Advanced Machine Learning Course VI - Mixture Models, EM and Model Order Selection

L. Omar Chehab⁽¹⁾ and Frédéric Pascal⁽²⁾

⁽¹⁾ Parietal Team, Inria

⁽²⁾ Laboratory of Signals and Systems (L2S), CentraleSupélec, University Paris-Saclay

I-emir-omar.chehab@inria.fr, frederic.pascal@centralesupelec.fr,

http://fredericpascal.blogspot.fr

Dominante MDS (Mathématiques, Data Sciences) Sept. - Dec., 2020

Contents

- Introduction Reminders of probability theory and mathematical statistics (Bayes, estimation, tests) - FP
- 2 Robust regression approaches EC / OC
- 3 Hierarchical clustering FP / OC
- 4 Stochastic approximation algorithms EC / OC
- **5** Nonnegative matrix factorization (NMF) EC / OC
- 6 Mixture models fitting / Model Order Selection FP / OC
- 7 Inference on graphical models EC / VR
- 8 Exam

Key references for this course

- Bishop, C. M. *Pattern Recognition and Machine Learning.* Springer, 2006.
- Hastie, T., Tibshirani, R. and Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Second edition. Springer, 2009.
- James, G., Witten, D., Hastie, T. and Tibshirani, R. *An Introduction to Statistical Learning, with Applications in R.* Springer, 2013

Course 6.1

Mixture models

What it is useful for?

Data-to-knowledge

- Statistical models fitting ⇒ models learning
- Features extraction for data, e.g. behavior, shapes...
- Data characterisation ⇒ Complex modelling
- Complex estimation problems, e.g. many parameters, non parametric estimation...
- Clustering / Classification: Modes ~ clusters / classes
- Dealing with missing (latent) data: unknown labels can be generalized to unobserved data...

I. Gaussian Mixture Model

- II. Reminders in Bayesian probabilities/statistics
- III. EM algorithm
- IV. Model order selection: introduction
- V. Test vs training data Cross-validation
- VI. Information criteria and Bayesian approaches
- VII. Applications

Gaussian Mixture Model

Example: Weight of small animals coming from two different regions

Length	82	83	84	85	86	87	88	89
Observations	5	3	12	36	55	45	21	13
Length	90	91	92	93	94	95	96	98
Observations	15	34	59	48	16	12	6	1

Gaussian Mixture Model with two components

To understand / intuite the process, continue with this simple example

 $\begin{array}{rcl} Y_1 & \sim & \mathcal{N}(\mu_1, \sigma_1^2) \\ Y_2 & \sim & \mathcal{N}(\mu_2, \sigma_2^2) \\ Z & \sim & \mathscr{B}(1, p) \end{array}$

That is P(Z = 1) = p and P(Z = 0) = 1 - p. In this context, the observations are as follows: $X = Z Y_1 + (1 - Z) Y_2$

Meanings

data follows the first distribution / belongs to the first cluster with a probability p.

Denote $\phi_{\theta}(x)$ the Gaussian PDF with parameters $\theta = (\mu, \sigma^2)$, one has the following PDF for *X*: $f_X(x) = p\phi_{\theta_1}(x) + (1-p)\phi_{\theta_2}(x)$ leading to the log-likelihood for *n* observations (X_1, \dots, X_n)

$$l(\theta; \mathbf{x}) = \sum_{i=1}^{n} \log \left(p \phi_{\theta_1}(x_i) + (1-p) \phi_{\theta_2}(x_i) \right)$$

Gaussian Mixture Model with two components

Difficult estimation problem for $\theta = (p, \theta_1, \theta_2)$, 5 unknown parameters for the simplest case... Problem with the sum in the log.

Solution: consider unobserved latent variables $(Z_1,...,Z_n)$ where $Z_i = 1$ when X_i comes from the first model and $Z_i = 0$ when X_i comes from the second model. Let us now assume we knew the value of each Z_i . In that case, MLEs can be trivially obtained...

$$l(\theta; \mathbf{x}, \mathbf{z}) = \sum_{i=1}^{n} \left(z_i \log(\phi_{\theta_1}(x_i)) + (1 - z_i) \log(\phi_{\theta_2}(x_i)) \right) + \sum_{i=1}^{n} \left(z_i \log(p) + (1 - z_i) \log(1 - p) \right)$$

where $\mathbf{x} = (x_1, ..., x_n)$ and $\mathbf{z} = (z_1, ..., z_n)$.

Derive the MLEs pour $\theta = (p, \mu_1, \sigma_1^2, \mu_2, \sigma_2^2)!$

Gaussian Mixture Model with two components

In practice, the values of the Z_i 's are **unknown**!

Idea: Replace for each Z_i , its expected value (conditional to the observed data X_i) $\gamma_i(\theta) = E[Z_i|\theta, \mathbf{x}] = P(Z_i = 1|\theta, \mathbf{x})$

called the responsibility for model 1 of observation i. \Rightarrow iterative algorithm, Expectation-Maximization (EM) algo

Algorithm (EM algo for two-component Gaussian Mixture)

- Randomly initialization of θ⁽⁰⁾
- Repeat until CV for t = 0, 1, ...

(a) **E-Step:** Compute the responsibilities $\hat{\gamma}_i = \frac{\hat{p}\phi_{\hat{\theta}_1}(x_i)}{\hat{p}\phi_{\hat{\theta}_1}(x_i) + (1-\hat{p})\phi_{\hat{\theta}_2}(x_i)}$, i = 1, ..., n(b) **M-Step:** Compute the parameters... $\hat{\mu}_1 = \frac{\sum_i \hat{\gamma}_i x_i}{\sum_i \hat{\gamma}_i}, \hat{\sigma}_1^2 = \frac{\sum_i \hat{\gamma}_i (x_i - \hat{\mu}_1)^2}{\sum_i \hat{\gamma}_i}$,... and

 $\hat{p} = \sum_i \hat{\gamma}_i / n.$

Discussion

Gaussian Mixture Model

Idea: One aims at modelling the statistical behaviour from several populations, groups or classes...

Notations:

- **n** observations of i.i.d. random variables/vectors, denoted (X_1, \ldots, X_n)
- *K* different clusters containing n_k observations. Of course, $n = \sum_{k=1}^{K} n_k$
- *p_k* the probability of belonging to the *kth* class and *f_k* the PDF of r.v. in this class.

e.g.,:

. . . .

- different objects in an image (or a patch) containing N pixels, denoted x_i
- population of ducks: x_i corresponds to the size of the ith duck.
 Different classes corresponding to the animal age/sex/origin (young, old, female, male).

Gaussian Mixture Model

Statistical modelling of a mixture: with previous notations, one can defined the following PDF:

$$f(x) = \sum_{k=1}^{K} p_k \times f_k(x)$$

Particular case of Gaussian Mixture Models:

$$f(x) = \sum_{k=1}^{K} p_k \times \frac{1}{\sqrt{2\pi\sigma_k^2}} \exp\left(-\frac{(x-\mu_k)^2}{2\sigma_k^2}\right)$$

Problem: estimation of many unknown parameters

$$\theta = \left(p_k, \mu_k, \sigma_k\right)_{k=1,\dots,K}$$

with
$$\sum_{k=1}^{K} p_k = 1$$
 and $\forall k \in \{1, \dots, K\}, \mu_k \in \mathbb{R}, \sigma_k \in \mathbb{R}^*_+$.

What about K? Known, unknown?

Gaussian Mixture Model

Interest of GMM

GMM allow to model many various distributions

(a)
$$\frac{1}{5}\mathcal{N}(0,1) + \frac{1}{5}\mathcal{N}(1/2,(2/3)^2) + \frac{3}{5}\mathcal{N}(13/15,(5/9)^2),$$

(b) $\sum_{k=0}^7 \mathcal{N}(3((2/3)^k - 1),(2/3)^{2k})$
(c) $\frac{1}{2}\mathcal{N}(-1,(2/3)^2) + \frac{1}{2}\mathcal{N}(1,(2/3)^2)$
(d) $\frac{3}{4}\mathcal{N}(0,1) + \frac{1}{4}\mathcal{N}(3/2,(1/3)^2)$
(e) $\frac{9}{2}0\mathcal{N}(-6/5,(3/5)^2) + \frac{9}{2}0\mathcal{N}(6/5,(3/5)^2) + \frac{1}{1}0\mathcal{N}(0,(1/4)^2)$
(f) $\frac{1}{2}\mathcal{N}(0,1) + \sum_{k=-2}^2 \frac{2^{1-k}}{31}\mathcal{N}(k+1/2,(2^{-k}/10)^2)$

(a) Asymmetric unimodal PDF

(b) Strongly asymmetric unimodal PDF

Gaussian Mixture Model

Interest of GMM

I. Gaussian Mixture Model

II. Reminders in Bayesian probabilities/statistics

III. EM algorithm

- IV. Model order selection: introduction
- V. Test vs training data Cross-validation
- VI. Information criteria and Bayesian approaches
- VII. Applications

Reminders in Bayesian probabilities/statistics

For two events (or r. v. ...), one has:

Conditional probabilities

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Bayes rule

$$P(B|A) = \frac{P(A|B) P(B)}{P(A)}$$

• if B_1, \ldots, B_n is a partition of Ω , i.e. $\bigcup_{i=1}^n B_i = \Omega$ and $\forall i \neq j, B_i \cap B_j = \emptyset$, then

$$P(A) = \sum_{i=1}^{n} P(A \cap B_i)$$

GMM simulations

To simulate the mixture $f(x) = \sum_{k=1}^{K} p_k \times \frac{1}{\sqrt{2\pi\sigma_k^2}} \exp\left(-\frac{(x-\mu_k)^2}{2\sigma_k^2}\right)$, one

needs to introduce a latent variable Z (or missing data) that corresponds to the class of the variable X.

Now, the complete data T = (X, Z) is defined by:

■ Z follows a discrete distribution $(p_1,...,p_K)$ on $\{1,...,K\}$ such that $\forall k$, one has (Multinomial distribution)

$$P(Z = k) = p_k$$
, with $\sum_k p_k = 1$

• $\forall k \in \{1, \dots, K\}$, conditionally to $\{Z = k\}$, X has a PDF f_k :

$$\mathscr{L}(x|Z=k) = f_k(x)$$

Goal: estimation of $\theta = (p_k, \mu_k, \sigma_k)_{k=1,...,K}$

2 cases for : one knows latent variables (unrealistic scenario) or not...

- I. Gaussian Mixture Model
- II. Reminders in Bayesian probabilities/statistics

III. EM algorithm

- IV. Model order selection: introduction
- V. Test vs training data Cross-validation
- VI. Information criteria and Bayesian approaches
- VII. Applications

EM algorithm - preliminaries

Simple case: Z is known

⇒ one observes $(x_i, z_i)_{i=1,...,n}$ instead of (only) $(x_i)_{i=1,...,n}$. Maximum Likelihood approach

Theorem (**ML** estimates of θ)

Let the observations $(x_i, z_i)_{i=1,...,n}$, then $\forall k \in \{1,...,K\}$, one has

$$\hat{p}_{k} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{z_{i}=k}$$
(1)

$$\hat{\mu}_{k} = \frac{1}{n \hat{p}_{k}} \sum_{i \mid z_{i}=k} x_{i}$$
(2)

$$\hat{\sigma}_{k}^{2} = \frac{1}{n \hat{p}_{k}} \sum_{i \mid z_{i}=k} (x_{i} - \hat{\mu}_{k})^{2}$$
(3)

General EM algorithm - k-means, SEM...

General idea: One only observes $(x_1, \ldots, x_n) \Rightarrow$ analyse the log-likelihood

$$l_{obs}(x_1, \dots, x_n; \theta) = \sum_{i=1}^n \log \left(\sum_{k=1}^K p_k \times f_k(x_i) \right), \text{ where } \theta = \left(p_k, \mu_k, \sigma_k \right)_{k=1,\dots,K}$$

Difficult to maximize!!!

BUT one can make assumptions of the unobserved $(Z_1, ..., Z_n)$:

Lemma (Conditional distribution of the Z_i 's) For $\theta \in \Theta, x \in \mathbb{R}$ and $k \in \{1, ..., K\}$, one has

$$P_{\theta} (Z = k | X = x) = \frac{p_k \times f_k(x)}{\sum_{l=1}^{K} p_l \times f_l(x)}$$
(4)

Intuition: thanks to some θ_{old} , one can assign to each x_i some z_i (Lemma) and thanks to previous theorem, one can compute a $\theta_{new...}$

General EM algorithm - k-means, SEM...

Several possible approaches:

• [k-means] Assign a class to each x_i according to

$$z_i = \arg\max_k P_{\theta_{old}} \left(Z = k | X_i = x_i \right)$$

Natural approach but not flexible

[SEM] Randomly assign a class to each x_i according to the distribution

$$P_{\theta_{old}} \left(Z = . | X_i = x_i \right)$$

More flexible

- [*N*-SEM] Randomly assign *N* classes to each x_i
- [EM] Limit of N-SEM when $N \rightarrow \infty$ Very flexible and robust!

k-means

One has to assume that (Very strong assumptions!)

•
$$p_1 = ... = p_K = \frac{1}{K}$$
 and $\sigma_1 = ... = \sigma_K$.

Lemma

 $\forall \theta, \forall x \in \mathbb{R}$

$$\arg\max_{k} P_{\theta} \left(Z = k | X = x \right) = \arg\min_{k} |x - \mu_{k}|$$

Algorithm (k-means)

- **•** Randomly initialize (z_1, \ldots, z_K)
- Repeat until CV:

• for
$$k \in \{1, ..., K\}$$
, $\mu_k = \frac{1}{n} \sum_{i=1}^n x_i 1_{z_i=k}$
• for $i \in \{1, ..., n\}$, $z_i = \arg\min_k |x - \mu_k|$

Advantages / Drawbacks ...

EM algorithm

Stochastic EM

General idea: Stochastic version of the k-means algorithm...

Algorithm (SEM)

- **Randomly initialize** (z_1, \ldots, z_K)
- Repeat until CV:
 - (a) Compute

$$\hat{\theta} = \arg\max_{\theta} l_{obs}((x_1, z_1), \dots, (x_n, z_n); \theta)$$

thanks to Theorem (MLE) (b) for $i \in \{1, ..., n\}$, randomly choose z_i according to

$$P_{\hat{\theta}}\left(Z=.|X_i=x_i\right)$$

given by Eq. (4).

Stochastic EM

Stochastic EM - N trials

Algorithm (N-SEM (1))

Replicate N times, the observations $(x_1, \dots, x_n) \rightarrow (x_i^{(j)})_{1 \le i \le n, 1 \le i \le N}$

Apply SEM algo to this dataset.

Algorithm (N-SEM (2))

- Randomly initialize N classes $z_i^1, ..., z_i^N \in \{1, ..., K\}, \forall i$
- Repeat until CV

(a) Compute

$$\hat{\theta} = \arg\max_{\theta} l_{obs} \left((x_i, z_i^1)_{i=1,\dots,n} \cup \dots \cup (x_i, z_i^N)_{i=1,\dots,n}; \theta \right)$$

thanks to Theorem (MLE)

(b) for $i \in \{1,...,n\}$, randomly choose $z_i^1,...,z_i^N$ (independently!) according to

$$P_{\hat{\theta}}\left(Z=.|X_i=x_i\right)$$

given by Eq. (4).

General idea: *N*-SEM with $N \rightarrow +\infty$...

Lemma

Given $(x_i)_{1 \le i \le n}$ and associated classes for N trials $(z_i^k)_{1 \le i \le n, 1 \le k \le K}$, one has

$$\forall \theta, l_{obs}\left(\left(x_{i}, z_{i}^{1}\right)_{i=1,\dots,n} \cup \dots \cup \left(x_{i}, z_{i}^{N}\right)_{i=1,\dots,n}; \theta\right) = \sum_{j=1}^{N} l_{obs}\left(\left(x_{i}, z_{i}^{j}\right)_{i=1,\dots,n}; \theta\right)$$

Theorem (First part)

Given the observations $(x_i)_{1 \le i \le n}$ and $\theta_{old} \in \Theta$.

(a) Let $Z_1, ..., Z_n$ independent r.v. such that $Z_i \sim \mathscr{L}_{\theta_{old}}(Z|X = x_i)$. One has $\forall \theta = (p_k, \mu_k, \sigma_k)_{1 \le k \le K} \in \Theta$,

$$E[l((x_i, z_i)_{i=1,...,n}; \theta)] = \sum_{i=1}^{n} \sum_{k=1}^{K} P_{\theta_{old}}(Z = k | X = x_i) \log(p_k \times f_k(x_i))$$

where $P_{\theta_{old}}(Z = .|X = x_i)$ given by Eq. (4).

Theorem (Second part)

Given the observations $(x_i)_{1 \le i \le n}$ and $\theta_{old} \in \Theta$,

- (b) One has that $\arg \max_{\theta} E[l((x_i, z_i)_{i=1,\dots,n}; \theta)]$ is given by:
 - Classes probabilities: $\forall k = 1, ..., K$,

$$p_k^{argmax} = \frac{1}{n} \sum_{i=1}^n P_{\theta_{old}} \left(Z = k | X = x_i \right)$$

• Classes means: $\forall k = 1, ..., K$,

$$\mu_k^{argmax} = \frac{1}{n p_k^{argmax}} \sum_{i=1}^n P_{\theta_{old}} \left(Z = k | X = x_i \right) x_i$$

• Classes variances: $\forall k = 1, ..., K$,

$$(\sigma_k^{argmax})^2 = \frac{1}{n p_k^{argmax}} \sum_{i=1}^n P_{\theta_{old}} (Z = k | X = x_i) (x_i - \mu_k^{argmax})^2$$

Following previous theorem, one has the following theoretical algorithm:

Algorithm (Theory)

- Randomly initialization of θ_0
- Repeat until CV for t = 0, 1, ...
 - (a) E-Step: Compute

$$L_t(\theta) = E\left[l\left(\left(X_i, Z_i^t\right)_{i=1,\dots,n}; \theta\right)\right] \left(\Longleftrightarrow Q(\theta, \theta_t) = E(l(\theta; \mathbf{t}) | \mathbf{x}, \theta_t) \right)$$

where Z_1^t, \ldots, Z_n^t are *i.i.d.* with $Z_i^t \sim \mathscr{L}_{\theta_t}(Z|X = x_i)$ (b) **M-Step:** Maximize $L_t(\theta)$ to obtain $\theta_{t+1} = \operatorname{argmax}_{\theta} L_t(\theta)$

E for Expectation
 M for Maximization

Outline of the proof ...

In practice, one has to implement the following algorithm...

Algorithm (Practice)

- Randomly initialization of θ_0
- Repeat until CV for t = 0, 1, ...
 - (a) **E-Step:** Compute the matrix

$$\left[P_{\theta_{t}}(Z=k|X=x_{i})\right]_{1\leq i\leq n, 1\leq k\leq K} = \left[\frac{p_{k}^{*} \times f_{k,t}(x_{i})}{\sum_{l=1}^{K} p_{l}^{t} \times f_{l,t}(x_{i})}\right]_{1\leq i\leq n, 1\leq k\leq K}$$

(b) **M-Step:** Compute θ_{t+1} , for all k = 1, ..., K,

$$\hat{p}_{k}^{t+1} = \frac{1}{n} \sum_{i=1}^{n} P_{\theta_{t}} \left(Z = k | X = x_{i} \right),$$
(5)

$$\hat{\mu}_{k}^{t+1} = \frac{1}{n\hat{p}_{k}^{t+1}} \sum_{i=1}^{n} x_{i} P_{\theta_{t}} (Z = k | X = x_{i})$$
(6)

$$\left(\hat{\sigma}_{k}^{t+1}\right)^{2} = \frac{1}{n\hat{p}_{k}^{t+1}}\sum_{i=1}^{n}P_{\theta_{t}}\left(Z=k|X=x_{i}\right)\left(x_{i}-\hat{\mu}_{k}^{t+1}\right)^{2}$$
(7)

A different view - *Maximization*-*Maximization* procedure

- Consider the function $F(\theta, \mathbf{P}) = E_{\mathbf{P}}[l_0(\theta; \mathbf{t})] E_{\mathbf{P}}[\log(\mathbf{P}(\mathbf{z}))]$
- **P** can be any distribution for the *latent* variables **z**.
- Note that F evaluated at P(z) = P(z|x, θ) is the log-likelihood of the observed data.
- EM algo can be viewed as a joint maximization method for F over θ and P(z). Maximizer over P(z) for fixed θ can be shown to be P(z) = P(z|x, θ). (dist. computed at the E-step).
- *M*-step: Maximize $F(\theta, \mathbf{P})$ over θ for fixed $\mathbf{P}(\mathbf{z})$, \iff maximizing $E_{\mathbf{P}}[l_0(\theta; \mathbf{t})|\mathbf{x}, \theta^*]$ (2nd term do not depend on θ).

Since $F(\theta, \mathbf{P})$ and the obs. data log-likelihood agree when $\mathbf{P}(\mathbf{z}) = P(\mathbf{z}|\mathbf{x}, \theta)$, maximization of the former accomplishes maximization of the latter.

Course 6.2

Model Order Selection

What it is useful for?

Data-to-knowledge

- Statistical models fitting \Rightarrow models learning
- Features extraction for data, e.g. behavior, shapes...
- Data characterisation ⇒ Complex modelling
- Complex estimation problems, e.g. many parameters, non parametric estimation...
- Clustering / Classification: Modes ~ clusters / classes
- Dealing with missing (latent) data: unknown labels can be generalized to unobserved data...

- I. Gaussian Mixture Model
- II. Reminders in Bayesian probabilities/statistics
- III. EM algorithm

IV. Model order selection: introduction

- V. Test vs training data Cross-validation
- VI. Information criteria and Bayesian approaches
- VII. Applications

Introduction / Motivations

Make high-level decisions about the model we want to use:

- Number of components in a mixture model
- Network architecture of (deep) neural networks
- Type of kernel in a support vector machine
- Degree of a polynomial in a regression problem

Others examples...

True data generated from a sinusoid $(\sin(2\pi x)) + (\text{small})$ Gaussian noise (Bishop, 2006)

Introduction / Motivations

Goal: predict the value of t for some new value of x, without knowledge of the green curve \rightarrow Model selection

Simple / natural approach: curve fitting

$$y(x, \mathbf{w}) = \sum_{i=1}^{M} w_i x^i$$

where *M* is the polynomial order (unknown) and $\mathbf{w} = (w_0, ..., w_M)$ are the polynomial coefficients (unknown). For \mathbf{w} , let's minimize an *error function*, e.g.,

$$e(\mathbf{w}) = \sum_{n=1}^{N} \left(\rho \left(y(x_n, \mathbf{w}) - t_n \right) \right)^2 \text{ or } e_{RMS} = \sqrt{e(\mathbf{w}^*)/N}$$

where N stands for the number of observed data. $e(\mathbf{w})$ is a quadratic function w.r.t $\mathbf{w} \Rightarrow$ unique solution \mathbf{w}^*

Problem: choose *M***!!!** Discussion with mixture models / EM algo

Introduction / Motivations

- I. Gaussian Mixture Model
- II. Reminders in Bayesian probabilities/statistics
- III. EM algorithm
- IV. Model order selection: introduction
- V. Test vs training data Cross-validation
- VI. Information criteria and Bayesian approaches
- **VII.** Applications

Test vs training data

Different errors behavior between training and test datasets (Bishop, 2006)

- Model fits training data perfectly, but may not do well on test data: Overfitting $(M = 9 \Rightarrow e_{RMS} = 0$, but poor estimation of $sin(2\pi x))$
- Training performance ≠ test performance, but we are largely interested in test performance
- Need mechanisms for assessing how a model generalizes to unseen test data: Model selection
- Computational costs ...

Overfitting / Number of data / Computational cost

Plots of the solutions obtained by minimizing the sum-of-squares error function using the M = 9 polynomial for N = 15 data points (left plot) and N = 100 data points (right plot).

Increasing the size of the data set reduces the over-fitting problem

Model choice - Occam's (Ockham) Razor

CORE PRINCIPLES IN RESEARCH

OCCAM'S RAZOR

"WHEN FACED WITH TWO POSSIBLE EXPLANATIONS, THE SIMPLER OF THE TWO IS THE ONE MOST LIKELY TO BE TRUE."

OCCAM'S PROFESSOR

"WHEN FACED WITH TWO POSSIBLE WAYS OF DOING SOMETHING, THE MORE COMPLICATED ONE IS THE ONE YOUR PROFESSOR WILL MOST LIKELY ASK YOU TO DO."

WWW. PHDCOMICS. COM

(PhD comics)

William of Ockham: "More things should not be used than are necessary" (Wikipedia)

Model choice - Occam's (Ockham) Razor $p(\mathcal{D})$ \mathcal{M}_1 \mathcal{M}_2 \mathcal{M}_3 \mathcal{D} \mathcal{D}_0

(Normalized) dist. of data sets for three models of different complexity, in which \mathcal{M}_1 is the simplest and \mathcal{M}_3 is the most complex - \mathcal{D}_0 : observed dataset - \mathcal{M}_2 with intermediate complexity has the largest evidence (Bishop, 2006)

Idea: choose the simplest model that explains "reasonably" well the data

Cross-validation

- Partition your training data into L subsets
- Train the model on L-1 subsets
- Evaluate the model on the remaining subset
- To reduce variability, multiple rounds of cross-validation are performed using different partitions, and the validation results are averaged over the rounds.
- Train many models, compare test error

Number of training runs increases with the number of partitions

- I. Gaussian Mixture Model
- II. Reminders in Bayesian probabilities/statistics
- III. EM algorithm
- IV. Model order selection: introduction
- V. Test vs training data Cross-validation
- VI. Information criteria and Bayesian approaches
- VII. Applications

Information criteria (to be maximized)

- Correct for the bias of MLE by addition of a penalty term to compensate for the overfitting of more complex models (with lots of parameters)
- Akaike Information Criterion (AIC)¹:

$$AIC(j) = \ln(p(\mathbf{x}|\hat{\theta}_{ML})) - M_j$$

where M_j is the number of unknown parameters for model \mathcal{M}_j . Bayesian Information Criterion (BIC) / Minimum Description Length (MDL)²:

$$BIC(j) = \ln(p(\mathbf{x}|\hat{\theta}_{ML})) - \frac{1}{2}M_jN$$

where M_j is the number of unknown parameters for model \mathcal{M}_j and N the number of data.

BIC penalizes model complexity more heavily than AIC.

 1 H. Akaike. A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control, 19(6) : 716-723, 1974.

 2 G. E. Schwarz. Estimating the Dimension of a Model. Annals of Statistics, 6(2) : 461-464, 1978.

Bayesian Model Comparison

Place a prior $p(\mathcal{M})$ on the class of models

■ Given a training set 𝔍, we compute the posterior distribution over models as

$$p(\mathcal{M}_i|\mathcal{D}) \propto p(\mathcal{M}_i) p(\mathcal{D}|\mathcal{M}_i)$$

which allows us to express a preference for different modelsModel evidence (marginal likelihood):

$$p(\mathcal{D}|\mathcal{M}_i) = \int p(\mathcal{D}|\theta_i) \, p(\theta_i|\mathcal{M}_i) \, d\theta_i$$

Bayes factor for comparing two models: p(D|M1)/p(D|M2)
 Integral often intractable...

Bayesian Model Averaging

For predicting new observations...

- Place a prior $p(\mathcal{M})$ on the class of models
- Instead of selecting the "best" model, integrate out the corresponding model parameters $\theta_{\mathcal{M}}$ and average over all models $\mathcal{M}_i, i = 1, ..., L$

$$p(\mathcal{D}) = \sum_{i=1}^{L} p(\mathcal{M}_i) p(\mathcal{D}|\theta_i) p(\theta_i|\mathcal{M}_i) d\theta_i$$
$$= \sum_{i=1}^{L} p(\mathcal{M}_i) p(\mathcal{D}|\mathcal{M}_i)$$

- Computationally expensive
- Integral often intractable

On Model (Order) Selection ...

- Many others techniques:
 - Minimum Message Length (see applications Bayesian criterion)
 - Modified AIC accounting for small sample size:

 $mAIC(j) = \ln(p(\mathbf{x}|\hat{\theta}_{ML})) - M_j - \frac{M_j(M_j + 1)}{N - M_j - 1}$

Hypothesis testing vs Bayesian model comparison

...

- For estimating models mixture:
 - All previous techniques
 - Split and merge³(see applications + TP)
 - Reversible jump⁴ (outside of the scope of this course)

Simple example...

¹ Zhang, Z., Chen, C., Sun, J., Chan, K. L. (2003). EM algorithms for Gaussian mixtures with split-and-merge operation. Pattern recognition, 36(9), 1973-1983.
 ² Zhang, Z., Chan, K. L., Wu, Y., Chen, C. (2004). Learning a multivariate Gaussian mixture model with the reversible jump MCMC algorithm. Statistics and Computing, 14(4), 343-355.

- I. Gaussian Mixture Model
- II. Reminders in Bayesian probabilities/statistics
- III. EM algorithm
- IV. Model order selection: introduction
- V. Test vs training data Cross-validation
- VI. Information criteria and Bayesian approaches
- VII. Applications

Applications to image processing with Mixtures of Asymmetric Generalized Gaussian distributions

Course 5

New slides