K}, conditionally to {Z =k}, X has a PDF f:
L X1Z=k) = fi(x)
Goal: estimation of 8 = (pk’uk’ak)kzl,...,K

2 cases for : one knows latent variables (unrealistic scenario) or not...
F. Pascal 15/ 42
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EM algorithm - preliminaries
Simple case: Z is known

= one observes (x;,z;)i=1, ., instead of (only) (x9)i=1, . n
Maximum Likelihood approach

Theorem (ML estimates of 6)
Let the observations (xj,zj)i=1,.,n, then Vk€e{l,...,K}, one has
1 n
e = =) Nk (1)
ni=
o= — Y% @)
s = — Xi
NPk jjz=k :
= — ¥ (- )
k NPk iz :

EM algorithm F. Pascal 16 / 42



General EM algorithm - k-means, SEM...

General idea: One only observes (xi,...,x,) = analyse the log-likelihood

n K
lops(x1,..., Xp;0) = ZIOg(Z Pk ka(Xi)), where 0 = (pr, fix, O k) o1
i=1 k=1

Difficult to maximize!!l
BUT one can make assumptions of the unobserved (Z3,...,Z,):

Lemma (Conditional distribution of the Z;'s)
For0€0,xeR and ke{1,...,K}, one has

Pk % fr(2)

Py Z=klX=x)=————
0 X px /i

(4)

Intuition: thanks to some 6,4, one can assign to each x; some z; (Lemma)
and thanks to previous theorem, one can compute a 0,y...

EM algorithm F. Pascal 17 / 42



General EM algorithm - k-means, SEM...

Several possible approaches:

m [k-means| Assign a class to each x; according to

Z; = argmax Py, (Z=KkX;=x)

Natural approach but not flexible
m [SEM] Randomly assign a class to each x; according to the distribution

Py, (Z=1X;i=xp)

More flexible
m [N-SEM] Randomly assign N classes to each x;
m [EM] Limit of N-SEM when N — oo Very flexible and robust!

EM algorithm F. Pascal 18 / 42



k-means
One has to assume that (Very strong assumptions!)

1
Bp=..=px=—and oy =...=0¢.
b1 Pk % 1 K
Lemma
VO,VxeR

argm]?x Pp(Z=klX=x)= argmgnlx— Ul

Algorithm (k-means)
m Randomly initialize (zi,...,zg)
m Repeat until CV:
1n
m for kefl,...,K}, ur= ;in]lz,:k

i=1
m foriefl,...,n}, zi= argmkinlx—ukl

Advantages / Drawbacks ...
F. Pascal 19/ 42



Stochastic EM

General idea: Stochastic version of the k-means algorithm...

Algorithm (SEM)
m Randomly initialize (z1,..., zx)
m Repeat until CV:
(a) Compute A
0= argmeax Lops ((X1,21)5 -+, (X5, 21); 0)

thanks to Theorem (MLE)
(b) for iefl,...,n}, randomly choose z; according to

Pé Z=.X;=xp)

given by Eq. (4).

EM algorithm F. Pascal 20 / 42



Stochastic EM

Data Step 1 Iteration 1, Step 2a
- - -
<& - o - -
o.._...‘:'o > .f D) - .T oy
® oo™ & e . - - =
- - -
-
- o - .
- e - - < © - @s
* . et

Iteration 1, Step 2b

Iteration 2, Step 2a

Final Results

. : .. .
*:‘.}- o ..~.o S %‘:

F. Pascal
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Stochastic EM - N trials
Algorithm (N-SEM (1))
m Replicate N times, the observations (x1,...,X;) — (xl@)lsisn,lsjsN
m Apply SEM algo to this dataset.

Algorithm (N-SEM (2))
» Randomly initialize N classes z},...,z} €{1,...,K},Vi

m Repeat until CV
(a) Compute

thanks to Theorem (MLE)
(b) for i€{l,...,n}, randomly choose z},...,z (independently!)
according to
Py(Z=.1Xi=x))
given by Eq. (4).

v

EM algorithm F. Pascal
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Expectation-Maximization algorithm
General idea: N-SEM with N — +co ...

Lemma

Given (x))1<i<n and associated classes for N trials (zk)1<i<n 1<k<K, one has

Ve’lth((xi’Z})izl ..... RV U2 ) iy ) Zl"bs((x” ) =1,... n;H)

Theorem (First part)
Given the observations (x;)1<i<n and 6,4 € O.
(a) Let 4,,...,Z, independent r.v. such that Z;~ %, (Z|1X = x;). One has

VO = (pk, i O k) 1<k<k € O,

n K
El((x2)i=1,.,n;0)1 =) D Po,, (Z = kIX = x)log (pr * fie(x))
i=1k=1

where Py, (Z = .|X = x;) given by Eq. (4).

v

EM algorithm F. Pascal 23 /42




Expectation-Maximization algorithm

Theorem (Second part)

Given the observations (x;)1<i<n and 6,4 € 6,

(b) One has that argmgaxE[l((xi,zi),-:L_wn;G)] is given by:
m Classes probabilities: Vk=1,..., K,

1n
pzrgmax — ;Z‘i PBazd (Z=klX= X;i)
=

m Classes means: Yk=1,...,K,

1 n
pp e = —e Y Py, (Z= KX = X)) X

k argmax
np k i=1

m Classes variances: Yk=1,.., K,

argmax.2 _
(Uk ) - - Argmax £

n
k =

Peold (Z=klX=x;) (x;— 'uzrgmax)z
1

v

EM algorithm F. Pascal 24 / 42



Expectation-Maximization algorithm

Following previous theorem, one has the following theoretical algorithm:

Algorithm (Theory)
m Randomly initialization of 6,
m Repeat until CV for t=0,1,...
(a) E-Step: Compute

.....

where Z{,...,Z}, are i.i.d. with Z! ~ %y (Z|1X = x;)
(b) M-Step: Maximize L;(0) to obtain 0, = argmaxy L;(0)

m E for Expectation
m M for Maximization

Outline of the proof...

EM algorithm F. Pascal 25 / 42



Expectation-Maximization algorithm
In practice, one has to implement the following algorithm...
Algorithm (Practice)
m Randomly initialization of 6

m Repeat until CV for t=0,1,...
(a) E-Step: Compute the matrix

t
pkxfk,t(xi)
Py, (Z=KX=X)] ey 1k = | =
[ l ]l_l_n,l_k_K Zf:l P; x fi,e(xi) 1<isn1<k<K
(b) M-Step: Compute 6,1, for all k=1,...,K,
1 n
pirt = =Y Py, (Z=kX=1x), (5)
i=1
1 1 &
A = minpgt (Z=klX=x)) (6)
k =1
A1+1)2 1z ~1+1Y\2
(6y7) = WZPO,(Z=’€|X=M) (xi—a) (7)
k =1

EM algorithm F. Pascal 26 / 42



A different view - Maximization-Maximization
procedure

m Consider the function F(0,P) = Ep[ly(0;t)] — Ep[log(P(z))]

m P can be any distribution for the /atent variables z.

m Note that F evaluated at P(z) = P(zlx,0) is the log-likelihood of the
observed data.

m EM algo can be viewed as a joint maximization method for F over 0
and P(z). Maximizer over P(z) for fixed 6 can be shown to be
P(z) = P(zlx,0). (dist. computed at the E-step).

m M-step: Maximize F(0,P) over 0 for fixed P(z), < maximizing
Ep[lp(0;0)|x,0%] (2nd term do not depend on 6).

Since F(6,P) and the obs. data log-likelihood agree when P(z) = P(z|x,0),
maximization of the former accomplishes maximization of the latter.

EM algorithm F. Pascal 27 / 42



Course 6.2

Model Order Selection
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What it is useful for?

m Data-to-knowledge
m Statistical models fitting = models learning
m Features extraction for data, e.g. behavior, shapes...
m Data characterisation = Complex modelling

Complex estimation problems, e.g. many parameters, non parametric
estimation...

Clustering / Classification: Modes = clusters / classes

Dealing with missing (latent) data: unknown labels can be generalized
to unobserved data...

EM algorithm F. Pascal 29 / 42
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Introduction / Motivations
Make high-level decisions about the model we want to use:
m Number of components in a mixture model
Network architecture of (deep) neural networks
Type of kernel in a support vector machine
Degree of a polynomial in a regression problem
Others examples...

0 . 1

True data generated from a sinusoid (sin(27x)) + (small) Gaussian noise
(Bishop, 2006)

Model order selection: introduction F. Pascal 30 / 42



Introduction / Motivations
Goal: predict the value of t for some new value of x, without knowledge of
the green curve — Model selection

Simple / natural approach: curve fitting

M .
yoow) =) wix'
i=1

where M is the polynomial order (unknown) and w= (wy,..., wy) are the
polynomial coefficients (unknown). For w, let's minimize an error function,

e.g.,
N

ew) = Y (0((xn, W) — 1,))* or egus = v/ ew*)/N

n=1
where N stands for the number of observed data. e(w) is a quadratic
function w.r.t w = unique solution w*

Problem: choose M!!!
Discussion with mixture models / EM algo

Model order selection: introduction F. Pascal 31/ 42



Introduction / Motivations

Polynomial models fitting (Bishop, 2006)
How to evaluate the “best model?

Model order selection: introduction F. Pascal 32/ 42



V. Test vs training data - Cross-validation



Test vs training data

—©6— Training
—o— Test !

0 P 1 0 z 1

Different errors behavior between training and test datasets (Bishop, 2006)

m Model fits training data perfectly, but may not do well on test data:
Overfitting (M =9 = egpys =0, but poor estimation of sin(27x)))

m Training performance # test performance, but we are largely interested
in test performance

m Need mechanisms for assessing how a model generalizes to unseen test
data: Model selection

m Computational costs ...

Test vs training data - Cross-validation F. Pascal 33 /42



Overfitting / Number of data / Computational
cost

Plots of the solutions obtained by minimizing the sum-of-squares error
function using the M =9 polynomial for N =15 data points (left plot) and
N =100 data points (right plot).

Increasing the size of the data set reduces the over-fitting problem

Test vs training data - Cross-validation F. Pascal 34 / 42



Model choice - Occam’s (Ockham) Razor

CORE PRINCIPLES IN RESEARCH

JORGE M © 2009

a5
1 i
OCCAM'S RAZOR OCCAM'S PROFESSOR
“WHMEN FACED WITH TWO POSSEBLE “WHEN FACED WITH TWO POSSEBLE WAYS OF
EXPLANATIONS, THE SIMPLER OF DONG SOMETHING, THE MORE COMPLICATED
THE TWO 1S THE ONE MOST ONE 1S THE ONE YOUR PROFESSOR WILL
LIKELY TO BE TRUE." MOST LIKELY ASK You To Do.”

WWW. PHDCOMICS.COM

(PhD comics)

William of Ockham: “More things should not be used than are necessary”
(Wikipedia)

Test vs training data - Cross-validation



Model choice - Occam’s (Ockham) Razor

A

p(D) M,

\ M
DA
L\

Do &

(Normalized) dist. of data sets for three models of different complexity, in
which . is the simplest and .43 is the most complex - 9y: observed
dataset - .4, with intermediate complexity has the largest evidence
(Bishop, 2006)

Idea: choose the simplest model that explains “reasonably” well the data

Test vs training data - Cross-validation F. Pascal 36 / 42



Cross-validation

Training —|— —|— Test

Partition your training data into L subsets

Train the model on L—1 subsets

Evaluate the model on the remaining subset

To reduce variability, multiple rounds of cross-validation are performed
using different partitions, and the validation results are averaged over
the rounds.

Train many models, compare test error

Number of training runs increases with the number of partitions

Test vs training data - Cross-validation F. Pascal 37/ 42
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Information criteria (to be maximized)

m Correct for the bias of MLE by addition of a penalty term to
compensate for the overfitting of more complex models (with lots of
parameters)

m Akaike Information Criterion (AIC)*:

AIC(j) = In(p(x|Opr) — Mj

where M; is the number of unknown parameters for model .#;.

m Bayesian Information Criterion (BIC) / Minimum Description Length
(MDL)?:

A 1
BIC() = In(pxlfy) = 5 M;N

where M; is the number of unknown parameters for model .#; and N
the number of data.
m BIC penalizes model complexity more heavily than AlIC.

1 H. Akaike. A New Look at the Statistical Model Identification. IEEE Transactions on
Automatic Control, 19(6) : 716-723, 1974.

2 G. E. Schwarz. Estimating the Dimension of a Model. Annals of Statistics, 6(2) :
461-464, 1978.
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Bayesian Model Comparison

m Place a prior p(.#) on the class of models

m Given a training set 92, we compute the posterior distribution over
models as
p(AMGD) < p(M) p(D|.A))

which allows us to express a preference for different models
m Model evidence (marginal likelihood):

p(D|A4;) =fp(@|9i) p(O;l4;) dO;

m Bayes factor for comparing two models: p(2|.41)! p(D|.4>)
m Integral often intractable...

e T



Bayesian Model Averaging

For predicting new observations...

Place a prior p(.#) on the class of models

m Instead of selecting the “best” model, integrate out the corresponding
model parameters 8 4 and average over all models 4;,i=1,...,L

I5
Y pA) p(210,) p(Oil;) db,
=1

p(D)

L
= Y pl) p(D|.U;)
i=1

Computationally expensive

Integral often intractable

N



On Model (Order) Selection ...

m Many others techniques:
m Minimum Message Length (see applications - Bayesian criterion)
m Modified AIC accounting for small sample size:

AIC(j) =1 0 a0+ D
mAIC(j) = In(px|0pm1)) — M;— W]—l
m Hypothesis testing vs Bayesian model comparison

1555
m For estimating models mixture:
m All previous techniques
m Split and merge3(see applications + TP)
= Reversible jump*(outside of the scope of this course)

Simple example...

1 Zhang, Z., Chen, C., Sun, J., Chan, K. L. (2003). EM algorithms for Gaussian
mixtures with split-and-merge operation. Pattern recognition, 36(9), 1973-1983.

2 Zhang, Z., Chan, K. L., Wu, Y., Chen, C. (2004). Learning a multivariate Gaussian
mixture model with the reversible jump MCMC algorithm. Statistics and Computing,
14(4), 343-355.
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VII. Applications



Applications to image processing with Mixtures of
Asymmetric Generalized Gaussian distributions

Course 5

Applications F. Pascal 42 [/ 42
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