Advanced Machine Learning Course VI - Mixture Models, EM and Model Order Selection

L. Omar Chehab ${ }^{(1)}$ and Frédéric Pascal ${ }^{(2)}$
${ }^{(1)}$ Parietal Team, Inria
${ }^{(2)}$ Laboratory of Signals and Systems (L2S), CentraleSupélec, University Paris-Saclay
I-emir-omar.chehab@inria.fr, frederic.pascal@centralesupelec.fr, http://fredericpascal.blogspot.fr

Dominante MDS (Mathématiques, Data Sciences) Sept. - Dec., 2020

CentraleSupélec

Contents

1 Introduction - Reminders of probability theory and mathematical statistics (Bayes, estimation, tests) - FP
2 Robust regression approaches - EC / OC
3 Hierarchical clustering - FP / OC
4 Stochastic approximation algorithms - EC / OC
5 Nonnegative matrix factorization (NMF) - EC / OC
6 Mixture models fitting / Model Order Selection - FP / OC
7 Inference on graphical models - EC / VR
8 Exam

Key references for this course

■ Bishop, C. M. Pattern Recognition and Machine Learning. Springer, 2006.

- Hastie, T., Tibshirani, R. and Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Second edition. Springer, 2009.

■ James, G., Witten, D., Hastie, T. and Tibshirani, R. An Introduction to Statistical Learning, with Applications in R. Springer, 2013

Course 6.1

Mixture models

What it is useful for?

■ Data-to-knowledge

- Statistical models fitting \Rightarrow models learning
- Features extraction for data, e.g. behavior, shapes...
- Data characterisation \Rightarrow Complex modelling

■ Complex estimation problems, e.g. many parameters, non parametric estimation...

- Clustering / Classification: Modes \simeq clusters / classes
- Dealing with missing (latent) data: unknown labels can be generalized to unobserved data...
I. Gaussian Mixture Model
II. Reminders in Bayesian probabilities/statistics
III. EM algorithm
IV. Model order selection: introduction
V. Test vs training data - Cross-validation
VI. Information criteria and Bayesian approaches
VII. Applications

Gaussian Mixture Model

Example: Weight of small animals coming from two different regions

Length	82	83	84	85	86	87	88	89
Observations	5	3	12	36	55	45	21	13
Length	90	91	92	93	94	95	96	98
Observations	15	34	59	48	16	12	6	1

Gaussian Mixture Model with two components

To understand / intuite the process, continue with this simple example

$$
\begin{aligned}
Y_{1} & \sim \mathscr{N}\left(\mu_{1}, \sigma_{1}^{2}\right) \\
Y_{2} & \sim \mathscr{N}\left(\mu_{2}, \sigma_{2}^{2}\right) \\
Z & \sim \mathscr{B}(1, p)
\end{aligned}
$$

That is $P(Z=1)=p$ and $P(Z=0)=1-p$. In this context, the observations are as follows:

$$
X=Z Y_{1}+(1-Z) Y_{2}
$$

Meanings

data follows the first distribution / belongs to the first cluster with a probability p.

Denote $\phi_{\theta}(x)$ the Gaussian PDF with parameters $\theta=\left(\mu, \sigma^{2}\right)$, one has the following PDF for $X: f_{X}(x)=p \phi_{\theta_{1}}(x)+(1-p) \phi_{\theta_{2}}(x)$ leading to the log-likelihood for n observations (X_{1}, \ldots, X_{n})

$$
l(\theta ; \mathbf{x})=\sum_{i=1}^{n} \log \left(p \phi_{\theta_{1}}\left(x_{i}\right)+(1-p) \phi_{\theta_{2}}\left(x_{i}\right)\right)
$$

Gaussian Mixture Model with two components

Difficult estimation problem for $\theta=\left(p, \theta_{1}, \theta_{2}\right)$, 5 unknown parameters for the simplest case... Problem with the sum in the log.

Solution: consider unobserved latent variables $\left(Z_{1}, \ldots, Z_{n}\right)$ where $Z_{i}=1$ when X_{i} comes from the first model and $Z_{i}=0$ when X_{i} comes from the second model. Let us now assume we knew the value of each Z_{i}. In that case, MLEs can be trivially obtained...

$$
\begin{array}{r}
l(\theta ; \mathbf{x}, \mathbf{z})=\sum_{i=1}^{n}\left(z_{i} \log \left(\phi_{\theta_{1}}\left(x_{i}\right)\right)+\left(1-z_{i}\right) \log \left(\phi_{\theta_{2}}\left(x_{i}\right)\right)\right) \\
+\sum_{i=1}^{n}\left(z_{i} \log (p)+\left(1-z_{i}\right) \log (1-p)\right)
\end{array}
$$

where $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{z}=\left(z_{1}, \ldots, z_{n}\right)$.

$$
\text { Derive the MLEs pour } \theta=\left(p, \mu_{1}, \sigma_{1}^{2}, \mu_{2}, \sigma_{2}^{2}\right)!
$$

Gaussian Mixture Model with two components

 In practice, the values of the Z_{i} 's are unknown!Idea: Replace for each Z_{i}, its expected value (conditional to the observed data X_{i})

$$
\gamma_{i}(\theta)=E\left[Z_{i} \mid \theta, \mathbf{x}\right]=P\left(Z_{i}=1 \mid \theta, \mathbf{x}\right)
$$

called the responsibility for model 1 of observation $i . \Rightarrow$ iterative algorithm, Expectation-Maximization (EM) algo

Algorithm (EM algo for two-component Gaussian Mixture)

- Randomly initialization of $\theta^{(0)}$
- Repeat until CV for $t=0,1, \ldots$
(a) E-Step: Compute the responsibilities $\hat{\gamma}_{i}=\frac{\hat{p} \phi_{\hat{\theta}_{1}}\left(x_{i}\right)}{\hat{p} \phi_{\hat{\theta}_{1}}\left(x_{i}\right)+(1-\hat{p}) \phi_{\hat{\theta}_{2}}\left(x_{i}\right)}, i=1, \ldots, n$
(b) M-Step: Compute the parameters... $\hat{\mu}_{1}=\frac{\sum_{i} \hat{\gamma}_{i} x_{i}}{\sum_{i} \hat{\gamma}_{i}}, \hat{\sigma}_{1}^{2}=\frac{\sum_{i} \hat{\gamma}_{i}\left(x_{i}-\hat{\mu}_{1}\right)^{2}}{\sum_{i} \hat{\gamma}_{i}}, \ldots$ and $\hat{p}=\sum_{i} \hat{\gamma}_{i} / n$.

Discussion

Gaussian Mixture Model

Idea: One aims at modelling the statistical behaviour from several populations, groups or classes...

Notations:

■ n observations of i.i.d. random variables/vectors, denoted (X_{1}, \ldots, X_{n})
■ K different clusters containing n_{k} observations. Of course, $n=\sum_{k=1}^{K} n_{k}$

- p_{k} the probability of belonging to the $k^{t h}$ class and f_{k} the PDF of r.v. in this class.
e.g.,:
- different objects in an image (or a patch) containing N pixels, denoted x_{i}
- population of ducks: x_{i} corresponds to the size of the $i^{t h}$ duck. Different classes corresponding to the animal age/sex/origin (young, old, female, male).

■ ...

Gaussian Mixture Model

Statistical modelling of a mixture: with previous notations, one can defined the following PDF:

$$
f(x)=\sum_{k=1}^{K} p_{k} \times f_{k}(x)
$$

Particular case of Gaussian Mixture Models:

$$
f(x)=\sum_{k=1}^{K} p_{k} \times \frac{1}{\sqrt{2 \pi \sigma_{k}^{2}}} \exp \left(-\frac{\left(x-\mu_{k}\right)^{2}}{2 \sigma_{k}^{2}}\right)
$$

Problem: estimation of many unknown parameters

$$
\theta=\left(p_{k}, \mu_{k}, \sigma_{k}\right)_{k=1, \ldots, K}
$$

with $\sum_{k=1}^{K} p_{k}=1$ and $\forall k \in\{1, \ldots, K\}, \mu_{k} \in \mathbb{R}, \sigma_{k} \in \mathbb{R}_{+}^{*}$.

Interest of GMM

GMM allow to model many various distributions

(a) $\frac{1}{5} \mathscr{N}(0,1)+\frac{1}{5} \mathscr{N}\left(1 / 2,(2 / 3)^{2}\right)+\frac{3}{5} \mathscr{N}\left(13 / 15,(5 / 9)^{2}\right)$,
(b) $\sum_{k=0}^{7} \mathscr{N}\left(3\left((2 / 3)^{k}-1\right),(2 / 3)^{2 k}\right)$
(c) $\frac{1}{2} \mathscr{N}\left(-1,(2 / 3)^{2}\right)+\frac{1}{2} \mathscr{N}\left(1,(2 / 3)^{2}\right)$
(d) $\frac{3}{4} \mathscr{N}(0,1)+\frac{1}{4} \mathscr{N}\left(3 / 2,(1 / 3)^{2}\right)$
(e) $\frac{9}{2} 0 \mathscr{N}\left(-6 / 5,(3 / 5)^{2}\right)+\frac{9}{2} 0 \mathscr{N}\left(6 / 5,(3 / 5)^{2}\right)+\frac{1}{1} 0 \mathscr{N}\left(0,(1 / 4)^{2}\right)$
(f) $\frac{1}{2} \mathscr{N}(0,1)+\sum_{k=-2}^{2} \frac{2^{1-k}}{31} \mathscr{N}\left(k+1 / 2,\left(2^{-k} / 10\right)^{2}\right)$

(a) Asymmetric unimodal PDF

(b) Strongly asymmetric unimodal PDF

Interest of GMM

(c) Bimodal PDF

(e) Tri-modal PDF

(d) Asymmetric bimodal PDF

(f) More complex PDF

I. Gaussian Mixture Model

II. Reminders in Bayesian probabilities/statistics
III. EM algorithm
IV. Model order selection: introduction
V. Test vs training data - Cross-validation
VI. Information criteria and Bayesian approaches
VII. Applications

Reminders in Bayesian probabilities/statistics

For two events (or r. v. ...), one has:

- Conditional probabilities

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

■ Bayes rule

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}
$$

- if B_{1}, \ldots, B_{n} is a partition of Ω, i.e. $\bigcup_{i=1}^{n} B_{i}=\Omega$ and $\forall i \neq j, B_{i} \cap B_{j}=\varnothing$, then

$$
P(A)=\sum_{i=1}^{n} P\left(A \cap B_{i}\right)
$$

GMM simulations

To simulate the mixture $f(x)=\sum_{k=1}^{K} p_{k} \times \frac{1}{\sqrt{2 \pi \sigma_{k}^{2}}} \exp \left(-\frac{\left(x-\mu_{k}\right)^{2}}{2 \sigma_{k}^{2}}\right)$, one needs to introduce a latent variable Z (or missing data) that corresponds to the class of the variable X.

Now, the complete data $T=(X, Z)$ is defined by:

- Z follows a discrete distribution (p_{1}, \ldots, p_{K}) on $\{1, \ldots, K\}$ such that $\forall k$, one has (Multinomial distribution)

$$
P(Z=k)=p_{k}, \text { with } \sum_{k} p_{k}=1
$$

■ $\forall k \in\{1, \ldots, K\}$, conditionally to $\{Z=k\}, X$ has a PDF f_{k} :

$$
\mathscr{L}(x \mid Z=k)=f_{k}(x)
$$

Goal: estimation of $\theta=\left(p_{k}, \mu_{k}, \sigma_{k}\right)_{k=1, \ldots, K}$

I. Gaussian Mixture Model

II. Reminders in Bayesian probabilities/statistics

III. EM algorithm

IV. Model order selection: introduction
V. Test vs training data - Cross-validation
VI. Information criteria and Bayesian approaches
VII. Applications

EM algorithm - preliminaries

Simple case: Z is known
\Rightarrow one observes $\left(x_{i}, z_{i}\right)_{i=1, \ldots, n}$ instead of (only) $\left(x_{i}\right)_{i=1, \ldots, n}$. Maximum Likelihood approach

Theorem (ML estimates of θ)
Let the observations $\left(x_{i}, z_{i}\right)_{i=1, \ldots, n}$, then $\forall k \in\{1, \ldots, K\}$, one has

$$
\begin{align*}
\hat{p}_{k} & =\frac{1}{n} \sum_{i=1}^{n} 1_{z_{i}=k} \tag{1}\\
\hat{\mu}_{k} & =\frac{1}{n \hat{p}_{k}} \sum_{i \mid z_{i}=k} x_{i} \tag{2}\\
\hat{\sigma}_{k}^{2} & =\frac{1}{n \hat{p}_{k}} \sum_{i \mid z_{i}=k}\left(x_{i}-\hat{\mu}_{k}\right)^{2} \tag{3}
\end{align*}
$$

General EM algorithm - k-means, SEM...

General idea: One only observes $\left(x_{1}, \ldots, x_{n}\right) \Rightarrow$ analyse the log-likelihood

$$
l_{o b s}\left(x_{1}, \ldots, x_{n} ; \theta\right)=\sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} p_{k} \times f_{k}\left(x_{i}\right)\right), \text { where } \theta=\left(p_{k}, \mu_{k}, \sigma_{k}\right)_{k=1, \ldots, K}
$$

Difficult to maximize!!!
BUT one can make assumptions of the unobserved $\left(Z_{1}, \ldots, Z_{n}\right)$:
Lemma (Conditional distribution of the Z_{i} 's)
For $\theta \in \Theta, x \in \mathbb{R}$ and $k \in\{1, \ldots, K\}$, one has

$$
\begin{equation*}
P_{\theta}(Z=k \mid X=x)=\frac{p_{k} \times f_{k}(x)}{\sum_{l=1}^{K} p_{l} \times f_{l}(x)} \tag{4}
\end{equation*}
$$

Intuition: thanks to some $\theta_{\text {old }}$, one can assign to each x_{i} some z_{i} (Lemma) and thanks to previous theorem, one can compute a $\theta_{\text {new }} \ldots$

General EM algorithm - k-means, SEM...

Several possible approaches:

■ [k-means] Assign a class to each x_{i} according to

$$
z_{i}=\arg \max _{k} P_{\theta_{\text {old }}}\left(Z=k \mid X_{i}=x_{i}\right)
$$

Natural approach but not flexible
■ [SEM] Randomly assign a class to each x_{i} according to the distribution

$$
P_{\theta_{\text {old }}}\left(Z=. \mid X_{i}=x_{i}\right)
$$

More flexible

- [N-SEM] Randomly assign N classes to each x_{i}

■ [EM] Limit of N-SEM when $N \rightarrow \infty$ Very flexible and robust!

k-means

One has to assume that (Very strong assumptions!)

- $p_{1}=\ldots=p_{K}=\frac{1}{K}$ and $\sigma_{1}=\ldots=\sigma_{K}$.

Lemma
$\forall \theta, \forall x \in \mathbb{R}$

$$
\arg \max _{k} P_{\theta}(Z=k \mid X=x)=\arg \min _{k}\left|x-\mu_{k}\right|
$$

Algorithm (k-means)

- Randomly initialize $\left(z_{1}, \ldots, z_{K}\right)$
- Repeat until CV:

■ for $k \in\{1, \ldots, K\}, \mu_{k}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \mathbb{1}_{z_{i}=k}$
■ for $i \in\{1, \ldots, n\}, z_{i}=\arg \min _{k}\left|x-\mu_{k}\right|$

> Advantages / Drawbacks ...

Stochastic EM

General idea: Stochastic version of the k-means algorithm...

Algorithm (SEM)

- Randomly initialize $\left(z_{1}, \ldots, z_{K}\right)$
- Repeat until CV:
(a) Compute

$$
\hat{\theta}=\underset{\theta}{\operatorname{argmax}} l_{\text {obs }}\left(\left(x_{1}, z_{1}\right), \ldots,\left(x_{n}, z_{n}\right) ; \theta\right)
$$

thanks to Theorem (MLE)
(b) for $i \in\{1, \ldots, n\}$, randomly choose z_{i} according to

$$
P_{\hat{\theta}}\left(Z=. \mid X_{i}=x_{i}\right)
$$

given by Eq. (4).

Stochastic EM

Data

Iteration 1, Step 2b

Step 1

Iteration 2, Step 2a

Iteration 1, Step 2a

Final Results

Stochastic EM - N trials

Algorithm (N-SEM (1))

- Replicate N times, the observations $\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left(x_{i}^{(j)}\right)_{1 \leq i \leq n, 1 \leq j \leq N}$
- Apply SEM algo to this dataset.

Algorithm (N-SEM (2))

- Randomly initialize N classes $z_{i}^{1}, \ldots, z_{i}^{N} \in\{1, \ldots, K\}, \forall i$
- Repeat until CV
(a) Compute

$$
\hat{\theta}=\underset{\theta}{\arg \max _{\theta}} l_{o b s}\left(\left(x_{i}, z_{i}^{1}\right)_{i=1, \ldots, n} \cup \ldots \cup\left(x_{i}, z_{i}^{N}\right)_{i=1, \ldots, n} ; \theta\right)
$$

thanks to Theorem (MLE)
(b) for $i \in\{1, \ldots, n\}$, randomly choose $z_{i}^{1}, \ldots, z_{i}^{N}$ (independently!) according to given by Eq. (4).

$$
P_{\hat{\theta}}\left(Z=. \mid X_{i}=x_{i}\right)
$$

Expectation-Maximization algorithm

General idea: N-SEM with $N \rightarrow+\infty \ldots$

Lemma

Given $\left(x_{i}\right)_{1 \leq i \leq n}$ and associated classes for N trials $\left(z_{i}^{k}\right)_{1 \leq i \leq n, 1 \leq k \leq K}$, one has

$$
\forall \theta, l_{o b s}\left(\left(x_{i}, z_{i}^{1}\right)_{i=1, \ldots, n} \cup \ldots \cup\left(x_{i}, z_{i}^{N}\right)_{i=1, \ldots, n} ; \theta\right)=\sum_{j=1}^{N} l_{o b s}\left(\left(x_{i}, z_{i}^{j}\right)_{i=1, \ldots, n} ; \theta\right)
$$

Theorem (First part)

Given the observations $\left(x_{i}\right)_{1 \leq i \leq n}$ and $\theta_{\text {old }} \in \Theta$.
(a) Let Z_{1}, \ldots, Z_{n} independent r.v. such that $Z_{i} \sim \mathscr{L}_{\theta_{\text {old }}}\left(Z \mid X=x_{i}\right)$. One has $\forall \theta=\left(p_{k}, \mu_{k}, \sigma_{k}\right)_{1 \leq k \leq K} \in \Theta$,

$$
E\left[l\left(\left(x_{i}, z_{i}\right)_{i=1, \ldots, n} ; \theta\right)\right]=\sum_{i=1}^{n} \sum_{k=1}^{K} P_{\theta_{\text {old }}}\left(Z=k \mid X=x_{i}\right) \log \left(p_{k} \times f_{k}\left(x_{i}\right)\right)
$$

where $P_{\theta_{\text {old }}}\left(Z=. \mid X=x_{i}\right)$ given by Eq. (4).

Expectation-Maximization algorithm

Theorem (Second part)

Given the observations $\left(x_{i}\right)_{1 \leq i \leq n}$ and $\theta_{\text {old }} \in \Theta$,
(b) One has that $\underset{\theta}{\operatorname{argmax}} E\left[l\left(\left(x_{i}, z_{i}\right)_{i=1, \ldots, n} ; \theta\right)\right]$ is given by:

- Classes probabilities: $\forall k=1, \ldots, K$,

$$
p_{k}^{\text {argmax }}=\frac{1}{n} \sum_{i=1}^{n} P_{\theta_{\text {old }}}\left(Z=k \mid X=x_{i}\right)
$$

- Classes means: $\forall k=1, \ldots, K$,

$$
\mu_{k}^{\text {argmax }}=\frac{1}{n p_{k}^{\text {argmax }}} \sum_{i=1}^{n} P_{\theta_{\text {old }}}\left(Z=k \mid X=x_{i}\right) x_{i}
$$

- Classes variances: $\forall k=1, \ldots, K$,

$$
\left(\sigma_{k}^{\operatorname{argmax}}\right)^{2}=\frac{1}{n p_{k}^{\operatorname{argmax}}} \sum_{i=1}^{n} P_{\theta_{\text {old }}}\left(Z=k \mid X=x_{i}\right)\left(x_{i}-\mu_{k}^{\operatorname{argmax}}\right)^{2}
$$

Expectation-Maximization algorithm

Following previous theorem, one has the following theoretical algorithm:

Algorithm (Theory)

- Randomly initialization of θ_{0}
- Repeat until CV for $t=0,1, \ldots$
(a) E-Step: Compute

$$
L_{t}(\theta)=E\left[l\left(\left(X_{i}, Z_{i}^{t}\right)_{i=1, \ldots, n} ; \theta\right)\right]\left(\Longleftrightarrow Q\left(\theta, \theta_{t}\right)=E\left(l(\theta ; \mathbf{t}) \mid \mathbf{x}, \theta_{t}\right)\right)
$$

where $Z_{1}^{t}, \ldots, Z_{n}^{t}$ are i.i.d. with $Z_{i}^{t} \sim \mathscr{L}_{\theta_{t}}\left(Z \mid X=x_{i}\right)$
(b) M-Step: Maximize $L_{t}(\theta)$ to obtain $\theta_{t+1}=\operatorname{argmax}_{\theta} L_{t}(\theta)$

- E for Expectation
- M for Maximization

Expectation-Maximization algorithm

In practice, one has to implement the following algorithm...

Algorithm (Practice)

- Randomly initialization of θ_{0}
- Repeat until CV for $t=0,1, \ldots$
(a) E-Step: Compute the matrix

$$
\left[P_{\theta_{t}}\left(Z=k \mid X=x_{i}\right)\right]_{1 \leq i \leq n, 1 \leq k \leq K}=\left[\frac{p_{k}^{t} \times f_{k, t}\left(x_{i}\right)}{\sum_{l=1}^{K} p_{l}^{t} \times f_{l, t}\left(x_{i}\right)}\right]_{1 \leq i \leq n, 1 \leq k \leq K}
$$

(b) M-Step: Compute θ_{t+1}, for all $k=1, \ldots, K$,

$$
\begin{align*}
\hat{p}_{k}^{t+1} & =\frac{1}{n} \sum_{i=1}^{n} P_{\theta_{t}}\left(Z=k \mid X=x_{i}\right), \tag{5}\\
\hat{\mu}_{k}^{t+1} & =\frac{1}{n \hat{p}_{k}^{t+1}} \sum_{i=1}^{n} x_{i} P_{\theta_{t}}\left(Z=k \mid X=x_{i}\right) \tag{6}\\
\left(\hat{\sigma}_{k}^{t+1}\right)^{2} & =\frac{1}{n \hat{p}_{k}^{t+1}} \sum_{i=1}^{n} P_{\theta_{t}}\left(Z=k \mid X=x_{i}\right)\left(x_{i}-\hat{\mu}_{k}^{t+1}\right)^{2} \tag{7}
\end{align*}
$$

A different view - Maximization-Maximization procedure

■ Consider the function $F(\theta, \mathbf{P})=E_{\mathbf{P}}\left[l_{0}(\theta ; \mathbf{t})\right]-E_{\mathbf{P}}[\log (\mathbf{P}(\mathbf{z}))]$
■ \mathbf{P} can be any distribution for the latent variables \mathbf{z}.
■ Note that F evaluated at $\mathbf{P}(\mathbf{z})=P(\mathbf{z} \mid \mathbf{x}, \theta)$ is the log-likelihood of the observed data.
■ EM algo can be viewed as a joint maximization method for F over θ and $\mathbf{P}(\mathbf{z})$. Maximizer over $\mathbf{P}(\mathbf{z})$ for fixed θ can be shown to be $\mathbf{P}(\mathbf{z})=P(\mathbf{z} \mid \mathbf{x}, \theta)$. (dist. computed at the E-step).
■ M-step: Maximize $F(\theta, \mathbf{P})$ over θ for fixed $\mathbf{P}(\mathbf{z}), \Longleftrightarrow$ maximizing $E_{\mathbf{P}}\left[l_{0}(\theta ; \mathbf{t}) \mid \mathbf{x}, \theta^{*}\right]$ (2nd term do not depend on θ).

Since $F(\theta, \mathbf{P})$ and the obs. data log-likelihood agree when $\mathbf{P}(\mathbf{z})=P(\mathbf{z} \mid \mathbf{x}, \theta)$, maximization of the former accomplishes maximization of the latter.

Course 6.2

Model Order Selection

What it is useful for?

■ Data-to-knowledge

- Statistical models fitting \Rightarrow models learning
- Features extraction for data, e.g. behavior, shapes...
- Data characterisation \Rightarrow Complex modelling

■ Complex estimation problems, e.g. many parameters, non parametric estimation...

- Clustering / Classification: Modes \simeq clusters / classes
- Dealing with missing (latent) data: unknown labels can be generalized to unobserved data...

I. Gaussian Mixture Model

II. Reminders in Bayesian probabilities/statistics
III. EM algorithm
IV. Model order selection: introduction
V. Test vs training data - Cross-validation
VI. Information criteria and Bayesian approaches
VII. Applications

Introduction / Motivations

Make high-level decisions about the model we want to use:
■ Number of components in a mixture model
■ Network architecture of (deep) neural networks

- Type of kernel in a support vector machine
- Degree of a polynomial in a regression problem
- Others examples...

True data generated from a sinusoid $(\sin (2 \pi x))+($ small $)$ Gaussian noise (Bishop, 2006)

Introduction / Motivations

Goal: predict the value of t for some new value of x, without knowledge of the green curve \rightarrow Model selection

Simple / natural approach: curve fitting

$$
y(x, \mathbf{w})=\sum_{i=1}^{M} w_{i} x^{i}
$$

where M is the polynomial order (unknown) and $\mathbf{w}=\left(w_{0}, \ldots, w_{M}\right)$ are the polynomial coefficients (unknown). For \mathbf{w}, let's minimize an error function, e.g.,

$$
e(\mathbf{w})=\sum_{n=1}^{N}\left(\rho\left(y\left(x_{n}, \mathbf{w}\right)-t_{n}\right)\right)^{2} \text { or } e_{R M S}=\sqrt{e\left(\mathbf{w}^{*}\right) / N}
$$

where N stands for the number of observed data. $e(\mathbf{w})$ is a quadratic function w.r.t $\mathbf{w} \Rightarrow$ unique solution \mathbf{w}^{*}

Problem: choose $M!!!$
Discussion with mixture models / EM algo

Introduction / Motivations

Polynomial models fitting (Bishop, 2006) How to evaluate the "best model"?

I. Gaussian Mixture Model

II. Reminders in Bayesian probabilities/statistics
III. EM algorithm
IV. Model order selection: introduction
V. Test vs training data - Cross-validation
VI. Information criteria and Bayesian approaches
VII. Applications

Test vs training data

Different errors behavior between training and test datasets (Bishop, 2006)

- Model fits training data perfectly, but may not do well on test data: Overfitting $\left(M=9 \Rightarrow e_{R M S}=0\right.$, but poor estimation of $\left.\left.\sin (2 \pi x)\right)\right)$
- Training performance \neq test performance, but we are largely interested in test performance
■ Need mechanisms for assessing how a model generalizes to unseen test data: Model selection
- Computational costs ...

Overfitting / Number of data / Computational

 cost

Plots of the solutions obtained by minimizing the sum-of-squares error function using the $M=9$ polynomial for $N=15$ data points (left plot) and $N=100$ data points (right plot).

Increasing the size of the data set reduces the over-fitting problem

Model choice - Occam's (Ockham) Razor

CORE PRINCIPLES IN RESEARCH

OCCAM'S RAZOR
"WHEN FACED WITH TWO POSSBLE EXPLANATIONS, THE SIMPLER OF THE TWO IS THE ONE MOST LIKELY TO BE TRUE."

OCCAM'S PROFESSOR
WHEN FACED WITH TWO POSSBLE WAYS OF DONNG SOMETHING, THE MORE COMPLICATED ONE IS THE ONE YOUR PROFESSOR WILL MOST LIKELY ASK YOU TO DO."

(PhD comics)

William of Ockham: "More things should not be used than are necessary" (Wikipedia)

Model choice - Occam's (Ockham) Razor

(Normalized) dist. of data sets for three models of different complexity, in which \mathscr{M}_{1} is the simplest and \mathscr{M}_{3} is the most complex - \mathscr{D}_{0} : observed dataset - \mathscr{M}_{2} with intermediate complexity has the largest evidence (Bishop, 2006)

Idea: choose the simplest model that explains "reasonably" well the data

Cross-validation

- Partition your training data into L subsets
- Train the model on $L-1$ subsets
- Evaluate the model on the remaining subset
- To reduce variability, multiple rounds of cross-validation are performed using different partitions, and the validation results are averaged over the rounds.
- Train many models, compare test error

Number of training runs increases with the number of partitions

I. Gaussian Mixture Model

II. Reminders in Bayesian probabilities/statistics
III. EM algorithm
IV. Model order selection: introduction
V. Test vs training data - Cross-validation
VI. Information criteria and Bayesian approaches
VII. Applications

Information criteria (to be maximized)

■ Correct for the bias of MLE by addition of a penalty term to compensate for the overfitting of more complex models (with lots of parameters)

- Akaike Information Criterion (AIC) ${ }^{1}$:

$$
A I C(j)=\ln \left(p\left(\mathbf{x} \mid \hat{\theta}_{M L}\right)\right)-M_{j}
$$

where M_{j} is the number of unknown parameters for model \mathscr{M}_{j}.
■ Bayesian Information Criterion (BIC) / Minimum Description Length $(\mathrm{MDL})^{2}$:

$$
B I C(j)=\ln \left(p\left(\mathbf{x} \mid \hat{\theta}_{M L}\right)\right)-\frac{1}{2} M_{j} N
$$

where M_{j} is the number of unknown parameters for model \mathscr{M}_{j} and N the number of data.

- BIC penalizes model complexity more heavily than AIC.
${ }^{1}$ H. Akaike. A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control, 19(6) : 716-723, 1974.
${ }^{2}$ G. E. Schwarz. Estimating the Dimension of a Model. Annals of Statistics, 6(2) : 461-464, 1978.

Bayesian Model Comparison

- Place a prior $p(\mathscr{M})$ on the class of models

■ Given a training set \mathscr{D}, we compute the posterior distribution over models as

$$
p\left(\mathscr{M}_{i} \mid \mathscr{D}\right) \propto p\left(\mathscr{M}_{i}\right) p\left(\mathscr{D} \mid \mathscr{M}_{i}\right)
$$

which allows us to express a preference for different models

- Model evidence (marginal likelihood):

$$
p\left(\mathscr{D} \mid \mathscr{M}_{i}\right)=\int p\left(\mathscr{D} \mid \theta_{i}\right) p\left(\theta_{i} \mid \mathscr{M}_{i}\right) d \theta_{i}
$$

- Bayes factor for comparing two models: $p\left(\mathscr{D} \mid \mathscr{M}_{1}\right) / p\left(\mathscr{D} \mid \mathscr{M}_{2}\right)$
- Integral often intractable...

Bayesian Model Averaging

For predicting new observations...

- Place a prior $p(\mathscr{M})$ on the class of models

■ Instead of selecting the "best" model, integrate out the corresponding model parameters $\theta_{\mathscr{M}}$ and average over all models $\mathscr{M}_{i}, i=1, \ldots, L$

$$
\begin{aligned}
p(\mathscr{D}) & =\sum_{i=1}^{L} p\left(\mathscr{M}_{i}\right) p\left(\mathscr{D} \mid \theta_{i}\right) p\left(\theta_{i} \mid \mathscr{M}_{i}\right) d \theta_{i} \\
& =\sum_{i=1}^{L} p\left(\mathscr{M}_{i}\right) p\left(\mathscr{D} \mid \mathscr{M}_{i}\right)
\end{aligned}
$$

- Computationally expensive

■ Integral often intractable

On Model (Order) Selection ...

■ Many others techniques:

- Minimum Message Length (see applications - Bayesian criterion)
- Modified AIC accounting for small sample size:

$$
m A I C(j)=\ln \left(p\left(\mathbf{x} \mid \hat{\theta}_{M L}\right)\right)-M_{j}-\frac{M_{j}\left(M_{j}+1\right)}{N-M_{j}-1}
$$

- Hypothesis testing vs Bayesian model comparison

■ For estimating models mixture:

- All previous techniques
- Split and merge ${ }^{3}$ (see applications + TP)
- Reversible jump ${ }^{4}$ (outside of the scope of this course)

Simple example...

${ }^{1}$ Zhang, Z., Chen, C., Sun, J., Chan, K. L. (2003). EM algorithms for Gaussian mixtures with split-and-merge operation. Pattern recognition, 36(9), 1973-1983.
${ }^{2}$ Zhang, Z., Chan, K. L., Wu, Y., Chen, C. (2004). Learning a multivariate Gaussian mixture model with the reversible jump MCMC algorithm. Statistics and Computing, 14(4), 343-355.
I. Gaussian Mixture Model
II. Reminders in Bayesian probabilities/statistics
III. EM algorithm
IV. Model order selection: introduction
V. Test vs training data - Cross-validation
VI. Information criteria and Bayesian approaches
VII. Applications

Applications to image processing with Mixtures of Asymmetric Generalized Gaussian distributions

Course 5

New slides

